Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/python/generic/mathutils_matrix.c')
-rw-r--r--source/blender/python/generic/mathutils_matrix.c1505
1 files changed, 1505 insertions, 0 deletions
diff --git a/source/blender/python/generic/mathutils_matrix.c b/source/blender/python/generic/mathutils_matrix.c
new file mode 100644
index 00000000000..0ce5641b07c
--- /dev/null
+++ b/source/blender/python/generic/mathutils_matrix.c
@@ -0,0 +1,1505 @@
+/*
+ * $Id$
+ *
+ * ***** BEGIN GPL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
+ * All rights reserved.
+ *
+ * Contributor(s): Michel Selten & Joseph Gilbert
+ *
+ * ***** END GPL LICENSE BLOCK *****
+ */
+
+#include "mathutils.h"
+
+#include "BKE_utildefines.h"
+#include "BLI_math.h"
+#include "BLI_blenlib.h"
+
+static PyObject *column_vector_multiplication(MatrixObject * mat, VectorObject* vec); /* utility func */
+
+
+/* matrix vector callbacks */
+int mathutils_matrix_vector_cb_index= -1;
+
+static int mathutils_matrix_vector_check(PyObject *self_p)
+{
+ MatrixObject *self= (MatrixObject*)self_p;
+ return BaseMath_ReadCallback(self);
+}
+
+static int mathutils_matrix_vector_get(PyObject *self_p, int subtype, float *vec_from)
+{
+ MatrixObject *self= (MatrixObject*)self_p;
+ int i;
+
+ if(!BaseMath_ReadCallback(self))
+ return 0;
+
+ for(i=0; i<self->colSize; i++)
+ vec_from[i]= self->matrix[subtype][i];
+
+ return 1;
+}
+
+static int mathutils_matrix_vector_set(PyObject *self_p, int subtype, float *vec_to)
+{
+ MatrixObject *self= (MatrixObject*)self_p;
+ int i;
+
+ if(!BaseMath_ReadCallback(self))
+ return 0;
+
+ for(i=0; i<self->colSize; i++)
+ self->matrix[subtype][i]= vec_to[i];
+
+ BaseMath_WriteCallback(self);
+ return 1;
+}
+
+static int mathutils_matrix_vector_get_index(PyObject *self_p, int subtype, float *vec_from, int index)
+{
+ MatrixObject *self= (MatrixObject*)self_p;
+
+ if(!BaseMath_ReadCallback(self))
+ return 0;
+
+ vec_from[index]= self->matrix[subtype][index];
+ return 1;
+}
+
+static int mathutils_matrix_vector_set_index(PyObject *self_p, int subtype, float *vec_to, int index)
+{
+ MatrixObject *self= (MatrixObject*)self_p;
+
+ if(!BaseMath_ReadCallback(self))
+ return 0;
+
+ self->matrix[subtype][index]= vec_to[index];
+
+ BaseMath_WriteCallback(self);
+ return 1;
+}
+
+Mathutils_Callback mathutils_matrix_vector_cb = {
+ mathutils_matrix_vector_check,
+ mathutils_matrix_vector_get,
+ mathutils_matrix_vector_set,
+ mathutils_matrix_vector_get_index,
+ mathutils_matrix_vector_set_index
+};
+/* matrix vector callbacks, this is so you can do matrix[i][j] = val */
+
+//----------------------------------mathutils.Matrix() -----------------
+//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
+//create a new matrix type
+static PyObject *Matrix_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
+{
+ PyObject *argObject, *m, *s;
+ MatrixObject *mat;
+ int argSize, seqSize = 0, i, j;
+ float matrix[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
+ float scalar;
+
+ argSize = PyTuple_GET_SIZE(args);
+ if(argSize > MATRIX_MAX_DIM) { //bad arg nums
+ PyErr_SetString(PyExc_AttributeError, "mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
+ return NULL;
+ } else if (argSize == 0) { //return empty 4D matrix
+ return (PyObject *) newMatrixObject(NULL, 4, 4, Py_NEW, NULL);
+ }else if (argSize == 1){
+ //copy constructor for matrix objects
+ argObject = PyTuple_GET_ITEM(args, 0);
+ if(MatrixObject_Check(argObject)){
+ mat = (MatrixObject*)argObject;
+ if(!BaseMath_ReadCallback(mat))
+ return NULL;
+
+ memcpy(matrix, mat->contigPtr, sizeof(float) * mat->rowSize * mat->colSize);
+ argSize = mat->rowSize;
+ seqSize = mat->colSize;
+ }
+ }else{ //2-4 arguments (all seqs? all same size?)
+ for(i =0; i < argSize; i++){
+ argObject = PyTuple_GET_ITEM(args, i);
+ if (PySequence_Check(argObject)) { //seq?
+ if(seqSize){ //0 at first
+ if(PySequence_Length(argObject) != seqSize){ //seq size not same
+ PyErr_SetString(PyExc_AttributeError, "mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
+ return NULL;
+ }
+ }
+ seqSize = PySequence_Length(argObject);
+ }else{ //arg not a sequence
+ PyErr_SetString(PyExc_TypeError, "mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
+ return NULL;
+ }
+ }
+ //all is well... let's continue parsing
+ for (i = 0; i < argSize; i++){
+ m = PyTuple_GET_ITEM(args, i);
+ if (m == NULL) { // Failed to read sequence
+ PyErr_SetString(PyExc_RuntimeError, "mathutils.Matrix(): failed to parse arguments...\n");
+ return NULL;
+ }
+
+ for (j = 0; j < seqSize; j++) {
+ s = PySequence_GetItem(m, j);
+ if (s == NULL) { // Failed to read sequence
+ PyErr_SetString(PyExc_RuntimeError, "mathutils.Matrix(): failed to parse arguments...\n");
+ return NULL;
+ }
+
+ scalar= (float)PyFloat_AsDouble(s);
+ Py_DECREF(s);
+
+ if(scalar==-1 && PyErr_Occurred()) { // parsed item is not a number
+ PyErr_SetString(PyExc_AttributeError, "mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
+ return NULL;
+ }
+
+ matrix[(seqSize*i)+j]= scalar;
+ }
+ }
+ }
+ return newMatrixObject(matrix, argSize, seqSize, Py_NEW, NULL);
+}
+
+/* assumes rowsize == colsize is checked and the read callback has run */
+static float matrix_determinant(MatrixObject * self)
+{
+ if(self->rowSize == 2) {
+ return determinant_m2(self->matrix[0][0], self->matrix[0][1],
+ self->matrix[1][0], self->matrix[1][1]);
+ } else if(self->rowSize == 3) {
+ return determinant_m3(self->matrix[0][0], self->matrix[0][1],
+ self->matrix[0][2], self->matrix[1][0],
+ self->matrix[1][1], self->matrix[1][2],
