Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/python/mathutils/mathutils_Quaternion.c')
-rw-r--r--source/blender/python/mathutils/mathutils_Quaternion.c1186
1 files changed, 1186 insertions, 0 deletions
diff --git a/source/blender/python/mathutils/mathutils_Quaternion.c b/source/blender/python/mathutils/mathutils_Quaternion.c
new file mode 100644
index 00000000000..2be258a1ef0
--- /dev/null
+++ b/source/blender/python/mathutils/mathutils_Quaternion.c
@@ -0,0 +1,1186 @@
+/*
+ * $Id$
+ *
+ * ***** BEGIN GPL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
+ * All rights reserved.
+ *
+ *
+ * Contributor(s): Joseph Gilbert
+ *
+ * ***** END GPL LICENSE BLOCK *****
+ */
+
+/** \file blender/python/generic/mathutils_Quaternion.c
+ * \ingroup pygen
+ */
+
+
+#include <Python.h>
+
+#include "mathutils.h"
+
+#include "BLI_math.h"
+#include "BLI_utildefines.h"
+
+#define QUAT_SIZE 4
+
+static PyObject *quat__apply_to_copy(PyNoArgsFunction quat_func, QuaternionObject *self);
+static PyObject *Quaternion_copy(QuaternionObject *self);
+
+//-----------------------------METHODS------------------------------
+
+/* note: BaseMath_ReadCallback must be called beforehand */
+static PyObject *Quaternion_to_tuple_ext(QuaternionObject *self, int ndigits)
+{
+ PyObject *ret;
+ int i;
+
+ ret= PyTuple_New(QUAT_SIZE);
+
+ if(ndigits >= 0) {
+ for(i= 0; i < QUAT_SIZE; i++) {
+ PyTuple_SET_ITEM(ret, i, PyFloat_FromDouble(double_round((double)self->quat[i], ndigits)));
+ }
+ }
+ else {
+ for(i= 0; i < QUAT_SIZE; i++) {
+ PyTuple_SET_ITEM(ret, i, PyFloat_FromDouble(self->quat[i]));
+ }
+ }
+
+ return ret;
+}
+
+PyDoc_STRVAR(Quaternion_to_euler_doc,
+".. method:: to_euler(order, euler_compat)\n"
+"\n"
+" Return Euler representation of the quaternion.\n"
+"\n"
+" :arg order: Optional rotation order argument in\n"
+" ['XYZ', 'XZY', 'YXZ', 'YZX', 'ZXY', 'ZYX'].\n"
+" :type order: string\n"
+" :arg euler_compat: Optional euler argument the new euler will be made\n"
+" compatible with (no axis flipping between them).\n"
+" Useful for converting a series of matrices to animation curves.\n"
+" :type euler_compat: :class:`Euler`\n"
+" :return: Euler representation of the quaternion.\n"
+" :rtype: :class:`Euler`\n"
+);
+static PyObject *Quaternion_to_euler(QuaternionObject *self, PyObject *args)
+{
+ float tquat[4];
+ float eul[3];
+ const char *order_str= NULL;
+ short order= EULER_ORDER_XYZ;
+ EulerObject *eul_compat = NULL;
+
+ if(!PyArg_ParseTuple(args, "|sO!:to_euler", &order_str, &euler_Type, &eul_compat))
+ return NULL;
+
+ if(BaseMath_ReadCallback(self) == -1)
+ return NULL;
+
+ if(order_str) {
+ order= euler_order_from_string(order_str, "Matrix.to_euler()");
+
+ if(order == -1)
+ return NULL;
+ }
+
+ normalize_qt_qt(tquat, self->quat);
+
+ if(eul_compat) {
+ float mat[3][3];
+
+ if(BaseMath_ReadCallback(eul_compat) == -1)
+ return NULL;
+
+ quat_to_mat3(mat, tquat);
+
+ if(order == EULER_ORDER_XYZ) mat3_to_compatible_eul(eul, eul_compat->eul, mat);
+ else mat3_to_compatible_eulO(eul, eul_compat->eul, order, mat);
+ }
+ else {
+ if(order == EULER_ORDER_XYZ) quat_to_eul(eul, tquat);
+ else quat_to_eulO(eul, order, tquat);
+ }
+
+ return newEulerObject(eul, order, Py_NEW, NULL);
+}
+//----------------------------Quaternion.toMatrix()------------------
+PyDoc_STRVAR(Quaternion_to_matrix_doc,
+".. method:: to_matrix()\n"
+"\n"
+" Return a matrix representation of the quaternion.\n"
+"\n"
+" :return: A 3x3 rotation matrix representation of the quaternion.\n"
+" :rtype: :class:`Matrix`\n"
+);
+static PyObject *Quaternion_to_matrix(QuaternionObject *self)
+{
+ float mat[9]; /* all values are set */
+
+ if(BaseMath_ReadCallback(self) == -1)
+ return NULL;
+
+ quat_to_mat3((float (*)[3])mat, self->quat);
+ return newMatrixObject(mat, 3, 3, Py_NEW, NULL);
+}
+
+//----------------------------Quaternion.cross(other)------------------
+PyDoc_STRVAR(Quaternion_cross_doc,
+".. method:: cross(other)\n"
+"\n"
+" Return the cross product of this quaternion and another.\n"
+"\n"
+" :arg other: The other quaternion to perform the cross product with.\n"
+" :type other: :class:`Quaternion`\n"
+" :return: The cross product.\n"
+" :rtype: :class:`Quaternion`\n"
+);
