Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/python/generic/mathutils_quat.c')
-rw-r--r--source/blender/python/generic/mathutils_quat.c961
1 files changed, 961 insertions, 0 deletions
diff --git a/source/blender/python/generic/mathutils_quat.c b/source/blender/python/generic/mathutils_quat.c
new file mode 100644
index 00000000000..f94e5e2a03a
--- /dev/null
+++ b/source/blender/python/generic/mathutils_quat.c
@@ -0,0 +1,961 @@
+/*
+ * $Id$
+ *
+ * ***** BEGIN GPL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
+ * All rights reserved.
+ *
+ *
+ * Contributor(s): Joseph Gilbert
+ *
+ * ***** END GPL LICENSE BLOCK *****
+ */
+
+#include "mathutils.h"
+
+#include "BLI_math.h"
+#include "BKE_utildefines.h"
+
+#define QUAT_SIZE 4
+
+//-----------------------------METHODS------------------------------
+
+/* note: BaseMath_ReadCallback must be called beforehand */
+static PyObject *Quaternion_ToTupleExt(QuaternionObject *self, int ndigits)
+{
+ PyObject *ret;
+ int i;
+
+ ret= PyTuple_New(QUAT_SIZE);
+
+ if(ndigits >= 0) {
+ for(i= 0; i < QUAT_SIZE; i++) {
+ PyTuple_SET_ITEM(ret, i, PyFloat_FromDouble(double_round((double)self->quat[i], ndigits)));
+ }
+ }
+ else {
+ for(i= 0; i < QUAT_SIZE; i++) {
+ PyTuple_SET_ITEM(ret, i, PyFloat_FromDouble(self->quat[i]));
+ }
+ }
+
+ return ret;
+}
+
+static char Quaternion_ToEuler_doc[] =
+".. method:: to_euler(order, euler_compat)\n"
+"\n"
+" Return Euler representation of the quaternion.\n"
+"\n"
+" :arg order: Optional rotation order argument in ['XYZ', 'XZY', 'YXZ', 'YZX', 'ZXY', 'ZYX'].\n"
+" :type order: string\n"
+" :arg euler_compat: Optional euler argument the new euler will be made compatible with (no axis flipping between them). Useful for converting a series of matrices to animation curves.\n"
+" :type euler_compat: :class:`Euler`\n"
+" :return: Euler representation of the quaternion.\n"
+" :rtype: :class:`Euler`\n";
+
+static PyObject *Quaternion_ToEuler(QuaternionObject * self, PyObject *args)
+{
+ float eul[3];
+ char *order_str= NULL;
+ short order= EULER_ORDER_XYZ;
+ EulerObject *eul_compat = NULL;
+
+ if(!PyArg_ParseTuple(args, "|sO!:to_euler", &order_str, &euler_Type, &eul_compat))
+ return NULL;
+
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
+
+ if(order_str) {
+ order= euler_order_from_string(order_str, "Matrix.to_euler()");
+
+ if(order == -1)
+ return NULL;
+ }
+
+ if(eul_compat) {
+ float mat[3][3];
+
+ if(!BaseMath_ReadCallback(eul_compat))
+ return NULL;
+
+ quat_to_mat3(mat, self->quat);
+
+ if(order == EULER_ORDER_XYZ) mat3_to_compatible_eul(eul, eul_compat->eul, mat);
+ else mat3_to_compatible_eulO(eul, eul_compat->eul, order, mat);
+ }
+ else {
+ if(order == EULER_ORDER_XYZ) quat_to_eul(eul, self->quat);
+ else quat_to_eulO(eul, order, self->quat);
+ }
+
+ return newEulerObject(eul, order, Py_NEW, NULL);
+}
+//----------------------------Quaternion.toMatrix()------------------
+static char Quaternion_ToMatrix_doc[] =
+".. method:: to_matrix(other)\n"
+"\n"
+" Return a matrix representation of the quaternion.\n"
+"\n"
+" :return: A 3x3 rotation matrix representation of the quaternion.\n"
+" :rtype: :class:`Matrix`\n";
+
+static PyObject *Quaternion_ToMatrix(QuaternionObject * self)
+{
+ float mat[9]; /* all values are set */
+
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
+
+ quat_to_mat3( (float (*)[3]) mat,self->quat);
+ return newMatrixObject(mat, 3, 3, Py_NEW, NULL);
+}
+
+//----------------------------Quaternion.cross(other)------------------
+static char Quaternion_Cross_doc[] =
