Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/python/mathutils/mathutils_geometry.c')
-rw-r--r--source/blender/python/mathutils/mathutils_geometry.c2702
1 files changed, 1369 insertions, 1333 deletions
diff --git a/source/blender/python/mathutils/mathutils_geometry.c b/source/blender/python/mathutils/mathutils_geometry.c
index 05ec57a004a..5fe3536d899 100644
--- a/source/blender/python/mathutils/mathutils_geometry.c
+++ b/source/blender/python/mathutils/mathutils_geometry.c
@@ -18,7 +18,6 @@
* \ingroup pymathutils
*/
-
#include <Python.h>
#include "mathutils.h"
@@ -41,1497 +40,1534 @@
#include "../generic/python_utildefines.h"
/*-------------------------DOC STRINGS ---------------------------*/
-PyDoc_STRVAR(M_Geometry_doc,
-"The Blender geometry module"
-);
+PyDoc_STRVAR(M_Geometry_doc, "The Blender geometry module");
/* ---------------------------------INTERSECTION FUNCTIONS-------------------- */
PyDoc_STRVAR(M_Geometry_intersect_ray_tri_doc,
-".. function:: intersect_ray_tri(v1, v2, v3, ray, orig, clip=True)\n"
-"\n"
-" Returns the intersection between a ray and a triangle, if possible, returns None otherwise.\n"
-"\n"
-" :arg v1: Point1\n"
-" :type v1: :class:`mathutils.Vector`\n"
-" :arg v2: Point2\n"
-" :type v2: :class:`mathutils.Vector`\n"
-" :arg v3: Point3\n"
-" :type v3: :class:`mathutils.Vector`\n"
-" :arg ray: Direction of the projection\n"
-" :type ray: :class:`mathutils.Vector`\n"
-" :arg orig: Origin\n"
-" :type orig: :class:`mathutils.Vector`\n"
-" :arg clip: When False, don't restrict the intersection to the area of the triangle, use the infinite plane defined by the triangle.\n"
-" :type clip: boolean\n"
-" :return: The point of intersection or None if no intersection is found\n"
-" :rtype: :class:`mathutils.Vector` or None\n"
-);
+ ".. function:: intersect_ray_tri(v1, v2, v3, ray, orig, clip=True)\n"
+ "\n"
+ " Returns the intersection between a ray and a triangle, if possible, returns None "
+ "otherwise.\n"
+ "\n"
+ " :arg v1: Point1\n"
+ " :type v1: :class:`mathutils.Vector`\n"
+ " :arg v2: Point2\n"
+ " :type v2: :class:`mathutils.Vector`\n"
+ " :arg v3: Point3\n"
+ " :type v3: :class:`mathutils.Vector`\n"
+ " :arg ray: Direction of the projection\n"
+ " :type ray: :class:`mathutils.Vector`\n"
+ " :arg orig: Origin\n"
+ " :type orig: :class:`mathutils.Vector`\n"
+ " :arg clip: When False, don't restrict the intersection to the area of the "
+ "triangle, use the infinite plane defined by the triangle.\n"
+ " :type clip: boolean\n"
+ " :return: The point of intersection or None if no intersection is found\n"
+ " :rtype: :class:`mathutils.Vector` or None\n");
static PyObject *M_Geometry_intersect_ray_tri(PyObject *UNUSED(self), PyObject *args)
{
- const char *error_prefix = "intersect_ray_tri";
- PyObject *py_ray, *py_ray_off, *py_tri[3];
- float dir[3], orig[3], tri[3][3], e1[3], e2[3], pvec[3], tvec[3], qvec[3];
- float det, inv_det, u, v, t;
- bool clip = true;
- int i;
-
- if (!PyArg_ParseTuple(
- args, "OOOOO|O&:intersect_ray_tri",
- UNPACK3_EX(&, py_tri, ),