+static PyObject *Quaternion_cross(QuaternionObject *self, PyObject *value)
+{
+ float quat[QUAT_SIZE], tquat[QUAT_SIZE];
+
+ if(BaseMath_ReadCallback(self) == -1)
+ return NULL;
+
+ if(mathutils_array_parse(tquat, QUAT_SIZE, QUAT_SIZE, value, "quaternion.cross(other), invalid 'other' arg") == -1)
+ return NULL;
+
+ mul_qt_qtqt(quat, self->quat, tquat);
+ return newQuaternionObject(quat, Py_NEW, Py_TYPE(self));
+}
+
+//----------------------------Quaternion.dot(other)------------------
+PyDoc_STRVAR(Quaternion_dot_doc,
+".. method:: dot(other)\n"
+"\n"
+" Return the dot product of this quaternion and another.\n"
+"\n"
+" :arg other: The other quaternion to perform the dot product with.\n"
+" :type other: :class:`Quaternion`\n"
+" :return: The dot product.\n"
+" :rtype: :class:`Quaternion`\n"
+);
+static PyObject *Quaternion_dot(QuaternionObject *self, PyObject *value)
+{
+ float tquat[QUAT_SIZE];
+
+ if(BaseMath_ReadCallback(self) == -1)
+ return NULL;
+
+ if(mathutils_array_parse(tquat, QUAT_SIZE, QUAT_SIZE, value, "quaternion.dot(other), invalid 'other' arg") == -1)
+ return NULL;
+
+ return PyFloat_FromDouble(dot_qtqt(self->quat, tquat));
+}
+
+PyDoc_STRVAR(Quaternion_rotation_difference_doc,
+".. function:: difference(other)\n"
+"\n"
+" Returns a quaternion representing the rotational difference.\n"
+"\n"
+" :arg other: second quaternion.\n"
+" :type other: :class:`Quaternion`\n"
+" :return: the rotational difference between the two quat rotations.\n"
+" :rtype: :class:`Quaternion`\n"
+);
+static PyObject *Quaternion_rotation_difference(QuaternionObject *self, PyObject *value)
+{
+ float tquat[QUAT_SIZE], quat[QUAT_SIZE];
+
+ if(BaseMath_ReadCallback(self) == -1)
+ return NULL;
+
+ if(mathutils_array_parse(tquat, QUAT_SIZE, QUAT_SIZE, value, "quaternion.difference(other), invalid 'other' arg") == -1)
+ return NULL;
+
+ rotation_between_quats_to_quat(quat, self->quat, tquat);
+
+ return newQuaternionObject(quat, Py_NEW, Py_TYPE(self));
+}
+
+PyDoc_STRVAR(Quaternion_slerp_doc,
+".. function:: slerp(other, factor)\n"
+"\n"
+" Returns the interpolation of two quaternions.\n"
+"\n"
+" :arg other: value to interpolate with.\n"
+" :type other: :class:`Quaternion`\n"
+" :arg factor: The interpolation value in [0.0, 1.0].\n"
+" :type factor: float\n"
+" :return: The interpolated rotation.\n"
+" :rtype: :class:`Quaternion`\n"
+);
+static PyObject *Quaternion_slerp(QuaternionObject *self, PyObject *args)
+{
+ PyObject *value;
+ float tquat[QUAT_SIZE], quat[QUAT_SIZE], fac;
+
+ if(!PyArg_ParseTuple(args, "Of:slerp", &value, &fac)) {
+ PyErr_SetString(PyExc_TypeError,
+ "quat.slerp(): "
+ "expected Quaternion types and float");
+ return NULL;
+ }
+
+ if(BaseMath_ReadCallback(self) == -1)
+ return NULL;
+
+ if(mathutils_array_parse(tquat, QUAT_SIZE, QUAT_SIZE, value, "quaternion.slerp(other), invalid 'other' arg") == -1)
+ return NULL;
+
+ if(fac > 1.0f || fac < 0.0f) {
+ PyErr_SetString(PyExc_ValueError,
+ "quat.slerp(): "
+ "interpolation factor must be between 0.0 and 1.0");
+ return NULL;
+ }
+
+ interp_qt_qtqt(quat, self->quat, tquat, fac);
+
+ return newQuaternionObject(quat, Py_NEW, Py_TYPE(self));
+}
+
+PyDoc_STRVAR(Quaternion_rotate_doc,
+".. method:: rotate(other)\n"
+"\n"
+" Rotates the quaternion a by another mathutils value.\n"
+"\n"
+" :arg other: rotation component of mathutils value\n"
+" :type other: :class:`Euler`, :class:`Quaternion` or :class:`Matrix`\n"
+);
+static PyObject *Quaternion_rotate(QuaternionObject *self, PyObject *value)
+{
+ float self_rmat[3][3], other_rmat[3][3], rmat[3][3];
+ float tquat[4], length;
+
+ if(BaseMath_ReadCallback(self) == -1)
+ return NULL;
+
+ if(mathutils_any_to_rotmat(other_rmat, value, "quaternion.rotate(value)") == -1)
+ return NULL;
+
+ length= normalize_qt_qt(tquat, self->quat);
+ quat_to_mat3(self_rmat, tquat);
+ mul_m3_m3m3(rmat, self_rmat, other_rmat);
+
+ mat3_to_quat(self->quat, rmat);
+ mul_qt_fl(self->quat, length); /* maintain length after rotating */
+
+ (void)BaseMath_WriteCallback(self);
+ Py_RETURN_NONE;
+}
+
+//----------------------------Quaternion.normalize()----------------
+//normalize the axis of rotation of [theta, vector]
+PyDoc_STRVAR(Quaternion_normalize_doc,
+".. function:: normalize()\n"
+"\n"