+".. method:: cross(other)\n"
+"\n"
+" Return the cross product of this quaternion and another.\n"
+"\n"
+" :arg other: The other quaternion to perform the cross product with.\n"
+" :type other: :class:`Quaternion`\n"
+" :return: The cross product.\n"
+" :rtype: :class:`Quaternion`\n";
+
+static PyObject *Quaternion_Cross(QuaternionObject * self, QuaternionObject * value)
+{
+ float quat[QUAT_SIZE];
+
+ if (!QuaternionObject_Check(value)) {
+ PyErr_SetString( PyExc_TypeError, "quat.cross(value): expected a quaternion argument" );
+ return NULL;
+ }
+
+ if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(value))
+ return NULL;
+
+ mul_qt_qtqt(quat, self->quat, value->quat);
+ return newQuaternionObject(quat, Py_NEW, NULL);
+}
+
+//----------------------------Quaternion.dot(other)------------------
+static char Quaternion_Dot_doc[] =
+".. method:: dot(other)\n"
+"\n"
+" Return the dot product of this quaternion and another.\n"
+"\n"
+" :arg other: The other quaternion to perform the dot product with.\n"
+" :type other: :class:`Quaternion`\n"
+" :return: The dot product.\n"
+" :rtype: :class:`Quaternion`\n";
+
+static PyObject *Quaternion_Dot(QuaternionObject * self, QuaternionObject * value)
+{
+ if (!QuaternionObject_Check(value)) {
+ PyErr_SetString( PyExc_TypeError, "quat.dot(value): expected a quaternion argument" );
+ return NULL;
+ }
+
+ if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(value))
+ return NULL;
+
+ return PyFloat_FromDouble(dot_qtqt(self->quat, value->quat));
+}
+
+static char Quaternion_Difference_doc[] =
+".. function:: difference(other)\n"
+"\n"
+" Returns a quaternion representing the rotational difference.\n"
+"\n"
+" :arg other: second quaternion.\n"
+" :type other: :class:`Quaternion`\n"
+" :return: the rotational difference between the two quat rotations.\n"
+" :rtype: :class:`Quaternion`\n";
+
+static PyObject *Quaternion_Difference(QuaternionObject * self, QuaternionObject * value)
+{
+ float quat[QUAT_SIZE], tempQuat[QUAT_SIZE];
+ double dot = 0.0f;
+ int x;
+
+ if (!QuaternionObject_Check(value)) {
+ PyErr_SetString( PyExc_TypeError, "quat.difference(value): expected a quaternion argument" );
+ return NULL;
+ }
+
+ if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(value))
+ return NULL;
+
+ copy_qt_qt(tempQuat, self->quat);
+ conjugate_qt(tempQuat);
+ dot = sqrt(dot_qtqt(tempQuat, tempQuat));
+
+ for(x = 0; x < QUAT_SIZE; x++) {
+ tempQuat[x] /= (float)(dot * dot);
+ }
+ mul_qt_qtqt(quat, tempQuat, value->quat);
+ return newQuaternionObject(quat, Py_NEW, NULL);
+}
+
+static char Quaternion_Slerp_doc[] =
+".. function:: slerp(other, factor)\n"
+"\n"
+" Returns the interpolation of two quaternions.\n"
+"\n"
+" :arg other: value to interpolate with.\n"
+" :type other: :class:`Quaternion`\n"
+" :arg factor: The interpolation value in [0.0, 1.0].\n"
+" :type factor: float\n"
+" :return: The interpolated rotation.\n"
+" :rtype: :class:`Quaternion`\n";
+
+static PyObject *Quaternion_Slerp(QuaternionObject *self, PyObject *args)
+{
+ QuaternionObject *value;
+ float quat[QUAT_SIZE], fac;
+
+ if(!PyArg_ParseTuple(args, "O!f:slerp", &quaternion_Type, &value, &fac)) {
+ PyErr_SetString(PyExc_TypeError, "quat.slerp(): expected Quaternion types and float");
+ return NULL;
+ }
+
+ if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(value))
+ return NULL;
+
+ if(fac > 1.0f || fac < 0.0f) {
+ PyErr_SetString(PyExc_AttributeError, "quat.slerp(): interpolation factor must be between 0.0 and 1.0");
+ return NULL;
+ }
+
+ interp_qt_qtqt(quat, self->quat, value->quat, fac);