- &py_ray, &py_ray_off,
- PyC_ParseBool, &clip))
- {
- return NULL;
- }
-
- if (((mathutils_array_parse(dir, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_ray, error_prefix) != -1) &&
- (mathutils_array_parse(orig, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_ray_off, error_prefix) != -1)) == 0)
- {
- return NULL;
- }
-
- for (i = 0; i < ARRAY_SIZE(tri); i++) {
- if (mathutils_array_parse(tri[i], 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_tri[i], error_prefix) == -1) {
- return NULL;
- }
- }
-
- normalize_v3(dir);
-
- /* find vectors for two edges sharing v1 */
- sub_v3_v3v3(e1, tri[1], tri[0]);
- sub_v3_v3v3(e2, tri[2], tri[0]);
-
- /* begin calculating determinant - also used to calculated U parameter */
- cross_v3_v3v3(pvec, dir, e2);
-
- /* if determinant is near zero, ray lies in plane of triangle */
- det = dot_v3v3(e1, pvec);
-
- if (det > -0.000001f && det < 0.000001f) {
- Py_RETURN_NONE;
- }
-
- inv_det = 1.0f / det;
-
- /* calculate distance from v1 to ray origin */
- sub_v3_v3v3(tvec, orig, tri[0]);
-
- /* calculate U parameter and test bounds */
- u = dot_v3v3(tvec, pvec) * inv_det;
- if (clip && (u < 0.0f || u > 1.0f)) {
- Py_RETURN_NONE;
- }
-
- /* prepare to test the V parameter */
- cross_v3_v3v3(qvec, tvec, e1);
-
- /* calculate V parameter and test bounds */
- v = dot_v3v3(dir, qvec) * inv_det;
-
- if (clip && (v < 0.0f || u + v > 1.0f)) {
- Py_RETURN_NONE;
- }
-
- /* calculate t, ray intersects triangle */
- t = dot_v3v3(e2, qvec) * inv_det;
-
- /* ray hit behind */
- if (t < 0.0f) {
- Py_RETURN_NONE;
- }
-
- mul_v3_fl(dir, t);
- add_v3_v3v3(pvec, orig, dir);
-
- return Vector_CreatePyObject(pvec, 3, NULL);
+ const char *error_prefix = "intersect_ray_tri";
+ PyObject *py_ray, *py_ray_off, *py_tri[3];
+ float dir[3], orig[3], tri[3][3], e1[3], e2[3], pvec[3], tvec[3], qvec[3];
+ float det, inv_det, u, v, t;
+ bool clip = true;
+ int i;
+
+ if (!PyArg_ParseTuple(args,
+ "OOOOO|O&:intersect_ray_tri",
+ UNPACK3_EX(&, py_tri, ),
+ &py_ray,
+ &py_ray_off,
+ PyC_ParseBool,
+ &clip)) {
+ return NULL;
+ }
+
+ if (((mathutils_array_parse(dir, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_ray, error_prefix) !=
+ -1) &&
+ (mathutils_array_parse(
+ orig, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_ray_off, error_prefix) != -1)) == 0) {
+ return NULL;
+ }
+
+ for (i = 0; i < ARRAY_SIZE(tri); i++) {
+ if (mathutils_array_parse(
+ tri[i], 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_tri[i], error_prefix) == -1) {
+ return NULL;
+ }
+ }
+
+ normalize_v3(dir);
+
+ /* find vectors for two edges sharing v1 */
+ sub_v3_v3v3(e1, tri[1], tri[0]);
+ sub_v3_v3v3(e2, tri[2], tri[0]);
+
+ /* begin calculating determinant - also used to calculated U parameter */
+ cross_v3_v3v3(pvec, dir, e2);
+
+ /* if determinant is near zero, ray lies in plane of triangle */
+ det = dot_v3v3(e1, pvec);
+
+ if (det > -0.000001f && det < 0.000001f) {
+ Py_RETURN_NONE;
+ }
+
+ inv_det = 1.0f / det;
+
+ /* calculate distance from v1 to ray origin */
