Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/python/generic/mathutils.c')
-rw-r--r--source/blender/python/generic/mathutils.c724
1 files changed, 724 insertions, 0 deletions
diff --git a/source/blender/python/generic/mathutils.c b/source/blender/python/generic/mathutils.c
new file mode 100644
index 00000000000..e1e1cd2ae69
--- /dev/null
+++ b/source/blender/python/generic/mathutils.c
@@ -0,0 +1,724 @@
+/*
+ * $Id$
+ *
+ * ***** BEGIN GPL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
+ * All rights reserved.
+ *
+ * This is a new part of Blender.
+ *
+ * Contributor(s): Joseph Gilbert, Campbell Barton
+ *
+ * ***** END GPL LICENSE BLOCK *****
+ */
+
+/* Note: Changes to Mathutils since 2.4x
+ * use radians rather then degrees
+ * - Mathutils.MidpointVecs --> vector.lerp(other, fac)
+ * - Mathutils.AngleBetweenVecs --> vector.angle(other)
+ * - Mathutils.ProjectVecs --> vector.project(other)
+ * - Mathutils.DifferenceQuats --> quat.difference(other)
+ * - Mathutils.Slerp --> quat.slerp(other, fac)
+ * - Mathutils.Rand: removed, use pythons random module
+ * - Mathutils.RotationMatrix(angle, size, axis_flag, axis) --> Mathutils.RotationMatrix(angle, size, axis); merge axis & axis_flag args
+ * - Matrix.scalePart --> Matrix.scale_part
+ * - Matrix.translationPart --> Matrix.translation_part
+ * - Matrix.rotationPart --> Matrix.rotation_part
+ * - toMatrix --> to_matrix
+ * - toEuler --> to_euler
+ * - toQuat --> to_quat
+ * - Vector.toTrackQuat --> Vector.to_track_quat
+ *
+ * Moved to Geometry module: Intersect, TriangleArea, TriangleNormal, QuadNormal, LineIntersect
+ */
+
+#include "mathutils.h"
+
+#include "BLI_math.h"
+
+//-------------------------DOC STRINGS ---------------------------
+static char M_Mathutils_doc[] =
+"This module provides access to matrices, eulers, quaternions and vectors.";
+
+//-----------------------------METHODS----------------------------
+//-----------------quat_rotation (internal)-----------
+//This function multiplies a vector/point * quat or vice versa
+//to rotate the point/vector by the quaternion
+//arguments should all be 3D
+PyObject *quat_rotation(PyObject *arg1, PyObject *arg2)
+{
+ float rot[3];
+ QuaternionObject *quat = NULL;
+ VectorObject *vec = NULL;
+
+ if(QuaternionObject_Check(arg1)){
+ quat = (QuaternionObject*)arg1;
+ if(!BaseMath_ReadCallback(quat))
+ return NULL;
+
+ if(VectorObject_Check(arg2)){
+ vec = (VectorObject*)arg2;
+
+ if(!BaseMath_ReadCallback(vec))
+ return NULL;
+
+ rot[0] = quat->quat[0]*quat->quat[0]*vec->vec[0] + 2*quat->quat[2]*quat->quat[0]*vec->vec[2] -
+ 2*quat->quat[3]*quat->quat[0]*vec->vec[1] + quat->quat[1]*quat->quat[1]*vec->vec[0] +
+ 2*quat->quat[2]*quat->quat[1]*vec->vec[1] + 2*quat->quat[3]*quat->quat[1]*vec->vec[2] -
+ quat->quat[3]*quat->quat[3]*vec->vec[0] - quat->quat[2]*quat->quat[2]*vec->vec[0];
+ rot[1] = 2*quat->quat[1]*quat->quat[2]*vec->vec[0] + quat->quat[2]*quat->quat[2]*vec->vec[1] +
+ 2*quat->quat[3]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[3]*vec->vec[0] -