+ self->matrix[2][0], self->matrix[2][1],
+ self->matrix[2][2]);
+ } else {
+ return determinant_m4((float (*)[4])self->contigPtr);
+ }
+}
+
+
+/*-----------------------------METHODS----------------------------*/
+static char Matrix_toQuat_doc[] =
+".. method:: to_quat()\n"
+"\n"
+" Return a quaternion representation of the rotation matrix.\n"
+"\n"
+" :return: Quaternion representation of the rotation matrix.\n"
+" :rtype: :class:`Quaternion`\n";
+
+static PyObject *Matrix_toQuat(MatrixObject * self)
+{
+ float quat[4];
+
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
+
+ /*must be 3-4 cols, 3-4 rows, square matrix*/
+ if(self->colSize < 3 || self->rowSize < 3 || (self->colSize != self->rowSize)) {
+ PyErr_SetString(PyExc_AttributeError, "Matrix.to_quat(): inappropriate matrix size - expects 3x3 or 4x4 matrix");
+ return NULL;
+ }
+ if(self->colSize == 3){
+ mat3_to_quat( quat,(float (*)[3])self->contigPtr);
+ }else{
+ mat4_to_quat( quat,(float (*)[4])self->contigPtr);
+ }
+
+ return newQuaternionObject(quat, Py_NEW, NULL);
+}
+
+/*---------------------------Matrix.toEuler() --------------------*/
+static char Matrix_toEuler_doc[] =
+".. method:: to_euler(order, euler_compat)\n"
+"\n"
+" Return an Euler representation of the rotation matrix (3x3 or 4x4 matrix only).\n"
+"\n"
+" :arg order: Optional rotation order argument in ['XYZ', 'XZY', 'YXZ', 'YZX', 'ZXY', 'ZYX'].\n"
+" :type order: string\n"
+" :arg euler_compat: Optional euler argument the new euler will be made compatible with (no axis flipping between them). Useful for converting a series of matrices to animation curves.\n"
+" :type euler_compat: :class:`Euler`\n"
+" :return: Euler representation of the matrix.\n"
+" :rtype: :class:`Euler`\n";
+
+PyObject *Matrix_toEuler(MatrixObject * self, PyObject *args)
+{
+ char *order_str= NULL;
+ short order= 0;
+ float eul[3], eul_compatf[3];
+ EulerObject *eul_compat = NULL;
+
+ float tmat[3][3];
+ float (*mat)[3];
+
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
+
+ if(!PyArg_ParseTuple(args, "|sO!:to_euler", &order_str, &euler_Type, &eul_compat))
+ return NULL;
+
+ if(eul_compat) {
+ if(!BaseMath_ReadCallback(eul_compat))
+ return NULL;
+
+ VECCOPY(eul_compatf, eul_compat->eul);
+ }
+
+ /*must be 3-4 cols, 3-4 rows, square matrix*/
+ if(self->colSize ==3 && self->rowSize ==3) {
+ mat= (float (*)[3])self->contigPtr;
+ }else if (self->colSize ==4 && self->rowSize ==4) {
+ copy_m3_m4(tmat, (float (*)[4])self->contigPtr);
+ mat= tmat;
+ }else {
+ PyErr_SetString(PyExc_AttributeError, "Matrix.to_euler(): inappropriate matrix size - expects 3x3 or 4x4 matrix\n");
+ return NULL;
+ }
+
+ if(order_str) {
+ order= euler_order_from_string(order_str, "Matrix.to_euler()");
+
+ if(order < 0)
+ return NULL;
+ }
+
+ if(eul_compat) {
+ if(order == 0) mat3_to_compatible_eul( eul, eul_compatf, mat);
+ else mat3_to_compatible_eulO(eul, eul_compatf, order, mat);
+ }
+ else {
+ if(order == 0) mat3_to_eul(eul, mat);
+ else mat3_to_eulO(eul, order, mat);
+ }
+
+ return newEulerObject(eul, order, Py_NEW, NULL);
+}
+/*---------------------------Matrix.resize4x4() ------------------*/
+static char Matrix_Resize4x4_doc[] =
+".. method:: resize4x4()\n"
+"\n"
+" Resize the matrix to 4x4.\n"
+"\n"
+" :return: an instance of itself.\n"
+" :rtype: :class:`Matrix`\n";
+
+PyObject *Matrix_Resize4x4(MatrixObject * self)
+{
+ int x, first_row_elem, curr_pos, new_pos, blank_columns, blank_rows, index;
+
+ if(self->wrapped==Py_WRAP){
+ PyErr_SetString(PyExc_TypeError, "cannot resize wrapped data - make a copy and resize that");
+ return NULL;
+ }
+ if(self->cb_user){
+ PyErr_SetString(PyExc_TypeError, "cannot resize owned data - make a copy and resize that");
+ return NULL;
+ }
+
+ self->contigPtr = PyMem_Realloc(self->contigPtr, (sizeof(float) * 16));
+ if(self->contigPtr == NULL) {
+ PyErr_SetString(PyExc_MemoryError, "matrix.resize4x4(): problem allocating pointer space");
+ return NULL;
+ }
+ /*set row pointers*/
+ for(x = 0; x < 4; x++) {
+ self->matrix[x] = self->contigPtr + (x * 4);
+ }
+ /*move data to new spot in array + clean*/
+ for(blank_rows = (4 - self->rowSize); blank_rows > 0; blank_rows--){
+ for(x = 0; x < 4; x++){
+ index = (4 * (self->rowSize + (blank_rows - 1))) + x;
+ if (index == 10 || index == 15){
+ self->contigPtr[index] = 1.0f;
+ }else{
+ self->contigPtr[index] = 0.0f;
+ }
+ }
+ }
+ for(x = 1; x <= self->rowSize; x++){
+ first_row_elem = (self->colSize * (self->rowSize - x));
+ curr_pos = (first_row_elem + (self->colSize -1));
+ new_pos = (4 * (self->rowSize - x )) + (curr_pos - first_row_elem);
+ for(blank_columns = (4 - self->colSize); blank_columns > 0; blank_columns--){
+ self->contigPtr[new_pos + blank_columns] = 0.0f;
+ }
+ for(curr_pos = curr_pos; curr_pos >= first_row_elem; curr_pos--){
+ self->contigPtr[new_pos] = self->contigPtr[curr_pos];
+ new_pos--;
+ }
+ }
+ self->rowSize = 4;
+ self->colSize = 4;
+
+ Py_INCREF(self);
+ return (PyObject *)self;
+}
+
+static char Matrix_to_4x4_doc[] =
+".. method:: to_4x4()\n"
+"\n"
+" Return a 4x4 copy of this matrix.\n"
+"\n"
+" :return: a new matrix.\n"
+" :rtype: :class:`Matrix`\n";
+PyObject *Matrix_to_4x4(MatrixObject * self)
+{
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
+
+ if(self->colSize==4 && self->rowSize==4) {
+ return (PyObject *)newMatrixObject(self->contigPtr, 4, 4, Py_NEW, Py_TYPE(self));
+ }
+ else if(self->colSize==3 && self->rowSize==3) {
+ float mat[4][4];
+ copy_m4_m3(mat, (float (*)[3])self->contigPtr);
+ return (PyObject *)newMatrixObject((float *)mat, 4, 4, Py_NEW, Py_TYPE(self));
+ }