+
+ return newQuaternionObject(quat, Py_NEW, NULL);
+}
+
+//----------------------------Quaternion.normalize()----------------
+//normalize the axis of rotation of [theta,vector]
+static char Quaternion_Normalize_doc[] =
+".. function:: normalize()\n"
+"\n"
+" Normalize the quaternion.\n"
+"\n"
+" :return: an instance of itself.\n"
+" :rtype: :class:`Quaternion`\n";
+
+static PyObject *Quaternion_Normalize(QuaternionObject * self)
+{
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
+
+ normalize_qt(self->quat);
+
+ BaseMath_WriteCallback(self);
+ Py_INCREF(self);
+ return (PyObject*)self;
+}
+//----------------------------Quaternion.inverse()------------------
+static char Quaternion_Inverse_doc[] =
+".. function:: inverse()\n"
+"\n"
+" Set the quaternion to its inverse.\n"
+"\n"
+" :return: an instance of itself.\n"
+" :rtype: :class:`Quaternion`\n";
+
+static PyObject *Quaternion_Inverse(QuaternionObject * self)
+{
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
+
+ invert_qt(self->quat);
+
+ BaseMath_WriteCallback(self);
+ Py_INCREF(self);
+ return (PyObject*)self;
+}
+//----------------------------Quaternion.identity()-----------------
+static char Quaternion_Identity_doc[] =
+".. function:: identity()\n"
+"\n"
+" Set the quaternion to an identity quaternion.\n"
+"\n"
+" :return: an instance of itself.\n"
+" :rtype: :class:`Quaternion`\n";
+
+static PyObject *Quaternion_Identity(QuaternionObject * self)
+{
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
+
+ unit_qt(self->quat);
+
+ BaseMath_WriteCallback(self);
+ Py_INCREF(self);
+ return (PyObject*)self;
+}
+//----------------------------Quaternion.negate()-------------------
+static char Quaternion_Negate_doc[] =
+".. function:: negate()\n"
+"\n"
+" Set the quaternion to its negative.\n"
+"\n"
+" :return: an instance of itself.\n"
+" :rtype: :class:`Quaternion`\n";
+
+static PyObject *Quaternion_Negate(QuaternionObject * self)
+{
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
+
+ mul_qt_fl(self->quat, -1.0f);
+
+ BaseMath_WriteCallback(self);
+ Py_INCREF(self);
+ return (PyObject*)self;
+}
+//----------------------------Quaternion.conjugate()----------------
+static char Quaternion_Conjugate_doc[] =
+".. function:: conjugate()\n"
+"\n"
+" Set the quaternion to its conjugate (negate x, y, z).\n"
+"\n"
+" :return: an instance of itself.\n"
+" :rtype: :class:`Quaternion`\n";
+
+static PyObject *Quaternion_Conjugate(QuaternionObject * self)
+{
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
+
+ conjugate_qt(self->quat);
+
+ BaseMath_WriteCallback(self);
+ Py_INCREF(self);
+ return (PyObject*)self;
+}
+//----------------------------Quaternion.copy()----------------
+static char Quaternion_copy_doc[] =
+".. function:: copy()\n"
+"\n"
+" Returns a copy of this quaternion.\n"
+"\n"
+" :return: A copy of the quaternion.\n"
+" :rtype: :class:`Quaternion`\n"
+"\n"
+" .. note:: use this to get a copy of a wrapped quaternion with no reference to the original data.\n";
+
+static PyObject *Quaternion_copy(QuaternionObject * self)
+{
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
+
+ return newQuaternionObject(self->quat, Py_NEW, Py_TYPE(self));
+}
+
+//----------------------------print object (internal)--------------
+//print the object to screen
+static PyObject *Quaternion_repr(QuaternionObject * self)
+{
+ PyObject *ret, *tuple;
+
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
+
+ tuple= Quaternion_ToTupleExt(self, -1);
+
+ ret= PyUnicode_FromFormat("Quaternion(%R)", tuple);
+