+ sub_v3_v3v3(tvec, orig, tri[0]);
+
+ /* calculate U parameter and test bounds */
+ u = dot_v3v3(tvec, pvec) * inv_det;
+ if (clip && (u < 0.0f || u > 1.0f)) {
+ Py_RETURN_NONE;
+ }
+
+ /* prepare to test the V parameter */
+ cross_v3_v3v3(qvec, tvec, e1);
+
+ /* calculate V parameter and test bounds */
+ v = dot_v3v3(dir, qvec) * inv_det;
+
+ if (clip && (v < 0.0f || u + v > 1.0f)) {
+ Py_RETURN_NONE;
+ }
+
+ /* calculate t, ray intersects triangle */
+ t = dot_v3v3(e2, qvec) * inv_det;
+
+ /* ray hit behind */
+ if (t < 0.0f) {
+ Py_RETURN_NONE;
+ }
+
+ mul_v3_fl(dir, t);
+ add_v3_v3v3(pvec, orig, dir);
+
+ return Vector_CreatePyObject(pvec, 3, NULL);
}
/* Line-Line intersection using algorithm from mathworld.wolfram.com */
PyDoc_STRVAR(M_Geometry_intersect_line_line_doc,
-".. function:: intersect_line_line(v1, v2, v3, v4)\n"
-"\n"
-" Returns a tuple with the points on each line respectively closest to the other.\n"
-"\n"
-" :arg v1: First point of the first line\n"
-" :type v1: :class:`mathutils.Vector`\n"
-" :arg v2: Second point of the first line\n"
-" :type v2: :class:`mathutils.Vector`\n"
-" :arg v3: First point of the second line\n"
-" :type v3: :class:`mathutils.Vector`\n"
-" :arg v4: Second point of the second line\n"
-" :type v4: :class:`mathutils.Vector`\n"
-" :rtype: tuple of :class:`mathutils.Vector`'s\n"
-);
+ ".. function:: intersect_line_line(v1, v2, v3, v4)\n"
+ "\n"
+ " Returns a tuple with the points on each line respectively closest to the other.\n"
+ "\n"
+ " :arg v1: First point of the first line\n"
+ " :type v1: :class:`mathutils.Vector`\n"
+ " :arg v2: Second point of the first line\n"
+ " :type v2: :class:`mathutils.Vector`\n"
+ " :arg v3: First point of the second line\n"
+ " :type v3: :class:`mathutils.Vector`\n"
+ " :arg v4: Second point of the second line\n"
+ " :type v4: :class:`mathutils.Vector`\n"
+ " :rtype: tuple of :class:`mathutils.Vector`'s\n");
static PyObject *M_Geometry_intersect_line_line(PyObject *UNUSED(self), PyObject *args)
{
- const char *error_prefix = "intersect_line_line";
- PyObject *tuple;
- PyObject *py_lines[4];
- float lines[4][3], i1[3], i2[3];
- int len;
- int result;
-
- if (!PyArg_ParseTuple(
- args, "OOOO:intersect_line_line",
- UNPACK4_EX(&, py_lines, )))
- {
- return NULL;
- }
-
- if ((((len = mathutils_array_parse(lines[0], 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_lines[0], error_prefix)) != -1) &&
- (mathutils_array_parse(lines[1], len, len | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_lines[1], error_prefix) != -1) &&
- (mathutils_array_parse(lines[2], len, len | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_lines[2], error_prefix) != -1) &&
- (mathutils_array_parse(lines[3], len, len | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_lines[3], error_prefix) != -1)) == 0)
- {
- return NULL;
- }
-
- result = isect_line_line_v3(UNPACK4(lines), i1, i2);
- /* The return-code isnt exposed,
- * this way we can check know how close the lines are. */
- if (result == 1) {