+ /* TODO, 2x2 matrix */
+
+ PyErr_SetString(PyExc_TypeError, "Matrix.to_4x4(): inappropriate matrix size");
+ return NULL;
+}
+
+static char Matrix_to_3x3_doc[] =
+".. method:: to_3x3()\n"
+"\n"
+" Return a 3x3 copy of this matrix.\n"
+"\n"
+" :return: a new matrix.\n"
+" :rtype: :class:`Matrix`\n";
+PyObject *Matrix_to_3x3(MatrixObject * self)
+{
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
+
+ if(self->colSize==3 && self->rowSize==3) {
+ return (PyObject *)newMatrixObject(self->contigPtr, 3, 3, Py_NEW, Py_TYPE(self));
+ }
+ else if(self->colSize==4 && self->rowSize==4) {
+ float mat[3][3];
+ copy_m3_m4(mat, (float (*)[4])self->contigPtr);
+ return (PyObject *)newMatrixObject((float *)mat, 3, 3, Py_NEW, Py_TYPE(self));
+ }
+ /* TODO, 2x2 matrix */
+
+ PyErr_SetString(PyExc_TypeError, "Matrix.to_3x3(): inappropriate matrix size");
+ return NULL;
+}
+
+/*---------------------------Matrix.translationPart() ------------*/
+static char Matrix_TranslationPart_doc[] =
+".. method:: translation_part()\n"
+"\n"
+" Return a the translation part of a 4 row matrix.\n"
+"\n"
+" :return: Return a the translation of a matrix.\n"
+" :rtype: :class:`Matrix`\n"
+"\n"
+" .. note:: Note that the (4,4) element of a matrix can be used for uniform scaling too.\n";
+
+PyObject *Matrix_TranslationPart(MatrixObject * self)
+{
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
+
+ if(self->colSize < 3 || self->rowSize < 4){
+ PyErr_SetString(PyExc_AttributeError, "Matrix.translation_part(): inappropriate matrix size");
+ return NULL;
+ }
+
+ return newVectorObject(self->matrix[3], 3, Py_NEW, NULL);
+}
+/*---------------------------Matrix.rotationPart() ---------------*/
+static char Matrix_RotationPart_doc[] =
+".. method:: rotation_part()\n"
+"\n"
+" Return the 3d submatrix corresponding to the linear term of the embedded affine transformation in 3d. This matrix represents rotation and scale.\n"
+"\n"
+" :return: Return the 3d matrix for rotation and scale.\n"
+" :rtype: :class:`Matrix`\n"
+"\n"
+" .. note:: Note that the (4,4) element of a matrix can be used for uniform scaling too.\n";
+
+PyObject *Matrix_RotationPart(MatrixObject * self)
+{
+ float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
+
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
+
+ if(self->colSize < 3 || self->rowSize < 3){
+ PyErr_SetString(PyExc_AttributeError, "Matrix.rotation_part(): inappropriate matrix size\n");
+ return NULL;
+ }
+
+ mat[0] = self->matrix[0][0];
+ mat[1] = self->matrix[0][1];
+ mat[2] = self->matrix[0][2];
+ mat[3] = self->matrix[1][0];
+ mat[4] = self->matrix[1][1];
+ mat[5] = self->matrix[1][2];
+ mat[6] = self->matrix[2][0];
+ mat[7] = self->matrix[2][1];
+ mat[8] = self->matrix[2][2];
+
+ return newMatrixObject(mat, 3, 3, Py_NEW, Py_TYPE(self));
+}
+/*---------------------------Matrix.scalePart() --------------------*/
+static char Matrix_scalePart_doc[] =
+".. method:: scale_part()\n"
+"\n"
+" Return a the scale part of a 3x3 or 4x4 matrix.\n"
+"\n"
+" :return: Return a the scale of a matrix.\n"
+" :rtype: :class:`Vector`\n"
+"\n"
+" .. note:: This method does not return negative a scale on any axis because it is not possible to obtain this data from the matrix alone.\n";
+
+PyObject *Matrix_scalePart(MatrixObject * self)
+{
+ float scale[3], rot[3];
+ float mat[3][3], imat[3][3], tmat[3][3];
+
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
+
+ /*must be 3-4 cols, 3-4 rows, square matrix*/
+ if(self->colSize == 4 && self->rowSize == 4)
+ copy_m3_m4(mat, (float (*)[4])self->contigPtr);
+ else if(self->colSize == 3 && self->rowSize == 3)
+ copy_m3_m3(mat, (float (*)[3])self->contigPtr);
+ else {
+ PyErr_SetString(PyExc_AttributeError, "Matrix.scale_part(): inappropriate matrix size - expects 3x3 or 4x4 matrix\n");
+ return NULL;
+ }
+ /* functionality copied from editobject.c apply_obmat */
+ mat3_to_eul( rot,mat);
+ eul_to_mat3( tmat,rot);
+ invert_m3_m3(imat, tmat);
+ mul_m3_m3m3(tmat, imat, mat);
+
+ scale[0]= tmat[0][0];
+ scale[1]= tmat[1][1];
+ scale[2]= tmat[2][2];
+ return newVectorObject(scale, 3, Py_NEW, NULL);
+}
+/*---------------------------Matrix.invert() ---------------------*/
+static char Matrix_Invert_doc[] =
+".. method:: invert()\n"
+"\n"
+" Set the matrix to its inverse.\n"
+"\n"
+" :return: an instance of itself.\n"
+" :rtype: :class:`Matrix`\n"
+"\n"
+" .. note:: :exc:`ValueError` exception is raised.\n"
+"\n"
+" .. seealso:: <http://en.wikipedia.org/wiki/Inverse_matrix>\n";
+
+PyObject *Matrix_Invert(MatrixObject * self)
+{
+
+ int x, y, z = 0;
+ float det = 0.0f;
+ float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
+
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
+
+ if(self->rowSize != self->colSize){
+ PyErr_SetString(PyExc_AttributeError, "Matrix.invert(ed): only square matrices are supported");
+ return NULL;
+ }
+
+ /*calculate the determinant*/
+ det = matrix_determinant(self);
+
+ if(det != 0) {
+ /*calculate the classical adjoint*/
+ if(self->rowSize == 2) {
+ mat[0] = self->matrix[1][1];
+ mat[1] = -self->matrix[0][1];
+ mat[2] = -self->matrix[1][0];
+ mat[3] = self->matrix[0][0];
+ } else if(self->rowSize == 3) {
+ adjoint_m3_m3((float (*)[3]) mat,(float (*)[3])self->contigPtr);
+ } else if(self->rowSize == 4) {
+ adjoint_m4_m4((float (*)[4]) mat, (float (*)[4])self->contigPtr);
+ }
+ /*divide by determinate*/
+ for(x = 0; x < (self->rowSize * self->colSize); x++) {
+ mat[x] /= det;
+ }
+ /*set values*/
+ for(x = 0; x < self->rowSize; x++) {
+ for(y = 0; y < self->colSize; y++) {
+ self->matrix[x][y] = mat[z];
+ z++;