+ Py_DECREF(tuple);
+ return ret;
+}
+
+//------------------------tp_richcmpr
+//returns -1 execption, 0 false, 1 true
+static PyObject* Quaternion_richcmpr(PyObject *objectA, PyObject *objectB, int comparison_type)
+{
+ QuaternionObject *quatA = NULL, *quatB = NULL;
+ int result = 0;
+
+ if(QuaternionObject_Check(objectA)) {
+ quatA = (QuaternionObject*)objectA;
+ if(!BaseMath_ReadCallback(quatA))
+ return NULL;
+ }
+ if(QuaternionObject_Check(objectB)) {
+ quatB = (QuaternionObject*)objectB;
+ if(!BaseMath_ReadCallback(quatB))
+ return NULL;
+ }
+
+ if (!quatA || !quatB){
+ if (comparison_type == Py_NE){
+ Py_RETURN_TRUE;
+ }else{
+ Py_RETURN_FALSE;
+ }
+ }
+
+ switch (comparison_type){
+ case Py_EQ:
+ result = EXPP_VectorsAreEqual(quatA->quat, quatB->quat, QUAT_SIZE, 1);
+ break;
+ case Py_NE:
+ result = EXPP_VectorsAreEqual(quatA->quat, quatB->quat, QUAT_SIZE, 1);
+ if (result == 0){
+ result = 1;
+ }else{
+ result = 0;
+ }
+ break;
+ default:
+ printf("The result of the comparison could not be evaluated");
+ break;
+ }
+ if (result == 1){
+ Py_RETURN_TRUE;
+ }else{
+ Py_RETURN_FALSE;
+ }
+}
+
+//---------------------SEQUENCE PROTOCOLS------------------------
+//----------------------------len(object)------------------------
+//sequence length
+static int Quaternion_len(QuaternionObject * self)
+{
+ return QUAT_SIZE;
+}
+//----------------------------object[]---------------------------
+//sequence accessor (get)
+static PyObject *Quaternion_item(QuaternionObject * self, int i)
+{
+ if(i<0) i= QUAT_SIZE-i;
+
+ if(i < 0 || i >= QUAT_SIZE) {
+ PyErr_SetString(PyExc_IndexError, "quaternion[attribute]: array index out of range\n");
+ return NULL;
+ }
+
+ if(!BaseMath_ReadIndexCallback(self, i))
+ return NULL;
+
+ return PyFloat_FromDouble(self->quat[i]);
+
+}
+//----------------------------object[]-------------------------
+//sequence accessor (set)
+static int Quaternion_ass_item(QuaternionObject * self, int i, PyObject * ob)
+{
+ float scalar= (float)PyFloat_AsDouble(ob);
+ if(scalar==-1.0f && PyErr_Occurred()) { /* parsed item not a number */
+ PyErr_SetString(PyExc_TypeError, "quaternion[index] = x: index argument not a number\n");
+ return -1;
+ }
+
+ if(i<0) i= QUAT_SIZE-i;
+
+ if(i < 0 || i >= QUAT_SIZE){
+ PyErr_SetString(PyExc_IndexError, "quaternion[attribute] = x: array assignment index out of range\n");
+ return -1;
+ }
+ self->quat[i] = scalar;
+
+ if(!BaseMath_WriteIndexCallback(self, i))
+ return -1;
+
+ return 0;
+}
+//----------------------------object[z:y]------------------------
+//sequence slice (get)
+static PyObject *Quaternion_slice(QuaternionObject * self, int begin, int end)
+{
+ PyObject *list = NULL;
+ int count;
+
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
+
+ CLAMP(begin, 0, QUAT_SIZE);
+ if (end<0) end= (QUAT_SIZE + 1) + end;
+ CLAMP(end, 0, QUAT_SIZE);
+ begin = MIN2(begin,end);
+
+ list = PyList_New(end - begin);
+ for(count = begin; count < end; count++) {
+ PyList_SetItem(list, count - begin,
+ PyFloat_FromDouble(self->quat[count]));
+ }
+
+ return list;
+}
+//----------------------------object[z:y]------------------------
+//sequence slice (set)
+static int Quaternion_ass_slice(QuaternionObject * self, int begin, int end, PyObject * seq)
+{
+ int i, size;
+ float quat[QUAT_SIZE];
+
+ if(!BaseMath_ReadCallback(self))
+ return -1;
+
+ CLAMP(begin, 0, QUAT_SIZE);
+ if (end<0) end= (QUAT_SIZE + 1) + end;
+ CLAMP(end, 0, QUAT_SIZE);
+ begin = MIN2(begin,end);
+
+ if((size=mathutils_array_parse(quat, 0, QUAT_SIZE, seq, "mathutils.Quaternion[begin:end] = []")) == -1)