+" Normalize the quaternion.\n"
+);
+static PyObject *Quaternion_normalize(QuaternionObject *self)
+{
+ if(BaseMath_ReadCallback(self) == -1)
+ return NULL;
+
+ normalize_qt(self->quat);
+
+ (void)BaseMath_WriteCallback(self);
+ Py_RETURN_NONE;
+}
+PyDoc_STRVAR(Quaternion_normalized_doc,
+".. function:: normalized()\n"
+"\n"
+" Return a new normalized quaternion.\n"
+"\n"
+" :return: a normalized copy.\n"
+" :rtype: :class:`Quaternion`\n"
+);
+static PyObject *Quaternion_normalized(QuaternionObject *self)
+{
+ return quat__apply_to_copy((PyNoArgsFunction)Quaternion_normalize, self);
+}
+
+//----------------------------Quaternion.invert()------------------
+PyDoc_STRVAR(Quaternion_invert_doc,
+".. function:: invert()\n"
+"\n"
+" Set the quaternion to its inverse.\n"
+);
+static PyObject *Quaternion_invert(QuaternionObject *self)
+{
+ if(BaseMath_ReadCallback(self) == -1)
+ return NULL;
+
+ invert_qt(self->quat);
+
+ (void)BaseMath_WriteCallback(self);
+ Py_RETURN_NONE;
+}
+PyDoc_STRVAR(Quaternion_inverted_doc,
+".. function:: inverted()\n"
+"\n"
+" Return a new, inverted quaternion.\n"
+"\n"
+" :return: the inverted value.\n"
+" :rtype: :class:`Quaternion`\n"
+);
+static PyObject *Quaternion_inverted(QuaternionObject *self)
+{
+ return quat__apply_to_copy((PyNoArgsFunction)Quaternion_invert, self);
+}
+
+//----------------------------Quaternion.identity()-----------------
+PyDoc_STRVAR(Quaternion_identity_doc,
+".. function:: identity()\n"
+"\n"
+" Set the quaternion to an identity quaternion.\n"
+"\n"
+" :return: an instance of itself.\n"
+" :rtype: :class:`Quaternion`\n"
+);
+static PyObject *Quaternion_identity(QuaternionObject *self)
+{
+ if(BaseMath_ReadCallback(self) == -1)
+ return NULL;
+
+ unit_qt(self->quat);
+
+ (void)BaseMath_WriteCallback(self);
+ Py_RETURN_NONE;
+}
+//----------------------------Quaternion.negate()-------------------
+PyDoc_STRVAR(Quaternion_negate_doc,
+".. function:: negate()\n"
+"\n"
+" Set the quaternion to its negative.\n"
+"\n"
+" :return: an instance of itself.\n"
+" :rtype: :class:`Quaternion`\n"
+);
+static PyObject *Quaternion_negate(QuaternionObject *self)
+{
+ if(BaseMath_ReadCallback(self) == -1)
+ return NULL;
+
+ mul_qt_fl(self->quat, -1.0f);
+
+ (void)BaseMath_WriteCallback(self);
+ Py_RETURN_NONE;
+}
+//----------------------------Quaternion.conjugate()----------------
+PyDoc_STRVAR(Quaternion_conjugate_doc,
+".. function:: conjugate()\n"
+"\n"
+" Set the quaternion to its conjugate (negate x, y, z).\n"
+);
+static PyObject *Quaternion_conjugate(QuaternionObject *self)
+{
+ if(BaseMath_ReadCallback(self) == -1)
+ return NULL;
+
+ conjugate_qt(self->quat);
+
+ (void)BaseMath_WriteCallback(self);
+ Py_RETURN_NONE;
+}
+PyDoc_STRVAR(Quaternion_conjugated_doc,
+".. function:: conjugated()\n"
+"\n"
+" Return a new conjugated quaternion.\n"
+"\n"
+" :return: a new quaternion.\n"
+" :rtype: :class:`Quaternion`\n"
+);
+static PyObject *Quaternion_conjugated(QuaternionObject *self)
+{
+ return quat__apply_to_copy((PyNoArgsFunction)Quaternion_conjugate, self);
+}
+
+//----------------------------Quaternion.copy()----------------
+PyDoc_STRVAR(Quaternion_copy_doc,
+".. function:: copy()\n"
+"\n"
+" Returns a copy of this quaternion.\n"
+"\n"
+" :return: A copy of the quaternion.\n"
+" :rtype: :class:`Quaternion`\n"
+"\n"
+" .. note:: use this to get a copy of a wrapped quaternion with\n"
+" no reference to the original data.\n"
+);
+static PyObject *Quaternion_copy(QuaternionObject *self)
+{
+ if(BaseMath_ReadCallback(self) == -1)
+ return NULL;
+
+ return newQuaternionObject(self->quat, Py_NEW, Py_TYPE(self));
+}
+
+//----------------------------print object (internal)--------------
+//print the object to screen
+static PyObject *Quaternion_repr(QuaternionObject *self)
+{
+ PyObject *ret, *tuple;
+
+ if(BaseMath_ReadCallback(self) == -1)
+ return NULL;
+
+ tuple= Quaternion_to_tuple_ext(self, -1);
+
+ ret= PyUnicode_FromFormat("Quaternion(%R)", tuple);
+
+ Py_DECREF(tuple);
+ return ret;
+}
+
+static PyObject* Quaternion_richcmpr(PyObject *a, PyObject *b, int op)
+{
+ PyObject *res;
+ int ok= -1; /* zero is true */
+
+ if (QuaternionObject_Check(a) && QuaternionObject_Check(b)) {
+ QuaternionObject *quatA= (QuaternionObject *)a;