+ }
+ }
+ /*transpose
+ Matrix_Transpose(self);*/
+ } else {
+ PyErr_SetString(PyExc_ValueError, "matrix does not have an inverse");
+ return NULL;
+ }
+
+ BaseMath_WriteCallback(self);
+ Py_INCREF(self);
+ return (PyObject *)self;
+}
+
+
+/*---------------------------Matrix.determinant() ----------------*/
+static char Matrix_Determinant_doc[] =
+".. method:: determinant()\n"
+"\n"
+" Return the determinant of a matrix.\n"
+"\n"
+" :return: Return a the determinant of a matrix.\n"
+" :rtype: float\n"
+"\n"
+" .. seealso:: <http://en.wikipedia.org/wiki/Determinant>\n";
+
+PyObject *Matrix_Determinant(MatrixObject * self)
+{
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
+
+ if(self->rowSize != self->colSize){
+ PyErr_SetString(PyExc_AttributeError, "Matrix.determinant: only square matrices are supported");
+ return NULL;
+ }
+
+ return PyFloat_FromDouble((double)matrix_determinant(self));
+}
+/*---------------------------Matrix.transpose() ------------------*/
+static char Matrix_Transpose_doc[] =
+".. method:: transpose()\n"
+"\n"
+" Set the matrix to its transpose.\n"
+"\n"
+" :return: an instance of itself\n"
+" :rtype: :class:`Matrix`\n"
+"\n"
+" .. seealso:: <http://en.wikipedia.org/wiki/Transpose>\n";
+
+PyObject *Matrix_Transpose(MatrixObject * self)
+{
+ float t = 0.0f;
+
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
+
+ if(self->rowSize != self->colSize){
+ PyErr_SetString(PyExc_AttributeError, "Matrix.transpose(d): only square matrices are supported");
+ return NULL;
+ }
+
+ if(self->rowSize == 2) {
+ t = self->matrix[1][0];
+ self->matrix[1][0] = self->matrix[0][1];
+ self->matrix[0][1] = t;
+ } else if(self->rowSize == 3) {
+ transpose_m3((float (*)[3])self->contigPtr);
+ } else {
+ transpose_m4((float (*)[4])self->contigPtr);
+ }
+
+ BaseMath_WriteCallback(self);
+ Py_INCREF(self);
+ return (PyObject *)self;
+}
+
+
+/*---------------------------Matrix.zero() -----------------------*/
+static char Matrix_Zero_doc[] =
+".. method:: zero()\n"
+"\n"
+" Set all the matrix values to zero.\n"
+"\n"
+" :return: an instance of itself\n"
+" :rtype: :class:`Matrix`\n";
+
+PyObject *Matrix_Zero(MatrixObject * self)
+{
+ int row, col;
+
+ for(row = 0; row < self->rowSize; row++) {
+ for(col = 0; col < self->colSize; col++) {
+ self->matrix[row][col] = 0.0f;
+ }
+ }
+
+ if(!BaseMath_WriteCallback(self))
+ return NULL;
+
+ Py_INCREF(self);
+ return (PyObject *)self;
+}
+/*---------------------------Matrix.identity(() ------------------*/
+static char Matrix_Identity_doc[] =
+".. method:: identity()\n"
+"\n"
+" Set the matrix to the identity matrix.\n"
+"\n"
+" :return: an instance of itself\n"
+" :rtype: :class:`Matrix`\n"
+"\n"
+" .. note:: An object with zero location and rotation, a scale of one, will have an identity matrix.\n"
+"\n"
+" .. seealso:: <http://en.wikipedia.org/wiki/Identity_matrix>\n";
+
+PyObject *Matrix_Identity(MatrixObject * self)
+{
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
+
+ if(self->rowSize != self->colSize){
+ PyErr_SetString(PyExc_AttributeError, "Matrix.identity: only square matrices are supported\n");
+ return NULL;
+ }
+
+ if(self->rowSize == 2) {
+ self->matrix[0][0] = 1.0f;
+ self->matrix[0][1] = 0.0f;
+ self->matrix[1][0] = 0.0f;
+ self->matrix[1][1] = 1.0f;
+ } else if(self->rowSize == 3) {
+ unit_m3((float (*)[3])self->contigPtr);
+ } else {
+ unit_m4((float (*)[4])self->contigPtr);
+ }
+
+ if(!BaseMath_WriteCallback(self))
+ return NULL;
+
+ Py_INCREF(self);
+ return (PyObject *)self;
+}
+
+/*---------------------------Matrix.copy() ------------------*/
+static char Matrix_copy_doc[] =
+".. method:: copy()\n"
+"\n"
+" Returns a copy of this matrix.\n"
+"\n"
+" :return: an instance of itself\n"
+" :rtype: :class:`Matrix`\n";
+
+PyObject *Matrix_copy(MatrixObject * self)
+{
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
+
+ return (PyObject*)newMatrixObject((float (*))self->contigPtr, self->rowSize, self->colSize, Py_NEW, Py_TYPE(self));
+}
+
+/*----------------------------print object (internal)-------------*/
+/*print the object to screen*/
+static PyObject *Matrix_repr(MatrixObject * self)
+{
+ int x, y;
+ char buffer[48], str[1024];
+
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
+
+ BLI_strncpy(str,"",1024);
+ for(x = 0; x < self->colSize; x++){
+ sprintf(buffer, "[");
+ strcat(str,buffer);
+ for(y = 0; y < (self->rowSize - 1); y++) {
+ sprintf(buffer, "%.6f, ", self->matrix[y][x]);
+ strcat(str,buffer);
+ }
+ if(x < (self->colSize-1)){
+ sprintf(buffer, "%.6f](matrix [row %d])\n", self->matrix[y][x], x);
+ strcat(str,buffer);
+ }else{
+ sprintf(buffer, "%.6f](matrix [row %d])", self->matrix[y][x], x);
+ strcat(str,buffer);
+ }
+ }
+
+ return PyUnicode_FromString(str);
+}
+/*------------------------tp_richcmpr*/
+/*returns -1 execption, 0 false, 1 true*/
+static PyObject* Matrix_richcmpr(PyObject *objectA, PyObject *objectB, int comparison_type)
+{
+ MatrixObject *matA = NULL, *matB = NULL;
+ int result = 0;
+
+ if (!MatrixObject_Check(objectA) || !MatrixObject_Check(objectB)){
+ if (comparison_type == Py_NE){
+ Py_RETURN_TRUE;
+ }else{
+ Py_RETURN_FALSE;
+ }
+ }
+ matA = (MatrixObject*)objectA;
+ matB = (MatrixObject*)objectB;
+
+ if(!BaseMath_ReadCallback(matA) || !BaseMath_ReadCallback(matB))
+ return NULL;
+
+ if (matA->colSize != matB->colSize || matA->rowSize != matB->rowSize){
+ if (comparison_type == Py_NE){
+ Py_RETURN_TRUE;
+ }else{
+ Py_RETURN_FALSE;
+ }
+ }
+
+ switch (comparison_type){
+ case Py_EQ:
+ /*contigPtr is basically a really long vector*/