+ return -1;
+
+ if(size != (end - begin)){
+ PyErr_SetString(PyExc_TypeError, "quaternion[begin:end] = []: size mismatch in slice assignment");
+ return -1;
+ }
+
+ /* parsed well - now set in vector */
+ for(i= 0; i < size; i++)
+ self->quat[begin + i] = quat[i];
+
+ BaseMath_WriteCallback(self);
+ return 0;
+}
+
+
+static PyObject *Quaternion_subscript(QuaternionObject *self, PyObject *item)
+{
+ if (PyIndex_Check(item)) {
+ Py_ssize_t i;
+ i = PyNumber_AsSsize_t(item, PyExc_IndexError);
+ if (i == -1 && PyErr_Occurred())
+ return NULL;
+ if (i < 0)
+ i += QUAT_SIZE;
+ return Quaternion_item(self, i);
+ } else if (PySlice_Check(item)) {
+ Py_ssize_t start, stop, step, slicelength;
+
+ if (PySlice_GetIndicesEx((PySliceObject*)item, QUAT_SIZE, &start, &stop, &step, &slicelength) < 0)
+ return NULL;
+
+ if (slicelength <= 0) {
+ return PyList_New(0);
+ }
+ else if (step == 1) {
+ return Quaternion_slice(self, start, stop);
+ }
+ else {
+ PyErr_SetString(PyExc_TypeError, "slice steps not supported with quaternions");
+ return NULL;
+ }
+ }
+ else {
+ PyErr_Format(PyExc_TypeError,
+ "quaternion indices must be integers, not %.200s",
+ item->ob_type->tp_name);
+ return NULL;
+ }
+}
+
+
+static int Quaternion_ass_subscript(QuaternionObject *self, PyObject *item, PyObject *value)
+{
+ if (PyIndex_Check(item)) {
+ Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError);
+ if (i == -1 && PyErr_Occurred())
+ return -1;
+ if (i < 0)
+ i += QUAT_SIZE;
+ return Quaternion_ass_item(self, i, value);
+ }
+ else if (PySlice_Check(item)) {
+ Py_ssize_t start, stop, step, slicelength;
+
+ if (PySlice_GetIndicesEx((PySliceObject*)item, QUAT_SIZE, &start, &stop, &step, &slicelength) < 0)
+ return -1;
+
+ if (step == 1)
+ return Quaternion_ass_slice(self, start, stop, value);
+ else {
+ PyErr_SetString(PyExc_TypeError, "slice steps not supported with quaternion");
+ return -1;
+ }
+ }
+ else {
+ PyErr_Format(PyExc_TypeError,
+ "quaternion indices must be integers, not %.200s",
+ item->ob_type->tp_name);
+ return -1;
+ }
+}
+
+//------------------------NUMERIC PROTOCOLS----------------------
+//------------------------obj + obj------------------------------
+//addition
+static PyObject *Quaternion_add(PyObject * q1, PyObject * q2)
+{
+ float quat[QUAT_SIZE];
+ QuaternionObject *quat1 = NULL, *quat2 = NULL;
+
+ if(!QuaternionObject_Check(q1) || !QuaternionObject_Check(q2)) {
+ PyErr_SetString(PyExc_AttributeError, "Quaternion addition: arguments not valid for this operation....\n");
+ return NULL;
+ }
+ quat1 = (QuaternionObject*)q1;
+ quat2 = (QuaternionObject*)q2;
+
+ if(!BaseMath_ReadCallback(quat1) || !BaseMath_ReadCallback(quat2))
+ return NULL;
+
+ add_qt_qtqt(quat, quat1->quat, quat2->quat, 1.0f);
+ return newQuaternionObject(quat, Py_NEW, NULL);
+}
+//------------------------obj - obj------------------------------
+//subtraction
+static PyObject *Quaternion_sub(PyObject * q1, PyObject * q2)
+{
+ int x;
+ float quat[QUAT_SIZE];
+ QuaternionObject *quat1 = NULL, *quat2 = NULL;
+
+ if(!QuaternionObject_Check(q1) || !QuaternionObject_Check(q2)) {
+ PyErr_SetString(PyExc_AttributeError, "Quaternion addition: arguments not valid for this operation....\n");
+ return NULL;
+ }
+
+ quat1 = (QuaternionObject*)q1;
+ quat2 = (QuaternionObject*)q2;
+
+ if(!BaseMath_ReadCallback(quat1) || !BaseMath_ReadCallback(quat2))
+ return NULL;
+
+ for(x = 0; x < QUAT_SIZE; x++) {
+ quat[x] = quat1->quat[x] - quat2->quat[x];
+ }
+
+ return newQuaternionObject(quat, Py_NEW, NULL);
+}