+ QuaternionObject *quatB= (QuaternionObject *)b;
+
+ if(BaseMath_ReadCallback(quatA) == -1 || BaseMath_ReadCallback(quatB) == -1)
+ return NULL;
+
+ ok= (EXPP_VectorsAreEqual(quatA->quat, quatB->quat, QUAT_SIZE, 1)) ? 0 : -1;
+ }
+
+ switch (op) {
+ case Py_NE:
+ ok = !ok; /* pass through */
+ case Py_EQ:
+ res = ok ? Py_False : Py_True;
+ break;
+
+ case Py_LT:
+ case Py_LE:
+ case Py_GT:
+ case Py_GE:
+ res = Py_NotImplemented;
+ break;
+ default:
+ PyErr_BadArgument();
+ return NULL;
+ }
+
+ return Py_INCREF(res), res;
+}
+
+//---------------------SEQUENCE PROTOCOLS------------------------
+//----------------------------len(object)------------------------
+//sequence length
+static int Quaternion_len(QuaternionObject *UNUSED(self))
+{
+ return QUAT_SIZE;
+}
+//----------------------------object[]---------------------------
+//sequence accessor (get)
+static PyObject *Quaternion_item(QuaternionObject *self, int i)
+{
+ if(i<0) i= QUAT_SIZE-i;
+
+ if(i < 0 || i >= QUAT_SIZE) {
+ PyErr_SetString(PyExc_IndexError,
+ "quaternion[attribute]: "
+ "array index out of range");
+ return NULL;
+ }
+
+ if(BaseMath_ReadIndexCallback(self, i) == -1)
+ return NULL;
+
+ return PyFloat_FromDouble(self->quat[i]);
+
+}
+//----------------------------object[]-------------------------
+//sequence accessor (set)
+static int Quaternion_ass_item(QuaternionObject *self, int i, PyObject *ob)
+{
+ float scalar= (float)PyFloat_AsDouble(ob);
+ if(scalar==-1.0f && PyErr_Occurred()) { /* parsed item not a number */
+ PyErr_SetString(PyExc_TypeError,
+ "quaternion[index] = x: "
+ "index argument not a number");
+ return -1;
+ }
+
+ if(i<0) i= QUAT_SIZE-i;
+
+ if(i < 0 || i >= QUAT_SIZE){
+ PyErr_SetString(PyExc_IndexError,
+ "quaternion[attribute] = x: "
+ "array assignment index out of range");
+ return -1;
+ }
+ self->quat[i] = scalar;
+
+ if(BaseMath_WriteIndexCallback(self, i) == -1)
+ return -1;
+
+ return 0;
+}
+//----------------------------object[z:y]------------------------
+//sequence slice (get)
+static PyObject *Quaternion_slice(QuaternionObject *self, int begin, int end)
+{
+ PyObject *tuple;
+ int count;
+
+ if(BaseMath_ReadCallback(self) == -1)
+ return NULL;
+
+ CLAMP(begin, 0, QUAT_SIZE);
+ if (end<0) end= (QUAT_SIZE + 1) + end;
+ CLAMP(end, 0, QUAT_SIZE);
+ begin= MIN2(begin, end);
+
+ tuple= PyTuple_New(end - begin);
+ for(count= begin; count < end; count++) {
+ PyTuple_SET_ITEM(tuple, count - begin, PyFloat_FromDouble(self->quat[count]));
+ }
+
+ return tuple;
+}
+//----------------------------object[z:y]------------------------
+//sequence slice (set)
+static int Quaternion_ass_slice(QuaternionObject *self, int begin, int end, PyObject *seq)
+{
+ int i, size;
+ float quat[QUAT_SIZE];
+
+ if(BaseMath_ReadCallback(self) == -1)
+ return -1;
+
+ CLAMP(begin, 0, QUAT_SIZE);
+ if (end<0) end= (QUAT_SIZE + 1) + end;
+ CLAMP(end, 0, QUAT_SIZE);
+ begin = MIN2(begin, end);
+
+ if((size=mathutils_array_parse(quat, 0, QUAT_SIZE, seq, "mathutils.Quaternion[begin:end] = []")) == -1)
+ return -1;
+
+ if(size != (end - begin)){
+ PyErr_SetString(PyExc_ValueError,
+ "quaternion[begin:end] = []: "
+ "size mismatch in slice assignment");
+ return -1;
+ }
+
+ /* parsed well - now set in vector */
+ for(i= 0; i < size; i++)
+ self->quat[begin + i] = quat[i];
+
+ (void)BaseMath_WriteCallback(self);
+ return 0;
+}
+
+
+static PyObject *Quaternion_subscript(QuaternionObject *self, PyObject *item)
+{
+ if (PyIndex_Check(item)) {
+ Py_ssize_t i;
+ i = PyNumber_AsSsize_t(item, PyExc_IndexError);
+ if (i == -1 && PyErr_Occurred())
+ return NULL;
+ if (i < 0)
+ i += QUAT_SIZE;
+ return Quaternion_item(self, i);
+ } else if (PySlice_Check(item)) {
+ Py_ssize_t start, stop, step, slicelength;
+
+ if (PySlice_GetIndicesEx((void *)item, QUAT_SIZE, &start, &stop, &step, &slicelength) < 0)
+ return NULL;
+
+ if (slicelength <= 0) {
+ return PyTuple_New(0);
+ }
+ else if (step == 1) {
+ return Quaternion_slice(self, start, stop);
+ }
+ else {
+ PyErr_SetString(PyExc_IndexError,
+ "slice steps not supported with quaternions");
+ return NULL;
+ }
+ }
+ else {
+ PyErr_Format(PyExc_TypeError,
+ "quaternion indices must be integers, not %.200s",
+ Py_TYPE(item)->tp_name);
+ return NULL;
+ }
+}