+ quat->quat[3]*quat->quat[3]*vec->vec[1] + quat->quat[0]*quat->quat[0]*vec->vec[1] -
+ 2*quat->quat[1]*quat->quat[0]*vec->vec[2] - quat->quat[1]*quat->quat[1]*vec->vec[1];
+ rot[2] = 2*quat->quat[1]*quat->quat[3]*vec->vec[0] + 2*quat->quat[2]*quat->quat[3]*vec->vec[1] +
+ quat->quat[3]*quat->quat[3]*vec->vec[2] - 2*quat->quat[0]*quat->quat[2]*vec->vec[0] -
+ quat->quat[2]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[1]*vec->vec[1] -
+ quat->quat[1]*quat->quat[1]*vec->vec[2] + quat->quat[0]*quat->quat[0]*vec->vec[2];
+ return newVectorObject(rot, 3, Py_NEW, NULL);
+ }
+ }else if(VectorObject_Check(arg1)){
+ vec = (VectorObject*)arg1;
+
+ if(!BaseMath_ReadCallback(vec))
+ return NULL;
+
+ if(QuaternionObject_Check(arg2)){
+ quat = (QuaternionObject*)arg2;
+ if(!BaseMath_ReadCallback(quat))
+ return NULL;
+
+ rot[0] = quat->quat[0]*quat->quat[0]*vec->vec[0] + 2*quat->quat[2]*quat->quat[0]*vec->vec[2] -
+ 2*quat->quat[3]*quat->quat[0]*vec->vec[1] + quat->quat[1]*quat->quat[1]*vec->vec[0] +
+ 2*quat->quat[2]*quat->quat[1]*vec->vec[1] + 2*quat->quat[3]*quat->quat[1]*vec->vec[2] -
+ quat->quat[3]*quat->quat[3]*vec->vec[0] - quat->quat[2]*quat->quat[2]*vec->vec[0];
+ rot[1] = 2*quat->quat[1]*quat->quat[2]*vec->vec[0] + quat->quat[2]*quat->quat[2]*vec->vec[1] +
+ 2*quat->quat[3]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[3]*vec->vec[0] -
+ quat->quat[3]*quat->quat[3]*vec->vec[1] + quat->quat[0]*quat->quat[0]*vec->vec[1] -
+ 2*quat->quat[1]*quat->quat[0]*vec->vec[2] - quat->quat[1]*quat->quat[1]*vec->vec[1];
+ rot[2] = 2*quat->quat[1]*quat->quat[3]*vec->vec[0] + 2*quat->quat[2]*quat->quat[3]*vec->vec[1] +
+ quat->quat[3]*quat->quat[3]*vec->vec[2] - 2*quat->quat[0]*quat->quat[2]*vec->vec[0] -
+ quat->quat[2]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[1]*vec->vec[1] -
+ quat->quat[1]*quat->quat[1]*vec->vec[2] + quat->quat[0]*quat->quat[0]*vec->vec[2];
+ return newVectorObject(rot, 3, Py_NEW, NULL);
+ }
+ }
+
+ PyErr_SetString(PyExc_RuntimeError, "quat_rotation(internal): internal problem rotating vector/point\n");
+ return NULL;
+
+}
+
+//----------------------------------MATRIX FUNCTIONS--------------------
+//----------------------------------mathutils.RotationMatrix() ----------
+//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
+static char M_Mathutils_RotationMatrix_doc[] =
+".. function:: RotationMatrix(angle, size, axis)\n"
+"\n"
+" Create a matrix representing a rotation.\n"
+"\n"
+" :arg angle: The angle of rotation desired.\n"
+" :type angle: float\n"
+" :arg size: The size of the rotation matrix to construct [2, 4].\n"
+" :type size: int\n"
+" :arg axis: a string in ['X', 'Y', 'Z'] or a 3D Vector Object (optional when size is 2).\n"
+" :type axis: string or :class:`Vector`\n"
+" :return: A new rotation matrix.\n"
+" :rtype: :class:`Matrix`\n";
+
+static PyObject *M_Mathutils_RotationMatrix(PyObject * self, PyObject * args)
+{
+ VectorObject *vec= NULL;
+ char *axis= NULL;
+ int matSize;
+ float angle = 0.0f;