- closest_to_line_v3(i2, i1, lines[2], lines[3]);
- }
-
- if (result == 0) {
- /* collinear */
- Py_RETURN_NONE;
- }
- else {
- tuple = PyTuple_New(2);
- PyTuple_SET_ITEMS(tuple,
- Vector_CreatePyObject(i1, len, NULL),
- Vector_CreatePyObject(i2, len, NULL));
- return tuple;
- }
+ const char *error_prefix = "intersect_line_line";
+ PyObject *tuple;
+ PyObject *py_lines[4];
+ float lines[4][3], i1[3], i2[3];
+ int len;
+ int result;
+
+ if (!PyArg_ParseTuple(args, "OOOO:intersect_line_line", UNPACK4_EX(&, py_lines, ))) {
+ return NULL;
+ }
+
+ if ((((len = mathutils_array_parse(
+ lines[0], 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_lines[0], error_prefix)) != -1) &&
+ (mathutils_array_parse(
+ lines[1], len, len | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_lines[1], error_prefix) !=
+ -1) &&
+ (mathutils_array_parse(
+ lines[2], len, len | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_lines[2], error_prefix) !=
+ -1) &&
+ (mathutils_array_parse(
+ lines[3], len, len | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_lines[3], error_prefix) !=
+ -1)) == 0) {
+ return NULL;
+ }
+
+ result = isect_line_line_v3(UNPACK4(lines), i1, i2);
+ /* The return-code isnt exposed,
+ * this way we can check know how close the lines are. */
+ if (result == 1) {
+ closest_to_line_v3(i2, i1, lines[2], lines[3]);
+ }
+
+ if (result == 0) {
+ /* collinear */
+ Py_RETURN_NONE;
+ }
+ else {
+ tuple = PyTuple_New(2);
+ PyTuple_SET_ITEMS(
+ tuple, Vector_CreatePyObject(i1, len, NULL), Vector_CreatePyObject(i2, len, NULL));
+ return tuple;
+ }
}
/* Line-Line intersection using algorithm from mathworld.wolfram.com */
-PyDoc_STRVAR(M_Geometry_intersect_sphere_sphere_2d_doc,
-".. function:: intersect_sphere_sphere_2d(p_a, radius_a, p_b, radius_b)\n"
-"\n"
-" Returns 2 points on between intersecting circles.\n"
-"\n"
-" :arg p_a: Center of the first circle\n"
-" :type p_a: :class:`mathutils.Vector`\n"
-" :arg radius_a: Radius of the first circle\n"
-" :type radius_a: float\n"
-" :arg p_b: Center of the second circle\n"
-" :type p_b: :class:`mathutils.Vector`\n"
-" :arg radius_b: Radius of the second circle\n"
-" :type radius_b: float\n"
-" :rtype: tuple of :class:`mathutils.Vector`'s or None when there is no intersection\n"
-);
+PyDoc_STRVAR(
+ M_Geometry_intersect_sphere_sphere_2d_doc,
+ ".. function:: intersect_sphere_sphere_2d(p_a, radius_a, p_b, radius_b)\n"
+ "\n"
+ " Returns 2 points on between intersecting circles.\n"
+ "\n"
+ " :arg p_a: Center of the first circle\n"
+ " :type p_a: :class:`mathutils.Vector`\n"
+ " :arg radius_a: Radius of the first circle\n"
+ " :type radius_a: float\n"
+ " :arg p_b: Center of the second circle\n"
+ " :type p_b: :class:`mathutils.Vector`\n"
+ " :arg radius_b: Radius of the second circle\n"
+ " :type radius_b: float\n"
+ " :rtype: tuple of :class:`mathutils.Vector`'s or None when there is no intersection\n");
static PyObject *M_Geometry_intersect_sphere_sphere_2d(PyObject *UNUSED(self), PyObject *args)
{
- const char *error_prefix = "intersect_sphere_sphere_2d";