+
+
+static int Quaternion_ass_subscript(QuaternionObject *self, PyObject *item, PyObject *value)
+{
+ if (PyIndex_Check(item)) {
+ Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError);
+ if (i == -1 && PyErr_Occurred())
+ return -1;
+ if (i < 0)
+ i += QUAT_SIZE;
+ return Quaternion_ass_item(self, i, value);
+ }
+ else if (PySlice_Check(item)) {
+ Py_ssize_t start, stop, step, slicelength;
+
+ if (PySlice_GetIndicesEx((void *)item, QUAT_SIZE, &start, &stop, &step, &slicelength) < 0)
+ return -1;
+
+ if (step == 1)
+ return Quaternion_ass_slice(self, start, stop, value);
+ else {
+ PyErr_SetString(PyExc_IndexError,
+ "slice steps not supported with quaternion");
+ return -1;
+ }
+ }
+ else {
+ PyErr_Format(PyExc_TypeError,
+ "quaternion indices must be integers, not %.200s",
+ Py_TYPE(item)->tp_name);
+ return -1;
+ }
+}
+
+//------------------------NUMERIC PROTOCOLS----------------------
+//------------------------obj + obj------------------------------
+//addition
+static PyObject *Quaternion_add(PyObject *q1, PyObject *q2)
+{
+ float quat[QUAT_SIZE];
+ QuaternionObject *quat1 = NULL, *quat2 = NULL;
+
+ if(!QuaternionObject_Check(q1) || !QuaternionObject_Check(q2)) {
+ PyErr_SetString(PyExc_TypeError,
+ "Quaternion addition: "
+ "arguments not valid for this operation");
+ return NULL;
+ }
+ quat1 = (QuaternionObject*)q1;
+ quat2 = (QuaternionObject*)q2;
+
+ if(BaseMath_ReadCallback(quat1) == -1 || BaseMath_ReadCallback(quat2) == -1)
+ return NULL;
+
+ add_qt_qtqt(quat, quat1->quat, quat2->quat, 1.0f);
+ return newQuaternionObject(quat, Py_NEW, Py_TYPE(q1));
+}
+//------------------------obj - obj------------------------------
+//subtraction
+static PyObject *Quaternion_sub(PyObject *q1, PyObject *q2)
+{
+ int x;
+ float quat[QUAT_SIZE];
+ QuaternionObject *quat1 = NULL, *quat2 = NULL;
+
+ if(!QuaternionObject_Check(q1) || !QuaternionObject_Check(q2)) {
+ PyErr_SetString(PyExc_TypeError,
+ "Quaternion addition: "
+ "arguments not valid for this operation");
+ return NULL;
+ }
+
+ quat1 = (QuaternionObject*)q1;
+ quat2 = (QuaternionObject*)q2;
+
+ if(BaseMath_ReadCallback(quat1) == -1 || BaseMath_ReadCallback(quat2) == -1)
+ return NULL;
+
+ for(x = 0; x < QUAT_SIZE; x++) {
+ quat[x] = quat1->quat[x] - quat2->quat[x];
+ }
+
+ return newQuaternionObject(quat, Py_NEW, Py_TYPE(q1));
+}
+
+static PyObject *quat_mul_float(QuaternionObject *quat, const float scalar)
+{
+ float tquat[4];
+ copy_qt_qt(tquat, quat->quat);
+ mul_qt_fl(tquat, scalar);
+ return newQuaternionObject(tquat, Py_NEW, Py_TYPE(quat));
+}
+
+//------------------------obj * obj------------------------------
+//mulplication
+static PyObject *Quaternion_mul(PyObject *q1, PyObject *q2)
+{
+ float quat[QUAT_SIZE], scalar;
+ QuaternionObject *quat1 = NULL, *quat2 = NULL;
+
+ if(QuaternionObject_Check(q1)) {
+ quat1 = (QuaternionObject*)q1;
+ if(BaseMath_ReadCallback(quat1) == -1)
+ return NULL;
+ }
+ if(QuaternionObject_Check(q2)) {
+ quat2 = (QuaternionObject*)q2;
+ if(BaseMath_ReadCallback(quat2) == -1)
+ return NULL;
+ }
+
+ if(quat1 && quat2) { /* QUAT*QUAT (cross product) */
+ mul_qt_qtqt(quat, quat1->quat, quat2->quat);
+ return newQuaternionObject(quat, Py_NEW, Py_TYPE(q1));
+ }
+ /* the only case this can happen (for a supported type is "FLOAT*QUAT") */
+ else if(quat2) { /* FLOAT*QUAT */
+ if(((scalar= PyFloat_AsDouble(q1)) == -1.0f && PyErr_Occurred())==0) {
+ return quat_mul_float(quat2, scalar);
+ }
+ }
+ else if (quat1) {
+ /* QUAT * VEC */
+ if (VectorObject_Check(q2)) {
+ VectorObject *vec2 = (VectorObject *)q2;
+ float tvec[3];
+
+ if(vec2->size != 3) {
+ PyErr_SetString(PyExc_ValueError,
+ "Vector multiplication: "
+ "only 3D vector rotations (with quats) "
+ "currently supported");
+ return NULL;
+ }
+ if(BaseMath_ReadCallback(vec2) == -1) {
+ return NULL;
+ }
+
+ copy_v3_v3(tvec, vec2->vec);
+ mul_qt_v3(quat1->quat, tvec);
+
+ return newVectorObject(tvec, 3, Py_NEW, Py_TYPE(vec2));
+ }
+ /* QUAT * FLOAT */
+ else if((((scalar= PyFloat_AsDouble(q2)) == -1.0f && PyErr_Occurred())==0)) {
+ return quat_mul_float(quat1, scalar);
+ }
+ }
+ else {
+ BLI_assert(!"internal error");
+ }
+
+ PyErr_Format(PyExc_TypeError,
+ "Quaternion multiplication: "