+ float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
+
+ if(!PyArg_ParseTuple(args, "fi|O", &angle, &matSize, &vec)) {
+ PyErr_SetString(PyExc_TypeError, "mathutils.RotationMatrix(angle, size, axis): expected float int and a string or vector\n");
+ return NULL;
+ }
+
+ if(vec && !VectorObject_Check(vec)) {
+ axis= _PyUnicode_AsString((PyObject *)vec);
+ if(axis==NULL || axis[0]=='\0' || axis[1]!='\0' || axis[0] < 'X' || axis[0] > 'Z') {
+ PyErr_SetString(PyExc_TypeError, "mathutils.RotationMatrix(): 3rd argument axis value must be a 3D vector or a string in 'X', 'Y', 'Z'\n");
+ return NULL;
+ }
+ else {
+ /* use the string */
+ vec= NULL;
+ }
+ }
+
+ while (angle<-(Py_PI*2))
+ angle+=(Py_PI*2);
+ while (angle>(Py_PI*2))
+ angle-=(Py_PI*2);
+
+ if(matSize != 2 && matSize != 3 && matSize != 4) {
+ PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
+ return NULL;
+ }
+ if(matSize == 2 && (vec != NULL)) {
+ PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): cannot create a 2x2 rotation matrix around arbitrary axis\n");
+ return NULL;
+ }
+ if((matSize == 3 || matSize == 4) && (axis == NULL) && (vec == NULL)) {
+ PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): please choose an axis of rotation for 3d and 4d matrices\n");
+ return NULL;
+ }
+ if(vec) {
+ if(vec->size != 3) {
+ PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): the vector axis must be a 3D vector\n");
+ return NULL;
+ }
+
+ if(!BaseMath_ReadCallback(vec))
+ return NULL;
+
+ }
+
+ /* check for valid vector/axis above */
+ if(vec) {
+ axis_angle_to_mat3( (float (*)[3])mat,vec->vec, angle);
+ }
+ else if(matSize == 2) {
+ //2D rotation matrix
+ mat[0] = (float) cos (angle);
+ mat[1] = (float) sin (angle);
+ mat[2] = -((float) sin(angle));
+ mat[3] = (float) cos(angle);
+ } else if(strcmp(axis, "X") == 0) {
+ //rotation around X
+ mat[0] = 1.0f;
+ mat[4] = (float) cos(angle);
+ mat[5] = (float) sin(angle);
+ mat[7] = -((float) sin(angle));
+ mat[8] = (float) cos(angle);
+ } else if(strcmp(axis, "Y") == 0) {
+ //rotation around Y
+ mat[0] = (float) cos(angle);
+ mat[2] = -((float) sin(angle));
+ mat[4] = 1.0f;
+ mat[6] = (float) sin(angle);
+ mat[8] = (float) cos(angle);
+ } else if(strcmp(axis, "Z") == 0) {
+ //rotation around Z
+ mat[0] = (float) cos(angle);
+ mat[1] = (float) sin(angle);
+ mat[3] = -((float) sin(angle));
+ mat[4] = (float) cos(angle);
+ mat[8] = 1.0f;
+ }
+ else {
+ /* should never get here */
+ PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): unknown error\n");
+ return NULL;
+ }
+
+ if(matSize == 4) {
+ //resize matrix
+ mat[10] = mat[8];
+ mat[9] = mat[7];
+ mat[8] = mat[6];
+ mat[7] = 0.0f;
+ mat[6] = mat[5];
+ mat[5] = mat[4];
+ mat[4] = mat[3];
+ mat[3] = 0.0f;
+ }
+ //pass to matrix creation
+ return newMatrixObject(mat, matSize, matSize, Py_NEW, NULL);
+}
+
+static char M_Mathutils_TranslationMatrix_doc[] =
+".. function:: TranslationMatrix(vector)\n"
+"\n"
+" Create a matrix representing a translation.\n"
+"\n"
+" :arg vector: The translation vector.\n"
+" :type vector: :class:`Vector`\n"