+ result = EXPP_VectorsAreEqual(matA->contigPtr, matB->contigPtr,
+ (matA->rowSize * matA->colSize), 1);
+ break;
+ case Py_NE:
+ result = EXPP_VectorsAreEqual(matA->contigPtr, matB->contigPtr,
+ (matA->rowSize * matA->colSize), 1);
+ if (result == 0){
+ result = 1;
+ }else{
+ result = 0;
+ }
+ break;
+ default:
+ printf("The result of the comparison could not be evaluated");
+ break;
+ }
+ if (result == 1){
+ Py_RETURN_TRUE;
+ }else{
+ Py_RETURN_FALSE;
+ }
+}
+
+/*---------------------SEQUENCE PROTOCOLS------------------------
+ ----------------------------len(object)------------------------
+ sequence length*/
+static int Matrix_len(MatrixObject * self)
+{
+ return (self->rowSize);
+}
+/*----------------------------object[]---------------------------
+ sequence accessor (get)
+ the wrapped vector gives direct access to the matrix data*/
+static PyObject *Matrix_item(MatrixObject * self, int i)
+{
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
+
+ if(i < 0 || i >= self->rowSize) {
+ PyErr_SetString(PyExc_IndexError, "matrix[attribute]: array index out of range");
+ return NULL;
+ }
+ return newVectorObject_cb((PyObject *)self, self->colSize, mathutils_matrix_vector_cb_index, i);
+}
+/*----------------------------object[]-------------------------
+ sequence accessor (set)*/
+static int Matrix_ass_item(MatrixObject * self, int i, PyObject * ob)
+{
+ int y, x, size = 0;
+ float vec[4];
+ PyObject *m, *f;
+
+ if(!BaseMath_ReadCallback(self))
+ return -1;
+
+ if(i >= self->rowSize || i < 0){
+ PyErr_SetString(PyExc_TypeError, "matrix[attribute] = x: bad column\n");
+ return -1;
+ }
+
+ if(PySequence_Check(ob)){
+ size = PySequence_Length(ob);
+ if(size != self->colSize){
+ PyErr_SetString(PyExc_TypeError, "matrix[attribute] = x: bad sequence size\n");
+ return -1;
+ }
+ for (x = 0; x < size; x++) {
+ m = PySequence_GetItem(ob, x);
+ if (m == NULL) { /*Failed to read sequence*/
+ PyErr_SetString(PyExc_RuntimeError, "matrix[attribute] = x: unable to read sequence\n");
+ return -1;
+ }
+
+ f = PyNumber_Float(m);
+ if(f == NULL) { /*parsed item not a number*/
+ Py_DECREF(m);
+ PyErr_SetString(PyExc_TypeError, "matrix[attribute] = x: sequence argument not a number\n");
+ return -1;
+ }
+
+ vec[x] = (float)PyFloat_AS_DOUBLE(f);
+ Py_DECREF(m);
+ Py_DECREF(f);
+ }
+ /*parsed well - now set in matrix*/
+ for(y = 0; y < size; y++){
+ self->matrix[i][y] = vec[y];
+ }
+
+ BaseMath_WriteCallback(self);
+ return 0;
+ }else{
+ PyErr_SetString(PyExc_TypeError, "matrix[attribute] = x: expects a sequence of column size\n");
+ return -1;
+ }
+}
+/*----------------------------object[z:y]------------------------
+ sequence slice (get)*/
+static PyObject *Matrix_slice(MatrixObject * self, int begin, int end)
+{
+
+ PyObject *list = NULL;
+ int count;
+
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
+
+ CLAMP(begin, 0, self->rowSize);
+ CLAMP(end, 0, self->rowSize);
+ begin = MIN2(begin,end);
+
+ list = PyList_New(end - begin);
+ for(count = begin; count < end; count++) {
+ PyList_SetItem(list, count - begin,
+ newVectorObject_cb((PyObject *)self, self->colSize, mathutils_matrix_vector_cb_index, count));
+
+ }
+
+ return list;
+}
+/*----------------------------object[z:y]------------------------
+ sequence slice (set)*/
+static int Matrix_ass_slice(MatrixObject * self, int begin, int end, PyObject * seq)
+{
+ int i, x, y, size, sub_size = 0;
+ float mat[16], f;
+ PyObject *subseq;
+ PyObject *m;
+
+ if(!BaseMath_ReadCallback(self))
+ return -1;
+
+ CLAMP(begin, 0, self->rowSize);
+ CLAMP(end, 0, self->rowSize);
+ begin = MIN2(begin,end);
+
+ if(PySequence_Check(seq)){
+ size = PySequence_Length(seq);
+ if(size != (end - begin)){
+ PyErr_SetString(PyExc_TypeError, "matrix[begin:end] = []: size mismatch in slice assignment\n");
+ return -1;
+ }
+ /*parse sub items*/
+ for (i = 0; i < size; i++) {
+ /*parse each sub sequence*/
+ subseq = PySequence_GetItem(seq, i);
+ if (subseq == NULL) { /*Failed to read sequence*/
+ PyErr_SetString(PyExc_RuntimeError, "matrix[begin:end] = []: unable to read sequence");
+ return -1;
+ }
+
+ if(PySequence_Check(subseq)){
+ /*subsequence is also a sequence*/
+ sub_size = PySequence_Length(subseq);
+ if(sub_size != self->colSize){
+ Py_DECREF(subseq);
+ PyErr_SetString(PyExc_TypeError, "matrix[begin:end] = []: size mismatch in slice assignment\n");
+ return -1;
+ }
+ for (y = 0; y < sub_size; y++) {
+ m = PySequence_GetItem(subseq, y);
+ if (m == NULL) { /*Failed to read sequence*/
+ Py_DECREF(subseq);
+ PyErr_SetString(PyExc_RuntimeError, "matrix[begin:end] = []: unable to read sequence\n");
+ return -1;
+ }
+
+ f = PyFloat_AsDouble(m); /* faster to assume a float and raise an error after */
+ if(f == -1 && PyErr_Occurred()) { /*parsed item not a number*/
+ Py_DECREF(m);
+ Py_DECREF(subseq);
+ PyErr_SetString(PyExc_TypeError, "matrix[begin:end] = []: sequence argument not a number\n");
+ return -1;
+ }
+
+ mat[(i * self->colSize) + y] = f;
+ Py_DECREF(m);
+ }
+ }else{
+ Py_DECREF(subseq);
+ PyErr_SetString(PyExc_TypeError, "matrix[begin:end] = []: illegal argument type for built-in operation\n");
+ return -1;
+ }
+ Py_DECREF(subseq);
+ }
+ /*parsed well - now set in matrix*/
+ for(x = 0; x < (size * sub_size); x++){
+ self->matrix[begin + (int)floor(x / self->colSize)][x % self->colSize] = mat[x];
+ }
+
+ BaseMath_WriteCallback(self);
+ return 0;
+ }else{
+ PyErr_SetString(PyExc_TypeError, "matrix[begin:end] = []: illegal argument type for built-in operation\n");
+ return -1;
+ }
+}
+/*------------------------NUMERIC PROTOCOLS----------------------