+ "not supported between '%.200s' and '%.200s' types",
+ Py_TYPE(q1)->tp_name, Py_TYPE(q2)->tp_name);
+ return NULL;
+}
+
+/* -obj
+ returns the negative of this object*/
+static PyObject *Quaternion_neg(QuaternionObject *self)
+{
+ float tquat[QUAT_SIZE];
+
+ if(BaseMath_ReadCallback(self) == -1)
+ return NULL;
+
+ negate_v4_v4(tquat, self->quat);
+ return newQuaternionObject(tquat, Py_NEW, Py_TYPE(self));
+}
+
+
+//-----------------PROTOCOL DECLARATIONS--------------------------
+static PySequenceMethods Quaternion_SeqMethods = {
+ (lenfunc) Quaternion_len, /* sq_length */
+ (binaryfunc) NULL, /* sq_concat */
+ (ssizeargfunc) NULL, /* sq_repeat */
+ (ssizeargfunc) Quaternion_item, /* sq_item */
+ (ssizessizeargfunc) NULL, /* sq_slice, deprecated */
+ (ssizeobjargproc) Quaternion_ass_item, /* sq_ass_item */
+ (ssizessizeobjargproc) NULL, /* sq_ass_slice, deprecated */
+ (objobjproc) NULL, /* sq_contains */
+ (binaryfunc) NULL, /* sq_inplace_concat */
+ (ssizeargfunc) NULL, /* sq_inplace_repeat */
+};
+
+static PyMappingMethods Quaternion_AsMapping = {
+ (lenfunc)Quaternion_len,
+ (binaryfunc)Quaternion_subscript,
+ (objobjargproc)Quaternion_ass_subscript
+};
+
+static PyNumberMethods Quaternion_NumMethods = {
+ (binaryfunc) Quaternion_add, /*nb_add*/
+ (binaryfunc) Quaternion_sub, /*nb_subtract*/
+ (binaryfunc) Quaternion_mul, /*nb_multiply*/
+ NULL, /*nb_remainder*/
+ NULL, /*nb_divmod*/
+ NULL, /*nb_power*/
+ (unaryfunc) Quaternion_neg, /*nb_negative*/
+ (unaryfunc) 0, /*tp_positive*/
+ (unaryfunc) 0, /*tp_absolute*/
+ (inquiry) 0, /*tp_bool*/
+ (unaryfunc) 0, /*nb_invert*/
+ NULL, /*nb_lshift*/
+ (binaryfunc)0, /*nb_rshift*/
+ NULL, /*nb_and*/
+ NULL, /*nb_xor*/
+ NULL, /*nb_or*/
+ NULL, /*nb_int*/
+ NULL, /*nb_reserved*/
+ NULL, /*nb_float*/
+ NULL, /* nb_inplace_add */
+ NULL, /* nb_inplace_subtract */
+ NULL, /* nb_inplace_multiply */
+ NULL, /* nb_inplace_remainder */
+ NULL, /* nb_inplace_power */
+ NULL, /* nb_inplace_lshift */
+ NULL, /* nb_inplace_rshift */
+ NULL, /* nb_inplace_and */
+ NULL, /* nb_inplace_xor */
+ NULL, /* nb_inplace_or */
+ NULL, /* nb_floor_divide */
+ NULL, /* nb_true_divide */
+ NULL, /* nb_inplace_floor_divide */
+ NULL, /* nb_inplace_true_divide */
+ NULL, /* nb_index */
+};
+
+static PyObject *Quaternion_getAxis(QuaternionObject *self, void *type)
+{
+ return Quaternion_item(self, GET_INT_FROM_POINTER(type));
+}
+
+static int Quaternion_setAxis(QuaternionObject *self, PyObject *value, void *type)
+{
+ return Quaternion_ass_item(self, GET_INT_FROM_POINTER(type), value);
+}
+
+static PyObject *Quaternion_getMagnitude(QuaternionObject *self, void *UNUSED(closure))
+{
+ if(BaseMath_ReadCallback(self) == -1)
+ return NULL;
+
+ return PyFloat_FromDouble(sqrt(dot_qtqt(self->quat, self->quat)));
+}
+
+static PyObject *Quaternion_getAngle(QuaternionObject *self, void *UNUSED(closure))
+{
+ float tquat[4];
+
+ if(BaseMath_ReadCallback(self) == -1)
+ return NULL;
+
+ normalize_qt_qt(tquat, self->quat);
+ return PyFloat_FromDouble(2.0f * (saacos(tquat[0])));
+}
+
+static int Quaternion_setAngle(QuaternionObject *self, PyObject *value, void *UNUSED(closure))
+{
+ float tquat[4];
+ float len;
+
+ float axis[3], angle_dummy;
+ double angle;
+
+ if(BaseMath_ReadCallback(self) == -1)
+ return -1;
+
+ len= normalize_qt_qt(tquat, self->quat);
+ quat_to_axis_angle(axis, &angle_dummy, tquat);
+
+ angle= PyFloat_AsDouble(value);
+
+ if(angle==-1.0 && PyErr_Occurred()) { /* parsed item not a number */
+ PyErr_SetString(PyExc_TypeError,
+ "quaternion.angle = value: float expected");
+ return -1;
+ }
+
+ angle= angle_wrap_rad(angle);
+
+ /* If the axis of rotation is 0,0,0 set it to 1,0,0 - for zero-degree rotations */
+ if( EXPP_FloatsAreEqual(axis[0], 0.0f, 10) &&
+ EXPP_FloatsAreEqual(axis[1], 0.0f, 10) &&
+ EXPP_FloatsAreEqual(axis[2], 0.0f, 10)
+ ) {
+ axis[0] = 1.0f;
+ }
+
+ axis_angle_to_quat(self->quat, axis, angle);
+ mul_qt_fl(self->quat, len);
+
+ if(BaseMath_WriteCallback(self) == -1)
+ return -1;
+
+ return 0;
+}
+
+static PyObject *Quaternion_getAxisVec(QuaternionObject *self, void *UNUSED(closure))
+{
+ float tquat[4];
+
+ float axis[3];
+ float angle;
+
+ if(BaseMath_ReadCallback(self) == -1)
+ return NULL;
+
+ normalize_qt_qt(tquat, self->quat);