+" :return: An identity matrix with a translation.\n"
+" :rtype: :class:`Matrix`\n";
+
+static PyObject *M_Mathutils_TranslationMatrix(PyObject * self, VectorObject * vec)
+{
+ float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
+
+ if(!VectorObject_Check(vec)) {
+ PyErr_SetString(PyExc_TypeError, "mathutils.TranslationMatrix(): expected vector\n");
+ return NULL;
+ }
+ if(vec->size != 3 && vec->size != 4) {
+ PyErr_SetString(PyExc_TypeError, "mathutils.TranslationMatrix(): vector must be 3D or 4D\n");
+ return NULL;
+ }
+
+ if(!BaseMath_ReadCallback(vec))
+ return NULL;
+
+ //create a identity matrix and add translation
+ unit_m4((float(*)[4]) mat);
+ mat[12] = vec->vec[0];
+ mat[13] = vec->vec[1];
+ mat[14] = vec->vec[2];
+
+ return newMatrixObject(mat, 4, 4, Py_NEW, NULL);
+}
+//----------------------------------mathutils.ScaleMatrix() -------------
+//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
+static char M_Mathutils_ScaleMatrix_doc[] =
+".. function:: ScaleMatrix(factor, size, axis)\n"
+"\n"
+" Create a matrix representing a scaling.\n"
+"\n"
+" :arg factor: The factor of scaling to apply.\n"
+" :type factor: float\n"
+" :arg size: The size of the scale matrix to construct [2, 4].\n"
+" :type size: int\n"
+" :arg axis: Direction to influence scale. (optional).\n"
+" :type axis: :class:`Vector`\n"
+" :return: A new scale matrix.\n"
+" :rtype: :class:`Matrix`\n";
+
+static PyObject *M_Mathutils_ScaleMatrix(PyObject * self, PyObject * args)
+{
+ VectorObject *vec = NULL;
+ float norm = 0.0f, factor;
+ int matSize, x;
+ float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
+
+ if(!PyArg_ParseTuple(args, "fi|O!", &factor, &matSize, &vector_Type, &vec)) {
+ PyErr_SetString(PyExc_TypeError, "mathutils.ScaleMatrix(): expected float int and optional vector\n");
+ return NULL;
+ }
+ if(matSize != 2 && matSize != 3 && matSize != 4) {
+ PyErr_SetString(PyExc_AttributeError, "mathutils.ScaleMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
+ return NULL;
+ }
+ if(vec) {
+ if(vec->size > 2 && matSize == 2) {
+ PyErr_SetString(PyExc_AttributeError, "mathutils.ScaleMatrix(): please use 2D vectors when scaling in 2D\n");
+ return NULL;
+ }
+
+ if(!BaseMath_ReadCallback(vec))
+ return NULL;
+
+ }
+ if(vec == NULL) { //scaling along axis
+ if(matSize == 2) {
+ mat[0] = factor;
+ mat[3] = factor;
+ } else {
+ mat[0] = factor;
+ mat[4] = factor;
+ mat[8] = factor;
+ }
+ } else { //scaling in arbitrary direction
+ //normalize arbitrary axis
+ for(x = 0; x < vec->size; x++) {
+ norm += vec->vec[x] * vec->vec[x];
+ }
+ norm = (float) sqrt(norm);
+ for(x = 0; x < vec->size; x++) {
+ vec->vec[x] /= norm;
+ }
+ if(matSize == 2) {
+ mat[0] = 1 +((factor - 1) *(vec->vec[0] * vec->vec[0]));
+ mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
+ mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
+ mat[3] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1]));
+ } else {
+ mat[0] = 1 + ((factor - 1) *(vec->vec[0] * vec->vec[0]));
+ mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
+ mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[2]));
+ mat[3] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
+ mat[4] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1]));
+ mat[5] =((factor - 1) *(vec->vec[1] * vec->vec[2]));
+ mat[6] =((factor - 1) *(vec->vec[0] * vec->vec[2]));
+ mat[7] =((factor - 1) *(vec->vec[1] * vec->vec[2]));
+ mat[8] = 1 + ((factor - 1) *(vec->vec[2] * vec->vec[2]));
+ }
+ }
+ if(matSize == 4) {
+ //resize matrix
+ mat[10] = mat[8];
+ mat[9] = mat[7];
+ mat[8] = mat[6];
+ mat[7] = 0.0f;
+ mat[6] = mat[5];
+ mat[5] = mat[4];
+ mat[4] = mat[3];
+ mat[3] = 0.0f;
+ }
+ //pass to matrix creation
+ return newMatrixObject(mat, matSize, matSize, Py_NEW, NULL);
+}
+//----------------------------------mathutils.OrthoProjectionMatrix() ---
+//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
+static char M_Mathutils_OrthoProjectionMatrix_doc[] =
+".. function:: OrthoProjectionMatrix(plane, size, axis)\n"
+"\n"
+" Create a matrix to represent an orthographic projection.\n"
+"\n"
+" :arg plane: Can be any of the following: ['X', 'Y', 'XY', 'XZ', 'YZ', 'R'], where a single axis is for a 2D matrix and 'R' requires axis is given.\n"
+" :type plane: string\n"
+" :arg size: The size of the projection matrix to construct [2, 4].\n"
+" :type size: int\n"
+" :arg axis: Arbitrary perpendicular plane vector (optional).\n"
+" :type axis: :class:`Vector`\n"
+" :return: A new projection matrix.\n"
+" :rtype: :class:`Matrix`\n";
+static PyObject *M_Mathutils_OrthoProjectionMatrix(PyObject * self, PyObject * args)
+{
+ VectorObject *vec = NULL;
+ char *plane;
+ int matSize, x;
+ float norm = 0.0f;
+ float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
+
+ if(!PyArg_ParseTuple(args, "si|O!", &plane, &matSize, &vector_Type, &vec)) {
+ PyErr_SetString(PyExc_TypeError, "mathutils.OrthoProjectionMatrix(): expected string and int and optional vector\n");
+ return NULL;
+ }
+ if(matSize != 2 && matSize != 3 && matSize != 4) {
+ PyErr_SetString(PyExc_AttributeError,"mathutils.OrthoProjectionMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
+ return NULL;
+ }
+ if(vec) {
+ if(vec->size > 2 && matSize == 2) {
+ PyErr_SetString(PyExc_AttributeError, "mathutils.OrthoProjectionMatrix(): please use 2D vectors when scaling in 2D\n");
+ return NULL;
+ }
+
+ if(!BaseMath_ReadCallback(vec))
+ return NULL;
+
+ }
+ if(vec == NULL) { //ortho projection onto cardinal plane
+ if((strcmp(plane, "X") == 0) && matSize == 2) {
+ mat[0] = 1.0f;
+ } else if((strcmp(plane, "Y") == 0) && matSize == 2) {
+ mat[3] = 1.0f;
+ } else if((strcmp(plane, "XY") == 0) && matSize > 2) {
+ mat[0] = 1.0f;
+ mat[4] = 1.0f;
+ } else if((strcmp(plane, "XZ") == 0) && matSize > 2) {
+ mat[0] = 1.0f;
+ mat[8] = 1.0f;
+ } else if((strcmp(plane, "YZ") == 0) && matSize > 2) {
+ mat[4] = 1.0f;
+ mat[8] = 1.0f;
+ } else {
+ PyErr_SetString(PyExc_AttributeError, "mathutils.OrthoProjectionMatrix(): unknown plane - expected: X, Y, XY, XZ, YZ\n");
+ return NULL;
+ }