+ ------------------------obj + obj------------------------------*/
+static PyObject *Matrix_add(PyObject * m1, PyObject * m2)
+{
+ int x, y;
+ float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
+ MatrixObject *mat1 = NULL, *mat2 = NULL;
+
+ mat1 = (MatrixObject*)m1;
+ mat2 = (MatrixObject*)m2;
+
+ if(!MatrixObject_Check(m1) || !MatrixObject_Check(m2)) {
+ PyErr_SetString(PyExc_AttributeError, "Matrix addition: arguments not valid for this operation....");
+ return NULL;
+ }
+
+ if(!BaseMath_ReadCallback(mat1) || !BaseMath_ReadCallback(mat2))
+ return NULL;
+
+ if(mat1->rowSize != mat2->rowSize || mat1->colSize != mat2->colSize){
+ PyErr_SetString(PyExc_AttributeError, "Matrix addition: matrices must have the same dimensions for this operation");
+ return NULL;
+ }
+
+ for(x = 0; x < mat1->rowSize; x++) {
+ for(y = 0; y < mat1->colSize; y++) {
+ mat[((x * mat1->colSize) + y)] = mat1->matrix[x][y] + mat2->matrix[x][y];
+ }
+ }
+
+ return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW, NULL);
+}
+/*------------------------obj - obj------------------------------
+ subtraction*/
+static PyObject *Matrix_sub(PyObject * m1, PyObject * m2)
+{
+ int x, y;
+ float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
+ MatrixObject *mat1 = NULL, *mat2 = NULL;
+
+ mat1 = (MatrixObject*)m1;
+ mat2 = (MatrixObject*)m2;
+
+ if(!MatrixObject_Check(m1) || !MatrixObject_Check(m2)) {
+ PyErr_SetString(PyExc_AttributeError, "Matrix addition: arguments not valid for this operation....");
+ return NULL;
+ }
+
+ if(!BaseMath_ReadCallback(mat1) || !BaseMath_ReadCallback(mat2))
+ return NULL;
+
+ if(mat1->rowSize != mat2->rowSize || mat1->colSize != mat2->colSize){
+ PyErr_SetString(PyExc_AttributeError, "Matrix addition: matrices must have the same dimensions for this operation");
+ return NULL;
+ }
+
+ for(x = 0; x < mat1->rowSize; x++) {
+ for(y = 0; y < mat1->colSize; y++) {
+ mat[((x * mat1->colSize) + y)] = mat1->matrix[x][y] - mat2->matrix[x][y];
+ }
+ }
+
+ return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW, NULL);
+}
+/*------------------------obj * obj------------------------------
+ mulplication*/
+static PyObject *Matrix_mul(PyObject * m1, PyObject * m2)
+{
+ int x, y, z;
+ float scalar;
+ float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
+ double dot = 0.0f;
+ MatrixObject *mat1 = NULL, *mat2 = NULL;
+
+ if(MatrixObject_Check(m1)) {
+ mat1 = (MatrixObject*)m1;
+ if(!BaseMath_ReadCallback(mat1))
+ return NULL;
+ }
+ if(MatrixObject_Check(m2)) {
+ mat2 = (MatrixObject*)m2;
+ if(!BaseMath_ReadCallback(mat2))
+ return NULL;
+ }
+
+ if(mat1 && mat2) { /*MATRIX * MATRIX*/
+ if(mat1->rowSize != mat2->colSize){
+ PyErr_SetString(PyExc_AttributeError,"Matrix multiplication: matrix A rowsize must equal matrix B colsize");
+ return NULL;
+ }
+ for(x = 0; x < mat2->rowSize; x++) {
+ for(y = 0; y < mat1->colSize; y++) {
+ for(z = 0; z < mat1->rowSize; z++) {
+ dot += (mat1->matrix[z][y] * mat2->matrix[x][z]);
+ }
+ mat[((x * mat1->colSize) + y)] = (float)dot;
+ dot = 0.0f;
+ }
+ }
+
+ return newMatrixObject(mat, mat2->rowSize, mat1->colSize, Py_NEW, NULL);
+ }
+
+ if(mat1==NULL){
+ scalar=PyFloat_AsDouble(m1); // may not be a float...
+ if ((scalar == -1.0 && PyErr_Occurred())==0) { /*FLOAT/INT * MATRIX, this line annoys theeth, lets see if he finds it */
+ for(x = 0; x < mat2->rowSize; x++) {
+ for(y = 0; y < mat2->colSize; y++) {
+ mat[((x * mat2->colSize) + y)] = scalar * mat2->matrix[x][y];
+ }
+ }
+ return newMatrixObject(mat, mat2->rowSize, mat2->colSize, Py_NEW, NULL);
+ }
+
+ PyErr_SetString(PyExc_TypeError, "Matrix multiplication: arguments not acceptable for this operation");
+ return NULL;
+ }
+ else /* if(mat1) { */ {
+
+ if(VectorObject_Check(m2)) { /* MATRIX*VECTOR */
+ return column_vector_multiplication(mat1, (VectorObject *)m2); /* vector update done inside the function */
+ }
+ else {
+ scalar= PyFloat_AsDouble(m2);
+ if ((scalar == -1.0 && PyErr_Occurred())==0) { /* MATRIX*FLOAT/INT */
+ for(x = 0; x < mat1->rowSize; x++) {
+ for(y = 0; y < mat1->colSize; y++) {
+ mat[((x * mat1->colSize) + y)] = scalar * mat1->matrix[x][y];
+ }
+ }
+ return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW, NULL);
+ }
+ }
+ PyErr_SetString(PyExc_TypeError, "Matrix multiplication: arguments not acceptable for this operation");
+ return NULL;
+ }
+
+ PyErr_SetString(PyExc_TypeError, "Matrix multiplication: arguments not acceptable for this operation\n");
+ return NULL;
+}
+static PyObject* Matrix_inv(MatrixObject *self)
+{
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
+
+ return Matrix_Invert(self);
+}
+
+/*-----------------PROTOCOL DECLARATIONS--------------------------*/
+static PySequenceMethods Matrix_SeqMethods = {
+ (lenfunc) Matrix_len, /* sq_length */
+ (binaryfunc) 0, /* sq_concat */
+ (ssizeargfunc) 0, /* sq_repeat */
+ (ssizeargfunc) Matrix_item, /* sq_item */
+ (ssizessizeargfunc) Matrix_slice, /* sq_slice */
+ (ssizeobjargproc) Matrix_ass_item, /* sq_ass_item */
+ (ssizessizeobjargproc) Matrix_ass_slice, /* sq_ass_slice */
+};
+
+
+static PyObject *Matrix_subscript(MatrixObject* self, PyObject* item)
+{
+ if (PyIndex_Check(item)) {
+ Py_ssize_t i;
+ i = PyNumber_AsSsize_t(item, PyExc_IndexError);
+ if (i == -1 && PyErr_Occurred())
+ return NULL;
+ if (i < 0)
+ i += self->rowSize;
+ return Matrix_item(self, i);
+ } else if (PySlice_Check(item)) {
+ Py_ssize_t start, stop, step, slicelength;
+
+ if (PySlice_GetIndicesEx((PySliceObject*)item, self->rowSize, &start, &stop, &step, &slicelength) < 0)
+ return NULL;
+
+ if (slicelength <= 0) {