+ quat_to_axis_angle(axis, &angle, tquat);
+
+ /* If the axis of rotation is 0,0,0 set it to 1,0,0 - for zero-degree rotations */
+ if( EXPP_FloatsAreEqual(axis[0], 0.0f, 10) &&
+ EXPP_FloatsAreEqual(axis[1], 0.0f, 10) &&
+ EXPP_FloatsAreEqual(axis[2], 0.0f, 10)
+ ) {
+ axis[0] = 1.0f;
+ }
+
+ return (PyObject *) newVectorObject(axis, 3, Py_NEW, NULL);
+}
+
+static int Quaternion_setAxisVec(QuaternionObject *self, PyObject *value, void *UNUSED(closure))
+{
+ float tquat[4];
+ float len;
+
+ float axis[3];
+ float angle;
+
+ if(BaseMath_ReadCallback(self) == -1)
+ return -1;
+
+ len= normalize_qt_qt(tquat, self->quat);
+ quat_to_axis_angle(axis, &angle, tquat); /* axis value is unused */
+
+ if (mathutils_array_parse(axis, 3, 3, value, "quat.axis = other") == -1)
+ return -1;
+
+ axis_angle_to_quat(self->quat, axis, angle);
+ mul_qt_fl(self->quat, len);
+
+ if(BaseMath_WriteCallback(self) == -1)
+ return -1;
+
+ return 0;
+}
+
+//----------------------------------mathutils.Quaternion() --------------
+static PyObject *Quaternion_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
+{
+ PyObject *seq= NULL;
+ double angle = 0.0f;
+ float quat[QUAT_SIZE]= {0.0f, 0.0f, 0.0f, 0.0f};
+
+ if(kwds && PyDict_Size(kwds)) {
+ PyErr_SetString(PyExc_TypeError,
+ "mathutils.Quaternion(): "
+ "takes no keyword args");
+ return NULL;
+ }
+
+ if(!PyArg_ParseTuple(args, "|Od:mathutils.Quaternion", &seq, &angle))
+ return NULL;
+
+ switch(PyTuple_GET_SIZE(args)) {
+ case 0:
+ break;
+ case 1:
+ if (mathutils_array_parse(quat, QUAT_SIZE, QUAT_SIZE, seq, "mathutils.Quaternion()") == -1)
+ return NULL;
+ break;
+ case 2:
+ if (mathutils_array_parse(quat, 3, 3, seq, "mathutils.Quaternion()") == -1)
+ return NULL;
+ angle= angle_wrap_rad(angle); /* clamp because of precision issues */
+ axis_angle_to_quat(quat, quat, angle);
+ break;
+ /* PyArg_ParseTuple assures no more then 2 */
+ }
+ return newQuaternionObject(quat, Py_NEW, type);
+}
+
+static PyObject *quat__apply_to_copy(PyNoArgsFunction quat_func, QuaternionObject *self)
+{
+ PyObject *ret= Quaternion_copy(self);
+ PyObject *ret_dummy= quat_func(ret);
+ if(ret_dummy) {
+ Py_DECREF(ret_dummy);
+ return (PyObject *)ret;
+ }
+ else { /* error */
+ Py_DECREF(ret);
+ return NULL;
+ }
+}
+
+//-----------------------METHOD DEFINITIONS ----------------------
+static struct PyMethodDef Quaternion_methods[] = {
+ /* in place only */
+ {"identity", (PyCFunction) Quaternion_identity, METH_NOARGS, Quaternion_identity_doc},
+ {"negate", (PyCFunction) Quaternion_negate, METH_NOARGS, Quaternion_negate_doc},
+
+ /* operate on original or copy */
+ {"conjugate", (PyCFunction) Quaternion_conjugate, METH_NOARGS, Quaternion_conjugate_doc},
+ {"conjugated", (PyCFunction) Quaternion_conjugated, METH_NOARGS, Quaternion_conjugated_doc},
+
+ {"invert", (PyCFunction) Quaternion_invert, METH_NOARGS, Quaternion_invert_doc},
+ {"inverted", (PyCFunction) Quaternion_inverted, METH_NOARGS, Quaternion_inverted_doc},
+
+ {"normalize", (PyCFunction) Quaternion_normalize, METH_NOARGS, Quaternion_normalize_doc},
+ {"normalized", (PyCFunction) Quaternion_normalized, METH_NOARGS, Quaternion_normalized_doc},
+
+ /* return converted representation */
+ {"to_euler", (PyCFunction) Quaternion_to_euler, METH_VARARGS, Quaternion_to_euler_doc},
+ {"to_matrix", (PyCFunction) Quaternion_to_matrix, METH_NOARGS, Quaternion_to_matrix_doc},
+
+ /* operation between 2 or more types */
+ {"cross", (PyCFunction) Quaternion_cross, METH_O, Quaternion_cross_doc},
+ {"dot", (PyCFunction) Quaternion_dot, METH_O, Quaternion_dot_doc},
+ {"rotation_difference", (PyCFunction) Quaternion_rotation_difference, METH_O, Quaternion_rotation_difference_doc},
+ {"slerp", (PyCFunction) Quaternion_slerp, METH_VARARGS, Quaternion_slerp_doc},
+ {"rotate", (PyCFunction) Quaternion_rotate, METH_O, Quaternion_rotate_doc},
+
+ {"__copy__", (PyCFunction) Quaternion_copy, METH_NOARGS, Quaternion_copy_doc},
+ {"copy", (PyCFunction) Quaternion_copy, METH_NOARGS, Quaternion_copy_doc},
+ {NULL, NULL, 0, NULL}
+};
+
+/*****************************************************************************/
+/* Python attributes get/set structure: */
+/*****************************************************************************/