- PyObject *ret;
- PyObject *py_v_a, *py_v_b;
- float v_a[2], v_b[2];
- float rad_a, rad_b;
- float v_ab[2];
- float dist;
-
- if (!PyArg_ParseTuple(
- args, "OfOf:intersect_sphere_sphere_2d",
- &py_v_a, &rad_a,
- &py_v_b, &rad_b))
- {
- return NULL;
- }
-
- if (((mathutils_array_parse(v_a, 2, 2, py_v_a, error_prefix) != -1) &&
- (mathutils_array_parse(v_b, 2, 2, py_v_b, error_prefix) != -1)) == 0)
- {
- return NULL;
- }
-
- ret = PyTuple_New(2);
-
- sub_v2_v2v2(v_ab, v_b, v_a);
- dist = len_v2(v_ab);
-
- if (/* out of range */
- (dist > rad_a + rad_b) ||
- /* fully-contained in the other */
- (dist < fabsf(rad_a - rad_b)) ||
- /* co-incident */
- (dist < FLT_EPSILON))
- {
- /* out of range */
- PyTuple_SET_ITEMS(ret,
- Py_INCREF_RET(Py_None),
- Py_INCREF_RET(Py_None));
- }
- else {
- const float dist_delta = ((rad_a * rad_a) - (rad_b * rad_b) + (dist * dist)) / (2.0f * dist);
- const float h = powf(fabsf((rad_a * rad_a) - (dist_delta * dist_delta)), 0.5f);
- float i_cent[2];
- float i1[2], i2[2];
-
- i_cent[0] = v_a[0] + ((v_ab[0] * dist_delta) / dist);
- i_cent[1] = v_a[1] + ((v_ab[1] * dist_delta) / dist);
-
- i1[0] = i_cent[0] + h * v_ab[1] / dist;
- i1[1] = i_cent[1] - h * v_ab[0] / dist;
-
- i2[0] = i_cent[0] - h * v_ab[1] / dist;
- i2[1] = i_cent[1] + h * v_ab[0] / dist;
-
- PyTuple_SET_ITEMS(ret,
- Vector_CreatePyObject(i1, 2, NULL),
- Vector_CreatePyObject(i2, 2, NULL));
- }
-
- return ret;
+ const char *error_prefix = "intersect_sphere_sphere_2d";
+ PyObject *ret;
+ PyObject *py_v_a, *py_v_b;
+ float v_a[2], v_b[2];
+ float rad_a, rad_b;
+ float v_ab[2];
+ float dist;
+
+ if (!PyArg_ParseTuple(
+ args, "OfOf:intersect_sphere_sphere_2d", &py_v_a, &rad_a, &py_v_b, &rad_b)) {
+ return NULL;
+ }
+
+ if (((mathutils_array_parse(v_a, 2, 2, py_v_a, error_prefix) != -1) &&
+ (mathutils_array_parse(v_b, 2, 2, py_v_b, error_prefix) != -1)) == 0) {
+ return NULL;
+ }
+
+ ret = PyTuple_New(2);
+
+ sub_v2_v2v2(v_ab, v_b, v_a);
+ dist = len_v2(v_ab);
+
+ if (/* out of range */
+ (dist > rad_a + rad_b) ||
+ /* fully-contained in the other */
+ (dist < fabsf(rad_a - rad_b)) ||
+ /* co-incident */
+ (dist < FLT_EPSILON)) {
+ /* out of range */
+ PyTuple_SET_ITEMS(ret, Py_INCREF_RET(Py_None), Py_INCREF_RET(Py_None));
+ }
+ else {
+ const float dist_delta = ((rad_a * rad_a) - (rad_b * rad_b) + (dist * dist)) / (2.0f * dist);
+ const float h = powf(fabsf((rad_a * rad_a) - (dist_delta * dist_delta)), 0.5f);
+ float i_cent[2];
+ float i1[2], i2[2];
+
+ i_cent[0] = v_a[0] + ((v_ab[0] * dist_delta) / dist);
+ i_cent[1] = v_a[1] + ((v_ab[1] * dist_delta) / dist);
+
+ i1[0] = i_cent[0] + h * v_ab[1] / dist;
+ i1[1] = i_cent[1] - h * v_ab[0] / dist;
+
+ i2[0] = i_cent[0] - h * v_ab[1] / dist;
+ i2[1] = i_cent[1] + h * v_ab[0] / dist;
+
+ PyTuple_SET_ITEMS(ret, Vector_CreatePyObject(i1, 2, NULL), Vector_CreatePyObject(i2, 2, NULL));
+ }
+
+ return ret;
}
PyDoc_STRVAR(M_Geometry_normal_doc,
-".. function:: normal(vectors)\n"
-"\n"
-" Returns the normal of a 3D polygon.\n"
-"\n"