+ return PyList_New(0);
+ }
+ else if (step == 1) {
+ return Matrix_slice(self, start, stop);
+ }
+ else {
+ PyErr_SetString(PyExc_TypeError, "slice steps not supported with matricies");
+ return NULL;
+ }
+ }
+ else {
+ PyErr_Format(PyExc_TypeError,
+ "vector indices must be integers, not %.200s",
+ item->ob_type->tp_name);
+ return NULL;
+ }
+}
+
+static int Matrix_ass_subscript(MatrixObject* self, PyObject* item, PyObject* value)
+{
+ if (PyIndex_Check(item)) {
+ Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError);
+ if (i == -1 && PyErr_Occurred())
+ return -1;
+ if (i < 0)
+ i += self->rowSize;
+ return Matrix_ass_item(self, i, value);
+ }
+ else if (PySlice_Check(item)) {
+ Py_ssize_t start, stop, step, slicelength;
+
+ if (PySlice_GetIndicesEx((PySliceObject*)item, self->rowSize, &start, &stop, &step, &slicelength) < 0)
+ return -1;
+
+ if (step == 1)
+ return Matrix_ass_slice(self, start, stop, value);
+ else {
+ PyErr_SetString(PyExc_TypeError, "slice steps not supported with matricies");
+ return -1;
+ }
+ }
+ else {
+ PyErr_Format(PyExc_TypeError,
+ "matrix indices must be integers, not %.200s",
+ item->ob_type->tp_name);
+ return -1;
+ }
+}
+
+static PyMappingMethods Matrix_AsMapping = {
+ (lenfunc)Matrix_len,
+ (binaryfunc)Matrix_subscript,
+ (objobjargproc)Matrix_ass_subscript
+};
+
+
+static PyNumberMethods Matrix_NumMethods = {
+ (binaryfunc) Matrix_add, /*nb_add*/
+ (binaryfunc) Matrix_sub, /*nb_subtract*/
+ (binaryfunc) Matrix_mul, /*nb_multiply*/
+ 0, /*nb_remainder*/
+ 0, /*nb_divmod*/
+ 0, /*nb_power*/
+ (unaryfunc) 0, /*nb_negative*/
+ (unaryfunc) 0, /*tp_positive*/
+ (unaryfunc) 0, /*tp_absolute*/
+ (inquiry) 0, /*tp_bool*/
+ (unaryfunc) Matrix_inv, /*nb_invert*/
+ 0, /*nb_lshift*/
+ (binaryfunc)0, /*nb_rshift*/
+ 0, /*nb_and*/
+ 0, /*nb_xor*/
+ 0, /*nb_or*/
+ 0, /*nb_int*/
+ 0, /*nb_reserved*/
+ 0, /*nb_float*/
+ 0, /* nb_inplace_add */
+ 0, /* nb_inplace_subtract */
+ 0, /* nb_inplace_multiply */
+ 0, /* nb_inplace_remainder */
+ 0, /* nb_inplace_power */
+ 0, /* nb_inplace_lshift */
+ 0, /* nb_inplace_rshift */
+ 0, /* nb_inplace_and */
+ 0, /* nb_inplace_xor */
+ 0, /* nb_inplace_or */
+ 0, /* nb_floor_divide */
+ 0, /* nb_true_divide */
+ 0, /* nb_inplace_floor_divide */
+ 0, /* nb_inplace_true_divide */
+ 0, /* nb_index */
+};
+
+static PyObject *Matrix_getRowSize( MatrixObject * self, void *type )
+{
+ return PyLong_FromLong((long) self->rowSize);
+}
+
+static PyObject *Matrix_getColSize( MatrixObject * self, void *type )
+{
+ return PyLong_FromLong((long) self->colSize);
+}
+
+static PyObject *Matrix_getMedianScale( MatrixObject * self, void *type )
+{
+ float mat[3][3];
+
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
+
+ /*must be 3-4 cols, 3-4 rows, square matrix*/
+ if(self->colSize == 4 && self->rowSize == 4)
+ copy_m3_m4(mat, (float (*)[4])self->contigPtr);
+ else if(self->colSize == 3 && self->rowSize == 3)
+ copy_m3_m3(mat, (float (*)[3])self->contigPtr);
+ else {
+ PyErr_SetString(PyExc_AttributeError, "Matrix.median_scale: inappropriate matrix size - expects 3x3 or 4x4 matrix\n");
+ return NULL;
+ }
+
+ return PyFloat_FromDouble(mat3_to_scale(mat));
+}
+
+static PyObject *Matrix_getIsNegative( MatrixObject * self, void *type )
+{
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
+
+ /*must be 3-4 cols, 3-4 rows, square matrix*/
+ if(self->colSize == 4 && self->rowSize == 4)
+ return PyBool_FromLong(is_negative_m4((float (*)[4])self->contigPtr));
+ else if(self->colSize == 3 && self->rowSize == 3)
+ return PyBool_FromLong(is_negative_m3((float (*)[3])self->contigPtr));
+ else {
+ PyErr_SetString(PyExc_AttributeError, "Matrix.is_negative: inappropriate matrix size - expects 3x3 or 4x4 matrix\n");
+ return NULL;
+ }
+}
+
+
+/*****************************************************************************/
+/* Python attributes get/set structure: */
+/*****************************************************************************/
+static PyGetSetDef Matrix_getseters[] = {
+ {"row_size", (getter)Matrix_getRowSize, (setter)NULL, "The row size of the matrix (readonly). **type** int", NULL},
+ {"col_size", (getter)Matrix_getColSize, (setter)NULL, "The column size of the matrix (readonly). **type** int", NULL},
+ {"median_scale", (getter)Matrix_getMedianScale, (setter)NULL, "The average scale applied to each axis (readonly). **type** float", NULL},
+ {"is_negative", (getter)Matrix_getIsNegative, (setter)NULL, "True if this matrix results in a negative scale, 3x3 and 4x4 only, (readonly). **type** bool", NULL},
+ {"is_wrapped", (getter)BaseMathObject_getWrapped, (setter)NULL, BaseMathObject_Wrapped_doc, NULL},
+ {"_owner",(getter)BaseMathObject_getOwner, (setter)NULL, BaseMathObject_Owner_doc, NULL},
+ {NULL,NULL,NULL,NULL,NULL} /* Sentinel */
+};
+
+/*-----------------------METHOD DEFINITIONS ----------------------*/
+static struct PyMethodDef Matrix_methods[] = {
+ {"zero", (PyCFunction) Matrix_Zero, METH_NOARGS, Matrix_Zero_doc},
+ {"identity", (PyCFunction) Matrix_Identity, METH_NOARGS, Matrix_Identity_doc},
+ {"transpose", (PyCFunction) Matrix_Transpose, METH_NOARGS, Matrix_Transpose_doc},
+ {"determinant", (PyCFunction) Matrix_Determinant, METH_NOARGS, Matrix_Determinant_doc},
+ {"invert", (PyCFunction) Matrix_Invert, METH_NOARGS, Matrix_Invert_doc},
+ {"translation_part", (PyCFunction) Matrix_TranslationPart, METH_NOARGS, Matrix_TranslationPart_doc},
+ {"rotation_part", (PyCFunction) Matrix_RotationPart, METH_NOARGS, Matrix_RotationPart_doc},
+ {"scale_part", (PyCFunction) Matrix_scalePart, METH_NOARGS, Matrix_scalePart_doc},