+ } else { //arbitrary plane
+ //normalize arbitrary axis
+ for(x = 0; x < vec->size; x++) {
+ norm += vec->vec[x] * vec->vec[x];
+ }
+ norm = (float) sqrt(norm);
+ for(x = 0; x < vec->size; x++) {
+ vec->vec[x] /= norm;
+ }
+ if((strcmp(plane, "R") == 0) && matSize == 2) {
+ mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
+ mat[1] = -(vec->vec[0] * vec->vec[1]);
+ mat[2] = -(vec->vec[0] * vec->vec[1]);
+ mat[3] = 1 - (vec->vec[1] * vec->vec[1]);
+ } else if((strcmp(plane, "R") == 0) && matSize > 2) {
+ mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
+ mat[1] = -(vec->vec[0] * vec->vec[1]);
+ mat[2] = -(vec->vec[0] * vec->vec[2]);
+ mat[3] = -(vec->vec[0] * vec->vec[1]);
+ mat[4] = 1 - (vec->vec[1] * vec->vec[1]);
+ mat[5] = -(vec->vec[1] * vec->vec[2]);
+ mat[6] = -(vec->vec[0] * vec->vec[2]);
+ mat[7] = -(vec->vec[1] * vec->vec[2]);
+ mat[8] = 1 - (vec->vec[2] * vec->vec[2]);
+ } else {
+ PyErr_SetString(PyExc_AttributeError, "mathutils.OrthoProjectionMatrix(): unknown plane - expected: 'r' expected for axis designation\n");
+ return NULL;
+ }
+ }
+ if(matSize == 4) {
+ //resize matrix
+ mat[10] = mat[8];
+ mat[9] = mat[7];
+ mat[8] = mat[6];
+ mat[7] = 0.0f;
+ mat[6] = mat[5];
+ mat[5] = mat[4];
+ mat[4] = mat[3];
+ mat[3] = 0.0f;
+ }
+ //pass to matrix creation
+ return newMatrixObject(mat, matSize, matSize, Py_NEW, NULL);
+}
+
+static char M_Mathutils_ShearMatrix_doc[] =
+".. function:: ShearMatrix(plane, factor, size)\n"
+"\n"
+" Create a matrix to represent an shear transformation.\n"
+"\n"
+" :arg plane: Can be any of the following: ['X', 'Y', 'XY', 'XZ', 'YZ'], where a single axis is for a 2D matrix.\n"
+" :type plane: string\n"
+" :arg factor: The factor of shear to apply.\n"
+" :type factor: float\n"
+" :arg size: The size of the shear matrix to construct [2, 4].\n"
+" :type size: int\n"
+" :return: A new shear matrix.\n"
+" :rtype: :class:`Matrix`\n";
+
+static PyObject *M_Mathutils_ShearMatrix(PyObject * self, PyObject * args)
+{
+ int matSize;
+ char *plane;
+ float factor;
+ float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
+
+ if(!PyArg_ParseTuple(args, "sfi", &plane, &factor, &matSize)) {
+ PyErr_SetString(PyExc_TypeError,"mathutils.ShearMatrix(): expected string float and int\n");
+ return NULL;
+ }
+ if(matSize != 2 && matSize != 3 && matSize != 4) {
+ PyErr_SetString(PyExc_AttributeError,"mathutils.ShearMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
+ return NULL;
+ }
+
+ if((strcmp(plane, "X") == 0)
+ && matSize == 2) {
+ mat[0] = 1.0f;
+ mat[2] = factor;
+ mat[3] = 1.0f;
+ } else if((strcmp(plane, "Y") == 0) && matSize == 2) {
+ mat[0] = 1.0f;
+ mat[1] = factor;
+ mat[3] = 1.0f;
+ } else if((strcmp(plane, "XY") == 0) && matSize > 2) {
+ mat[0] = 1.0f;
+ mat[4] = 1.0f;
+ mat[6] = factor;
+ mat[7] = factor;
+ } else if((strcmp(plane, "XZ") == 0) && matSize > 2) {
+ mat[0] = 1.0f;
+ mat[3] = factor;
+ mat[4] = 1.0f;
+ mat[5] = factor;
+ mat[8] = 1.0f;
+ } else if((strcmp(plane, "YZ") == 0) && matSize > 2) {
+ mat[0] = 1.0f;