-" :arg vectors: Vectors to calculate normals with\n"
-" :type vectors: sequence of 3 or more 3d vector\n"
-" :rtype: :class:`mathutils.Vector`\n"
-);
+ ".. function:: normal(vectors)\n"
+ "\n"
+ " Returns the normal of a 3D polygon.\n"
+ "\n"
+ " :arg vectors: Vectors to calculate normals with\n"
+ " :type vectors: sequence of 3 or more 3d vector\n"
+ " :rtype: :class:`mathutils.Vector`\n");
static PyObject *M_Geometry_normal(PyObject *UNUSED(self), PyObject *args)
{
- float (*coords)[3];
- int coords_len;
- float n[3];
- PyObject *ret = NULL;
+ float(*coords)[3];
+ int coords_len;
+ float n[3];
+ PyObject *ret = NULL;
- /* use */
- if (PyTuple_GET_SIZE(args) == 1) {
- args = PyTuple_GET_ITEM(args, 0);
- }
+ /* use */
+ if (PyTuple_GET_SIZE(args) == 1) {
+ args = PyTuple_GET_ITEM(args, 0);
+ }
- if ((coords_len = mathutils_array_parse_alloc_v((float **)&coords, 3 | MU_ARRAY_SPILL, args, "normal")) == -1) {
- return NULL;
- }
+ if ((coords_len = mathutils_array_parse_alloc_v(
+ (float **)&coords, 3 | MU_ARRAY_SPILL, args, "normal")) == -1) {
+ return NULL;
+ }
- if (coords_len < 3) {
- PyErr_SetString(PyExc_ValueError,
- "Expected 3 or more vectors");
- goto finally;
- }
+ if (coords_len < 3) {
+ PyErr_SetString(PyExc_ValueError, "Expected 3 or more vectors");
+ goto finally;
+ }
- normal_poly_v3(n, (const float (*)[3])coords, coords_len);
- ret = Vector_CreatePyObject(n, 3, NULL);
+ normal_poly_v3(n, (const float(*)[3])coords, coords_len);
+ ret = Vector_CreatePyObject(n, 3, NULL);
finally:
- PyMem_Free(coords);
- return ret;
+ PyMem_Free(coords);
+ return ret;
}
/* --------------------------------- AREA FUNCTIONS-------------------- */
PyDoc_STRVAR(M_Geometry_area_tri_doc,
-".. function:: area_tri(v1, v2, v3)\n"
-"\n"
-" Returns the area size of the 2D or 3D triangle defined.\n"
-"\n"
-" :arg v1: Point1\n"
-" :type v1: :class:`mathutils.Vector`\n"
-" :arg v2: Point2\n"
-" :type v2: :class:`mathutils.Vector`\n"
-" :arg v3: Point3\n"
-" :type v3: :class:`mathutils.Vector`\n"
-" :rtype: float\n"
-);
+ ".. function:: area_tri(v1, v2, v3)\n"
+ "\n"
+ " Returns the area size of the 2D or 3D triangle defined.\n"
+ "\n"
+ " :arg v1: Point1\n"
+ " :type v1: :class:`mathutils.Vector`\n"
+ " :arg v2: Point2\n"
+ " :type v2: :class:`mathutils.Vector`\n"
+ " :arg v3: Point3\n"
+ " :type v3: :class:`mathutils.Vector`\n"
+ " :rtype: float\n");
static PyObject *M_Geometry_area_tri(PyObject *UNUSED(self), PyObject *args)
{
- const char *error_prefix = "area_tri";
- PyObject *py_tri[3];
- float tri[3][3];
- int len;
-
- if (!PyArg_ParseTuple(
- args, "OOO:area_tri",
- UNPACK3_EX(&, py_tri, )))
- {
- return NULL;
- }
-
- if ((((len = mathutils_array_parse(tri[0], 2, 3, py_tri[0], error_prefix)) != -1) &&
- (mathutils_array_parse(tri[1], len, len, py_tri[1], error_prefix) != -1) &&
- (mathutils_array_parse(tri[2], len, len, py_tri[2], error_prefix) != -1)) == 0)
- {
- return NULL;
- }
-
- return PyFloat_FromDouble((len == 3 ? area_tri_v3 : area_tri_v2)(UNPACK3(tri)));
+ const char *error_prefix = "area_tri";