+//------------------------obj * obj------------------------------
+//mulplication
+static PyObject *Quaternion_mul(PyObject * q1, PyObject * q2)
+{
+ float quat[QUAT_SIZE], scalar;
+ QuaternionObject *quat1 = NULL, *quat2 = NULL;
+ VectorObject *vec = NULL;
+
+ if(QuaternionObject_Check(q1)) {
+ quat1 = (QuaternionObject*)q1;
+ if(!BaseMath_ReadCallback(quat1))
+ return NULL;
+ }
+ if(QuaternionObject_Check(q2)) {
+ quat2 = (QuaternionObject*)q2;
+ if(!BaseMath_ReadCallback(quat2))
+ return NULL;
+ }
+
+ if(quat1 && quat2) { /* QUAT*QUAT (dot product) */
+ return PyFloat_FromDouble(dot_qtqt(quat1->quat, quat2->quat));
+ }
+
+ /* the only case this can happen (for a supported type is "FLOAT*QUAT" ) */
+ if(!QuaternionObject_Check(q1)) {
+ scalar= PyFloat_AsDouble(q1);
+ if ((scalar == -1.0 && PyErr_Occurred())==0) { /* FLOAT*QUAT */
+ QUATCOPY(quat, quat2->quat);
+ mul_qt_fl(quat, scalar);
+ return newQuaternionObject(quat, Py_NEW, NULL);
+ }
+ PyErr_SetString(PyExc_TypeError, "Quaternion multiplication: val * quat, val is not an acceptable type");
+ return NULL;
+ }
+ else { /* QUAT*SOMETHING */
+ if(VectorObject_Check(q2)){ /* QUAT*VEC */
+ vec = (VectorObject*)q2;
+ if(vec->size != 3){
+ PyErr_SetString(PyExc_TypeError, "Quaternion multiplication: only 3D vector rotations currently supported\n");
+ return NULL;
+ }
+ return quat_rotation((PyObject*)quat1, (PyObject*)vec); /* vector updating done inside the func */
+ }
+
+ scalar= PyFloat_AsDouble(q2);
+ if ((scalar == -1.0 && PyErr_Occurred())==0) { /* QUAT*FLOAT */
+ QUATCOPY(quat, quat1->quat);
+ mul_qt_fl(quat, scalar);
+ return newQuaternionObject(quat, Py_NEW, NULL);
+ }
+ }
+
+ PyErr_SetString(PyExc_TypeError, "Quaternion multiplication: arguments not acceptable for this operation\n");
+ return NULL;
+}
+
+//-----------------PROTOCOL DECLARATIONS--------------------------
+static PySequenceMethods Quaternion_SeqMethods = {
+ (lenfunc) Quaternion_len, /* sq_length */
+ (binaryfunc) NULL, /* sq_concat */
+ (ssizeargfunc) NULL, /* sq_repeat */
+ (ssizeargfunc) Quaternion_item, /* sq_item */
+ (ssizessizeargfunc) NULL, /* sq_slice, deprecated */
+ (ssizeobjargproc) Quaternion_ass_item, /* sq_ass_item */
+ (ssizessizeobjargproc) NULL, /* sq_ass_slice, deprecated */
+ (objobjproc) NULL, /* sq_contains */
+ (binaryfunc) NULL, /* sq_inplace_concat */
+ (ssizeargfunc) NULL, /* sq_inplace_repeat */
+};
+
+static PyMappingMethods Quaternion_AsMapping = {
+ (lenfunc)Quaternion_len,
+ (binaryfunc)Quaternion_subscript,
+ (objobjargproc)Quaternion_ass_subscript
+};
+
+static PyNumberMethods Quaternion_NumMethods = {
+ (binaryfunc) Quaternion_add, /*nb_add*/
+ (binaryfunc) Quaternion_sub, /*nb_subtract*/
+ (binaryfunc) Quaternion_mul, /*nb_multiply*/
+ 0, /*nb_remainder*/
+ 0, /*nb_divmod*/
+ 0, /*nb_power*/
+ (unaryfunc) 0, /*nb_negative*/
+ (unaryfunc) 0, /*tp_positive*/
+ (unaryfunc) 0, /*tp_absolute*/
+ (inquiry) 0, /*tp_bool*/
+ (unaryfunc) 0, /*nb_invert*/
+ 0, /*nb_lshift*/
+ (binaryfunc)0, /*nb_rshift*/
+ 0, /*nb_and*/
+ 0, /*nb_xor*/
+ 0, /*nb_or*/
+ 0, /*nb_int*/
+ 0, /*nb_reserved*/
+ 0, /*nb_float*/
+ 0, /* nb_inplace_add */
+ 0, /* nb_inplace_subtract */
+ 0, /* nb_inplace_multiply */
+ 0, /* nb_inplace_remainder */
+ 0, /* nb_inplace_power */
+ 0, /* nb_inplace_lshift */
+ 0, /* nb_inplace_rshift */
+ 0, /* nb_inplace_and */
+ 0, /* nb_inplace_xor */
+ 0, /* nb_inplace_or */
+ 0, /* nb_floor_divide */
+ 0, /* nb_true_divide */
+ 0, /* nb_inplace_floor_divide */
+ 0, /* nb_inplace_true_divide */
+ 0, /* nb_index */
+};
+