+ mat[1] = factor;
+ mat[2] = factor;
+ mat[4] = 1.0f;
+ mat[8] = 1.0f;
+ } else {
+ PyErr_SetString(PyExc_AttributeError, "mathutils.ShearMatrix(): expected: x, y, xy, xz, yz or wrong matrix size for shearing plane\n");
+ return NULL;
+ }
+ if(matSize == 4) {
+ //resize matrix
+ mat[10] = mat[8];
+ mat[9] = mat[7];
+ mat[8] = mat[6];
+ mat[7] = 0.0f;
+ mat[6] = mat[5];
+ mat[5] = mat[4];
+ mat[4] = mat[3];
+ mat[3] = 0.0f;
+ }
+ //pass to matrix creation
+ return newMatrixObject(mat, matSize, matSize, Py_NEW, NULL);
+}
+
+/* Utility functions */
+
+// LomontRRDCompare4, Ever Faster Float Comparisons by Randy Dillon
+#define SIGNMASK(i) (-(int)(((unsigned int)(i))>>31))
+
+int EXPP_FloatsAreEqual(float af, float bf, int maxDiff)
+{ // solid, fast routine across all platforms
+ // with constant time behavior
+ int ai = *(int *)(&af);
+ int bi = *(int *)(&bf);
+ int test = SIGNMASK(ai^bi);
+ int diff, v1, v2;
+
+ assert((0 == test) || (0xFFFFFFFF == test));
+ diff = (ai ^ (test & 0x7fffffff)) - bi;
+ v1 = maxDiff + diff;
+ v2 = maxDiff - diff;
+ return (v1|v2) >= 0;
+}
+
+/*---------------------- EXPP_VectorsAreEqual -------------------------
+ Builds on EXPP_FloatsAreEqual to test vectors */
+int EXPP_VectorsAreEqual(float *vecA, float *vecB, int size, int floatSteps)
+{
+ int x;
+ for (x=0; x< size; x++){
+ if (EXPP_FloatsAreEqual(vecA[x], vecB[x], floatSteps) == 0)
+ return 0;
+ }
+ return 1;
+}
+
+
+/* Mathutils Callbacks */
+
+/* for mathutils internal use only, eventually should re-alloc but to start with we only have a few users */
+Mathutils_Callback *mathutils_callbacks[8] = {NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL};
+
+int Mathutils_RegisterCallback(Mathutils_Callback *cb)
+{
+ int i;
+
+ /* find the first free slot */
+ for(i= 0; mathutils_callbacks[i]; i++) {
+ if(mathutils_callbacks[i]==cb) /* alredy registered? */
+ return i;
+ }
+
+ mathutils_callbacks[i] = cb;
+ return i;
+}
+
+/* use macros to check for NULL */
+int _BaseMathObject_ReadCallback(BaseMathObject *self)
+{
+ Mathutils_Callback *cb= mathutils_callbacks[self->cb_type];
+ if(cb->get(self->cb_user, self->cb_subtype, self->data))
+ return 1;
+
+ PyErr_Format(PyExc_SystemError, "%s user has become invalid", Py_TYPE(self)->tp_name);
+ return 0;
+}
+
+int _BaseMathObject_WriteCallback(BaseMathObject *self)
+{
+ Mathutils_Callback *cb= mathutils_callbacks[self->cb_type];
+ if(cb->set(self->cb_user, self->cb_subtype, self->data))
+ return 1;
+
+ PyErr_Format(PyExc_SystemError, "%s user has become invalid", Py_TYPE(self)->tp_name);
+ return 0;
+}
+
+int _BaseMathObject_ReadIndexCallback(BaseMathObject *self, int index)
+{
+ Mathutils_Callback *cb= mathutils_callbacks[self->cb_type];
+ if(cb->get_index(self->cb_user, self->cb_subtype, self->data, index))
+ return 1;
+
+ PyErr_Format(PyExc_SystemError, "%s user has become invalid", Py_TYPE(self)->tp_name);
+ return 0;
+}
+
+int _BaseMathObject_WriteIndexCallback(BaseMathObject *self, int index)
+{
+ Mathutils_Callback *cb= mathutils_callbacks[self->cb_type];