+ {"resize4x4", (PyCFunction) Matrix_Resize4x4, METH_NOARGS, Matrix_Resize4x4_doc},
+ {"to_4x4", (PyCFunction) Matrix_to_4x4, METH_NOARGS, Matrix_to_4x4_doc},
+ {"to_3x3", (PyCFunction) Matrix_to_3x3, METH_NOARGS, Matrix_to_3x3_doc},
+ {"to_euler", (PyCFunction) Matrix_toEuler, METH_VARARGS, Matrix_toEuler_doc},
+ {"to_quat", (PyCFunction) Matrix_toQuat, METH_NOARGS, Matrix_toQuat_doc},
+ {"copy", (PyCFunction) Matrix_copy, METH_NOARGS, Matrix_copy_doc},
+ {"__copy__", (PyCFunction) Matrix_copy, METH_NOARGS, Matrix_copy_doc},
+ {NULL, NULL, 0, NULL}
+};
+
+/*------------------PY_OBECT DEFINITION--------------------------*/
+static char matrix_doc[] =
+"This object gives access to Matrices in Blender.";
+
+PyTypeObject matrix_Type = {
+ PyVarObject_HEAD_INIT(NULL, 0)
+ "matrix", /*tp_name*/
+ sizeof(MatrixObject), /*tp_basicsize*/
+ 0, /*tp_itemsize*/
+ (destructor)BaseMathObject_dealloc, /*tp_dealloc*/
+ 0, /*tp_print*/
+ 0, /*tp_getattr*/
+ 0, /*tp_setattr*/
+ 0, /*tp_compare*/
+ (reprfunc) Matrix_repr, /*tp_repr*/
+ &Matrix_NumMethods, /*tp_as_number*/
+ &Matrix_SeqMethods, /*tp_as_sequence*/
+ &Matrix_AsMapping, /*tp_as_mapping*/
+ 0, /*tp_hash*/
+ 0, /*tp_call*/
+ 0, /*tp_str*/
+ 0, /*tp_getattro*/
+ 0, /*tp_setattro*/
+ 0, /*tp_as_buffer*/
+ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp_flags*/
+ matrix_doc, /*tp_doc*/
+ 0, /*tp_traverse*/
+ 0, /*tp_clear*/
+ (richcmpfunc)Matrix_richcmpr, /*tp_richcompare*/
+ 0, /*tp_weaklistoffset*/
+ 0, /*tp_iter*/
+ 0, /*tp_iternext*/
+ Matrix_methods, /*tp_methods*/
+ 0, /*tp_members*/
+ Matrix_getseters, /*tp_getset*/
+ 0, /*tp_base*/
+ 0, /*tp_dict*/
+ 0, /*tp_descr_get*/
+ 0, /*tp_descr_set*/
+ 0, /*tp_dictoffset*/
+ 0, /*tp_init*/
+ 0, /*tp_alloc*/
+ Matrix_new, /*tp_new*/
+ 0, /*tp_free*/
+ 0, /*tp_is_gc*/
+ 0, /*tp_bases*/
+ 0, /*tp_mro*/
+ 0, /*tp_cache*/
+ 0, /*tp_subclasses*/
+ 0, /*tp_weaklist*/
+ 0 /*tp_del*/
+};
+
+/*------------------------newMatrixObject (internal)-------------
+creates a new matrix object
+self->matrix self->contiguous_ptr (reference to data.xxx)
+ [0]------------->[0]
+ [1]
+ [2]
+ [1]------------->[3]
+ [4]
+ [5]
+ ....
+self->matrix[1][1] = self->contigPtr[4] */
+
+/*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
+ (i.e. it was allocated elsewhere by MEM_mallocN())
+ pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
+ (i.e. it must be created here with PyMEM_malloc())*/
+PyObject *newMatrixObject(float *mat, int rowSize, int colSize, int type, PyTypeObject *base_type)
+{
+ MatrixObject *self;
+ int x, row, col;
+
+ /*matrix objects can be any 2-4row x 2-4col matrix*/
+ if(rowSize < 2 || rowSize > 4 || colSize < 2 || colSize > 4){
+ PyErr_SetString(PyExc_RuntimeError, "matrix(): row and column sizes must be between 2 and 4");
+ return NULL;
+ }
+
+ if(base_type) self = (MatrixObject *)base_type->tp_alloc(base_type, 0);
+ else self = PyObject_NEW(MatrixObject, &matrix_Type);
+
+ self->rowSize = rowSize;
+ self->colSize = colSize;
+
+ /* init callbacks as NULL */
+ self->cb_user= NULL;
+ self->cb_type= self->cb_subtype= 0;
+
+ if(type == Py_WRAP){
+ self->contigPtr = mat;
+ /*pointer array points to contigous memory*/
+ for(x = 0; x < rowSize; x++) {
+ self->matrix[x] = self->contigPtr + (x * colSize);
+ }
+ self->wrapped = Py_WRAP;
+ }else if (type == Py_NEW){
+ self->contigPtr = PyMem_Malloc(rowSize * colSize * sizeof(float));
+ if(self->contigPtr == NULL) { /*allocation failure*/
+ PyErr_SetString( PyExc_MemoryError, "matrix(): problem allocating pointer space\n");
+ return NULL;
+ }
+ /*pointer array points to contigous memory*/
+ for(x = 0; x < rowSize; x++) {
+ self->matrix[x] = self->contigPtr + (x * colSize);
+ }
+ /*parse*/
+ if(mat) { /*if a float array passed*/
+ for(row = 0; row < rowSize; row++) {
+ for(col = 0; col < colSize; col++) {
+ self->matrix[row][col] = mat[(row * colSize) + col];
+ }
+ }
+ } else if (rowSize == colSize ) { /*or if no arguments are passed return identity matrix for square matrices */
+ Matrix_Identity(self);
+ Py_DECREF(self);
+ }
+ self->wrapped = Py_NEW;
+ }else{ /*bad type*/
+ return NULL;
+ }
+ return (PyObject *) self;
+}
+
+PyObject *newMatrixObject_cb(PyObject *cb_user, int rowSize, int colSize, int cb_type, int cb_subtype)
+{
+ MatrixObject *self= (MatrixObject *)newMatrixObject(NULL, rowSize, colSize, Py_NEW, NULL);
+ if(self) {
+ Py_INCREF(cb_user);
+ self->cb_user= cb_user;
+ self->cb_type= (unsigned char)cb_type;
+ self->cb_subtype= (unsigned char)cb_subtype;
+ }
+ return (PyObject *) self;
+}
+
+//----------------column_vector_multiplication (internal)---------
+//COLUMN VECTOR Multiplication (Matrix X Vector)
+// [1][4][7] [a]
+// [2][5][8] * [b]
+// [3][6][9] [c]
+//vector/matrix multiplication IS NOT COMMUTATIVE!!!!
+static PyObject *column_vector_multiplication(MatrixObject * mat, VectorObject* vec)
+{
+ float vecNew[4], vecCopy[4];
+ double dot = 0.0f;
+ int x, y, z = 0;
+
+ if(!BaseMath_ReadCallback(mat) || !BaseMath_ReadCallback(vec))
+ return NULL;
+
+ if(mat->rowSize != vec->size){
+ if(mat->rowSize == 4 && vec->size != 3){
+ PyErr_SetString(PyExc_AttributeError, "matrix * vector: matrix row size and vector size must be the same");
+ return NULL;
+ }else{
+ vecCopy[3] = 1.0f;
+ }
+ }
+
+ for(x = 0; x < vec->size; x++){
+ vecCopy[x] = vec->vec[x];
+ }
+ vecNew[3] = 1.0f;
+
+ for(x = 0; x < mat->colSize; x++) {
+ for(y = 0; y < mat->rowSize; y++) {
+ dot += mat->matrix[y][x] * vecCopy[y];
+ }
+ vecNew[z++] = (float)dot;
+ dot = 0.0f;
+ }
+ return newVectorObject(vecNew, vec->size, Py_NEW, NULL);
+}