+static PyObject *Quaternion_getAxis( QuaternionObject * self, void *type )
+{
+ return Quaternion_item(self, GET_INT_FROM_POINTER(type));
+}
+
+static int Quaternion_setAxis( QuaternionObject * self, PyObject * value, void * type )
+{
+ return Quaternion_ass_item(self, GET_INT_FROM_POINTER(type), value);
+}
+
+static PyObject *Quaternion_getMagnitude( QuaternionObject * self, void *type )
+{
+ return PyFloat_FromDouble(sqrt(dot_qtqt(self->quat, self->quat)));
+}
+
+static PyObject *Quaternion_getAngle( QuaternionObject * self, void *type )
+{
+ return PyFloat_FromDouble(2.0 * (saacos(self->quat[0])));
+}
+
+static PyObject *Quaternion_getAxisVec( QuaternionObject * self, void *type )
+{
+ float vec[3];
+
+ normalize_v3_v3(vec, self->quat+1);
+
+ /* If the axis of rotation is 0,0,0 set it to 1,0,0 - for zero-degree rotations */
+ if( EXPP_FloatsAreEqual(vec[0], 0.0f, 10) &&
+ EXPP_FloatsAreEqual(vec[1], 0.0f, 10) &&
+ EXPP_FloatsAreEqual(vec[2], 0.0f, 10) ){
+ vec[0] = 1.0f;
+ }
+ return (PyObject *) newVectorObject(vec, 3, Py_NEW, NULL);
+}
+
+//----------------------------------mathutils.Quaternion() --------------
+static PyObject *Quaternion_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
+{
+ PyObject *seq= NULL;
+ float angle = 0.0f;
+ float quat[QUAT_SIZE]= {0.0f, 0.0f, 0.0f, 0.0f};
+
+ if(!PyArg_ParseTuple(args, "|Of:mathutils.Quaternion", &seq, &angle))
+ return NULL;
+
+ switch(PyTuple_GET_SIZE(args)) {
+ case 0:
+ break;
+ case 1:
+ if (mathutils_array_parse(quat, QUAT_SIZE, QUAT_SIZE, seq, "mathutils.Quaternion()") == -1)
+ return NULL;
+ break;
+ case 2:
+ if (mathutils_array_parse(quat, 3, 3, seq, "mathutils.Quaternion()") == -1)
+ return NULL;
+
+ axis_angle_to_quat(quat, quat, angle);
+ break;
+ /* PyArg_ParseTuple assures no more then 2 */
+ }
+ return newQuaternionObject(quat, Py_NEW, NULL);
+}
+
+
+//-----------------------METHOD DEFINITIONS ----------------------
+static struct PyMethodDef Quaternion_methods[] = {
+ {"identity", (PyCFunction) Quaternion_Identity, METH_NOARGS, Quaternion_Identity_doc},
+ {"negate", (PyCFunction) Quaternion_Negate, METH_NOARGS, Quaternion_Negate_doc},
+ {"conjugate", (PyCFunction) Quaternion_Conjugate, METH_NOARGS, Quaternion_Conjugate_doc},
+ {"inverse", (PyCFunction) Quaternion_Inverse, METH_NOARGS, Quaternion_Inverse_doc},
+ {"normalize", (PyCFunction) Quaternion_Normalize, METH_NOARGS, Quaternion_Normalize_doc},
+ {"to_euler", (PyCFunction) Quaternion_ToEuler, METH_VARARGS, Quaternion_ToEuler_doc},
+ {"to_matrix", (PyCFunction) Quaternion_ToMatrix, METH_NOARGS, Quaternion_ToMatrix_doc},
+ {"cross", (PyCFunction) Quaternion_Cross, METH_O, Quaternion_Cross_doc},
+ {"dot", (PyCFunction) Quaternion_Dot, METH_O, Quaternion_Dot_doc},
+ {"difference", (PyCFunction) Quaternion_Difference, METH_O, Quaternion_Difference_doc},
+ {"slerp", (PyCFunction) Quaternion_Slerp, METH_VARARGS, Quaternion_Slerp_doc},
+ {"__copy__", (PyCFunction) Quaternion_copy, METH_NOARGS, Quaternion_copy_doc},
+ {"copy", (PyCFunction) Quaternion_copy, METH_NOARGS, Quaternion_copy_doc},
+ {NULL, NULL, 0, NULL}
+};
+
+/*****************************************************************************/
+/* Python attributes get/set structure: */
+/*****************************************************************************/
+static PyGetSetDef Quaternion_getseters[] = {
+ {"w", (getter)Quaternion_getAxis, (setter)Quaternion_setAxis, "Quaternion W value. **type** float", (void *)0},
+ {"x", (getter)Quaternion_getAxis, (setter)Quaternion_setAxis, "Quaternion X axis. **type** float", (void *)1},