+ if(cb->set_index(self->cb_user, self->cb_subtype, self->data, index))
+ return 1;
+
+ PyErr_Format(PyExc_SystemError, "%s user has become invalid", Py_TYPE(self)->tp_name);
+ return 0;
+}
+
+/* BaseMathObject generic functions for all mathutils types */
+char BaseMathObject_Owner_doc[] = "The item this is wrapping or None (readonly).";
+PyObject *BaseMathObject_getOwner( BaseMathObject * self, void *type )
+{
+ PyObject *ret= self->cb_user ? self->cb_user : Py_None;
+ Py_INCREF(ret);
+ return ret;
+}
+
+char BaseMathObject_Wrapped_doc[] = "True when this object wraps external data (readonly). **type** boolean";
+PyObject *BaseMathObject_getWrapped( BaseMathObject *self, void *type )
+{
+ return PyBool_FromLong((self->wrapped == Py_WRAP) ? 1:0);
+}
+
+void BaseMathObject_dealloc(BaseMathObject * self)
+{
+ /* only free non wrapped */
+ if(self->wrapped != Py_WRAP)
+ PyMem_Free(self->data);
+
+ Py_XDECREF(self->cb_user);
+ Py_TYPE(self)->tp_free(self); // PyObject_DEL(self); // breaks subtypes
+}
+
+/*----------------------------MODULE INIT-------------------------*/
+struct PyMethodDef M_Mathutils_methods[] = {
+ {"RotationMatrix", (PyCFunction) M_Mathutils_RotationMatrix, METH_VARARGS, M_Mathutils_RotationMatrix_doc},
+ {"ScaleMatrix", (PyCFunction) M_Mathutils_ScaleMatrix, METH_VARARGS, M_Mathutils_ScaleMatrix_doc},
+ {"ShearMatrix", (PyCFunction) M_Mathutils_ShearMatrix, METH_VARARGS, M_Mathutils_ShearMatrix_doc},
+ {"TranslationMatrix", (PyCFunction) M_Mathutils_TranslationMatrix, METH_O, M_Mathutils_TranslationMatrix_doc},
+ {"OrthoProjectionMatrix", (PyCFunction) M_Mathutils_OrthoProjectionMatrix, METH_VARARGS, M_Mathutils_OrthoProjectionMatrix_doc},
+ {NULL, NULL, 0, NULL}
+};
+
+static struct PyModuleDef M_Mathutils_module_def = {
+ PyModuleDef_HEAD_INIT,
+ "mathutils", /* m_name */
+ M_Mathutils_doc, /* m_doc */
+ 0, /* m_size */
+ M_Mathutils_methods, /* m_methods */
+ 0, /* m_reload */
+ 0, /* m_traverse */
+ 0, /* m_clear */
+ 0, /* m_free */
+};
+
+PyObject *Mathutils_Init(void)
+{
+ PyObject *submodule;
+
+ if( PyType_Ready( &vector_Type ) < 0 )
+ return NULL;
+ if( PyType_Ready( &matrix_Type ) < 0 )
+ return NULL;
+ if( PyType_Ready( &euler_Type ) < 0 )
+ return NULL;
+ if( PyType_Ready( &quaternion_Type ) < 0 )
+ return NULL;
+ if( PyType_Ready( &color_Type ) < 0 )
+ return NULL;
+
+ submodule = PyModule_Create(&M_Mathutils_module_def);
+ PyDict_SetItemString(PySys_GetObject("modules"), M_Mathutils_module_def.m_name, submodule);
+
+ /* each type has its own new() function */
+ PyModule_AddObject( submodule, "Vector", (PyObject *)&vector_Type );
+ PyModule_AddObject( submodule, "Matrix", (PyObject *)&matrix_Type );
+ PyModule_AddObject( submodule, "Euler", (PyObject *)&euler_Type );
+ PyModule_AddObject( submodule, "Quaternion", (PyObject *)&quaternion_Type );
+ PyModule_AddObject( submodule, "Color", (PyObject *)&color_Type );
+
+ mathutils_matrix_vector_cb_index= Mathutils_RegisterCallback(&mathutils_matrix_vector_cb);
+
+ return (submodule);
+}