+static PyGetSetDef Quaternion_getseters[] = {
+ {(char *)"w", (getter)Quaternion_getAxis, (setter)Quaternion_setAxis, (char *)"Quaternion W value.\n\n:type: float", (void *)0},
+ {(char *)"x", (getter)Quaternion_getAxis, (setter)Quaternion_setAxis, (char *)"Quaternion X axis.\n\n:type: float", (void *)1},
+ {(char *)"y", (getter)Quaternion_getAxis, (setter)Quaternion_setAxis, (char *)"Quaternion Y axis.\n\n:type: float", (void *)2},
+ {(char *)"z", (getter)Quaternion_getAxis, (setter)Quaternion_setAxis, (char *)"Quaternion Z axis.\n\n:type: float", (void *)3},
+ {(char *)"magnitude", (getter)Quaternion_getMagnitude, (setter)NULL, (char *)"Size of the quaternion (readonly).\n\n:type: float", NULL},
+ {(char *)"angle", (getter)Quaternion_getAngle, (setter)Quaternion_setAngle, (char *)"angle of the quaternion.\n\n:type: float", NULL},
+ {(char *)"axis",(getter)Quaternion_getAxisVec, (setter)Quaternion_setAxisVec, (char *)"quaternion axis as a vector.\n\n:type: :class:`Vector`", NULL},
+ {(char *)"is_wrapped", (getter)BaseMathObject_getWrapped, (setter)NULL, (char *)BaseMathObject_Wrapped_doc, NULL},
+ {(char *)"owner", (getter)BaseMathObject_getOwner, (setter)NULL, (char *)BaseMathObject_Owner_doc, NULL},
+ {NULL, NULL, NULL, NULL, NULL} /* Sentinel */
+};
+
+//------------------PY_OBECT DEFINITION--------------------------
+PyDoc_STRVAR(quaternion_doc,
+"This object gives access to Quaternions in Blender."
+);
+PyTypeObject quaternion_Type = {
+ PyVarObject_HEAD_INIT(NULL, 0)
+ "mathutils.Quaternion", //tp_name
+ sizeof(QuaternionObject), //tp_basicsize
+ 0, //tp_itemsize
+ (destructor)BaseMathObject_dealloc, //tp_dealloc
+ NULL, //tp_print
+ NULL, //tp_getattr
+ NULL, //tp_setattr
+ NULL, //tp_compare
+ (reprfunc) Quaternion_repr, //tp_repr
+ &Quaternion_NumMethods, //tp_as_number
+ &Quaternion_SeqMethods, //tp_as_sequence
+ &Quaternion_AsMapping, //tp_as_mapping
+ NULL, //tp_hash
+ NULL, //tp_call
+ NULL, //tp_str
+ NULL, //tp_getattro
+ NULL, //tp_setattro
+ NULL, //tp_as_buffer
+ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC, //tp_flags
+ quaternion_doc, //tp_doc
+ (traverseproc)BaseMathObject_traverse, //tp_traverse
+ (inquiry)BaseMathObject_clear, //tp_clear
+ (richcmpfunc)Quaternion_richcmpr, //tp_richcompare
+ 0, //tp_weaklistoffset
+ NULL, //tp_iter
+ NULL, //tp_iternext
+ Quaternion_methods, //tp_methods
+ NULL, //tp_members
+ Quaternion_getseters, //tp_getset
+ NULL, //tp_base
+ NULL, //tp_dict
+ NULL, //tp_descr_get
+ NULL, //tp_descr_set
+ 0, //tp_dictoffset
+ NULL, //tp_init
+ NULL, //tp_alloc
+ Quaternion_new, //tp_new
+ NULL, //tp_free
+ NULL, //tp_is_gc
+ NULL, //tp_bases
+ NULL, //tp_mro
+ NULL, //tp_cache
+ NULL, //tp_subclasses
+ NULL, //tp_weaklist
+ NULL, //tp_del
+};
+//------------------------newQuaternionObject (internal)-------------
+//creates a new quaternion object
+/*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
+ (i.e. it was allocated elsewhere by MEM_mallocN())
+ pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
+ (i.e. it must be created here with PyMEM_malloc())*/
+PyObject *newQuaternionObject(float *quat, int type, PyTypeObject *base_type)
+{
+ QuaternionObject *self;
+
+ self= base_type ? (QuaternionObject *)base_type->tp_alloc(base_type, 0) :
+ (QuaternionObject *)PyObject_GC_New(QuaternionObject, &quaternion_Type);
+
+ if(self) {
+ /* init callbacks as NULL */
+ self->cb_user= NULL;
+ self->cb_type= self->cb_subtype= 0;
+
+ if(type == Py_WRAP){
+ self->quat = quat;
+ self->wrapped = Py_WRAP;
+ }
+ else if (type == Py_NEW){
+ self->quat = PyMem_Malloc(QUAT_SIZE * sizeof(float));
+ if(!quat) { //new empty
+ unit_qt(self->quat);
+ }
+ else {
+ QUATCOPY(self->quat, quat);
+ }
+ self->wrapped = Py_NEW;
+ }
+ else {
+ Py_FatalError("Quaternion(): invalid type!");
+ }
+ }
+ return (PyObject *) self;
+}
+
+PyObject *newQuaternionObject_cb(PyObject *cb_user, int cb_type, int cb_subtype)
+{
+ QuaternionObject *self= (QuaternionObject *)newQuaternionObject(NULL, Py_NEW, NULL);
+ if(self) {
+ Py_INCREF(cb_user);
+ self->cb_user= cb_user;
+ self->cb_type= (unsigned char)cb_type;
+ self->cb_subtype= (unsigned char)cb_subtype;
+ PyObject_GC_Track(self);
+ }
+
+ return (PyObject *)self;
+}
+