+ {"y", (getter)Quaternion_getAxis, (setter)Quaternion_setAxis, "Quaternion Y axis. **type** float", (void *)2},
+ {"z", (getter)Quaternion_getAxis, (setter)Quaternion_setAxis, "Quaternion Z axis. **type** float", (void *)3},
+ {"magnitude", (getter)Quaternion_getMagnitude, (setter)NULL, "Size of the quaternion (readonly). **type** float", NULL},
+ {"angle", (getter)Quaternion_getAngle, (setter)NULL, "angle of the quaternion (readonly). **type** float", NULL},
+ {"axis",(getter)Quaternion_getAxisVec, (setter)NULL, "quaternion axis as a vector (readonly). **type** :class:`Vector`", NULL},
+ {"is_wrapped", (getter)BaseMathObject_getWrapped, (setter)NULL, BaseMathObject_Wrapped_doc, NULL},
+ {"_owner", (getter)BaseMathObject_getOwner, (setter)NULL, BaseMathObject_Owner_doc, NULL},
+ {NULL,NULL,NULL,NULL,NULL} /* Sentinel */
+};
+
+//------------------PY_OBECT DEFINITION--------------------------
+static char quaternion_doc[] =
+"This object gives access to Quaternions in Blender.";
+
+PyTypeObject quaternion_Type = {
+ PyVarObject_HEAD_INIT(NULL, 0)
+ "quaternion", //tp_name
+ sizeof(QuaternionObject), //tp_basicsize
+ 0, //tp_itemsize
+ (destructor)BaseMathObject_dealloc, //tp_dealloc
+ 0, //tp_print
+ 0, //tp_getattr
+ 0, //tp_setattr
+ 0, //tp_compare
+ (reprfunc) Quaternion_repr, //tp_repr
+ &Quaternion_NumMethods, //tp_as_number
+ &Quaternion_SeqMethods, //tp_as_sequence
+ &Quaternion_AsMapping, //tp_as_mapping
+ 0, //tp_hash
+ 0, //tp_call
+ 0, //tp_str
+ 0, //tp_getattro
+ 0, //tp_setattro
+ 0, //tp_as_buffer
+ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, //tp_flags
+ quaternion_doc, //tp_doc
+ 0, //tp_traverse
+ 0, //tp_clear
+ (richcmpfunc)Quaternion_richcmpr, //tp_richcompare
+ 0, //tp_weaklistoffset
+ 0, //tp_iter
+ 0, //tp_iternext
+ Quaternion_methods, //tp_methods
+ 0, //tp_members
+ Quaternion_getseters, //tp_getset
+ 0, //tp_base
+ 0, //tp_dict
+ 0, //tp_descr_get
+ 0, //tp_descr_set
+ 0, //tp_dictoffset
+ 0, //tp_init
+ 0, //tp_alloc
+ Quaternion_new, //tp_new
+ 0, //tp_free
+ 0, //tp_is_gc
+ 0, //tp_bases
+ 0, //tp_mro
+ 0, //tp_cache
+ 0, //tp_subclasses
+ 0, //tp_weaklist
+ 0 //tp_del
+};
+//------------------------newQuaternionObject (internal)-------------
+//creates a new quaternion object
+/*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
+ (i.e. it was allocated elsewhere by MEM_mallocN())
+ pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
+ (i.e. it must be created here with PyMEM_malloc())*/
+PyObject *newQuaternionObject(float *quat, int type, PyTypeObject *base_type)
+{
+ QuaternionObject *self;
+
+ if(base_type) self = (QuaternionObject *)base_type->tp_alloc(base_type, 0);
+ else self = PyObject_NEW(QuaternionObject, &quaternion_Type);
+
+ /* init callbacks as NULL */
+ self->cb_user= NULL;
+ self->cb_type= self->cb_subtype= 0;
+
+ if(type == Py_WRAP){
+ self->quat = quat;
+ self->wrapped = Py_WRAP;
+ }else if (type == Py_NEW){
+ self->quat = PyMem_Malloc(QUAT_SIZE * sizeof(float));
+ if(!quat) { //new empty
+ unit_qt(self->quat);
+ }else{
+ QUATCOPY(self->quat, quat);
+ }
+ self->wrapped = Py_NEW;
+ }else{ //bad type
+ return NULL;
+ }
+ return (PyObject *) self;
+}
+
+PyObject *newQuaternionObject_cb(PyObject *cb_user, int cb_type, int cb_subtype)
+{
+ QuaternionObject *self= (QuaternionObject *)newQuaternionObject(NULL, Py_NEW, NULL);
+ if(self) {
+ Py_INCREF(cb_user);
+ self->cb_user= cb_user;
+ self->cb_type= (unsigned char)cb_type;
+ self->cb_subtype= (unsigned char)cb_subtype;
+ }
+
+ return (PyObject *)self;
+}
+