+ PyObject *py_tri[3];
+ float tri[3][3];
+ int len;
+
+ if (!PyArg_ParseTuple(args, "OOO:area_tri", UNPACK3_EX(&, py_tri, ))) {
+ return NULL;
+ }
+
+ if ((((len = mathutils_array_parse(tri[0], 2, 3, py_tri[0], error_prefix)) != -1) &&
+ (mathutils_array_parse(tri[1], len, len, py_tri[1], error_prefix) != -1) &&
+ (mathutils_array_parse(tri[2], len, len, py_tri[2], error_prefix) != -1)) == 0) {
+ return NULL;
+ }
+
+ return PyFloat_FromDouble((len == 3 ? area_tri_v3 : area_tri_v2)(UNPACK3(tri)));
}
PyDoc_STRVAR(M_Geometry_volume_tetrahedron_doc,
-".. function:: volume_tetrahedron(v1, v2, v3, v4)\n"
-"\n"
-" Return the volume formed by a tetrahedron (points can be in any order).\n"
-"\n"
-" :arg v1: Point1\n"
-" :type v1: :class:`mathutils.Vector`\n"
-" :arg v2: Point2\n"
-" :type v2: :class:`mathutils.Vector`\n"
-" :arg v3: Point3\n"
-" :type v3: :class:`mathutils.Vector`\n"
-" :arg v4: Point4\n"
-" :type v4: :class:`mathutils.Vector`\n"
-" :rtype: float\n"
-);
+ ".. function:: volume_tetrahedron(v1, v2, v3, v4)\n"
+ "\n"
+ " Return the volume formed by a tetrahedron (points can be in any order).\n"
+ "\n"
+ " :arg v1: Point1\n"
+ " :type v1: :class:`mathutils.Vector`\n"
+ " :arg v2: Point2\n"
+ " :type v2: :class:`mathutils.Vector`\n"
+ " :arg v3: Point3\n"
+ " :type v3: :class:`mathutils.Vector`\n"
+ " :arg v4: Point4\n"
+ " :type v4: :class:`mathutils.Vector`\n"
+ " :rtype: float\n");
static PyObject *M_Geometry_volume_tetrahedron(PyObject *UNUSED(self), PyObject *args)
{
- const char *error_prefix = "volume_tetrahedron";
- PyObject *py_tet[4];
- float tet[4][3];
- int i;
-
- if (!PyArg_ParseTuple(
- args, "OOOO:volume_tetrahedron",
- UNPACK4_EX(&, py_tet, )))
- {
- return NULL;
- }
-
- for (i = 0; i < ARRAY_SIZE(tet); i++) {
- if (mathutils_array_parse(tet[i], 3, 3 | MU_ARRAY_SPILL, py_tet[i], error_prefix) == -1) {
- return NULL;
- }
- }
-
- return PyFloat_FromDouble(volume_tetrahedron_v3(UNPACK4(tet)));
+ const char *error_prefix = "volume_tetrahedron";
+ PyObject *py_tet[4];
+ float tet[4][3];
+ int i;
+
+ if (!PyArg_ParseTuple(args, "OOOO:volume_tetrahedron", UNPACK4_EX(&, py_tet, ))) {
+ return NULL;
+ }
+
+ for (i = 0; i < ARRAY_SIZE(tet); i++) {
+ if (mathutils_array_parse(tet[i], 3, 3 | MU_ARRAY_SPILL, py_tet[i], error_prefix) == -1) {
+ return NULL;
+ }
+ }
+
+ return PyFloat_FromDouble(volume_tetrahedron_v3(UNPACK4(tet)));
}
-PyDoc_STRVAR(M_Geometry_intersect_line_line_2d_doc,
-".. function:: intersect_line_line_2d(lineA_p1, lineA_p2, lineB_p1, lineB_p2)\n"
-"\n"
-" Takes 2 segments (defined by 4 vectors) and returns a vector for their point of intersection or None.\n"
-"\n"
-" .. warning:: Despite its name, this function works on segments, and not on lines.\n"
-"\n"
-" :arg lineA_p1: First point of the first line\n"
-" :type lineA_p1: :class:`mathutils.Vector`\n"
-" :arg lineA_p2: Second point of the first line\n"
-" :type lineA_p2: :class:`mathutils.Vector`\n"
-" :arg lineB_p1: First point of the second line\n"
-" :type lineB_p1: :class:`mathutils.Vector`\n"
-" :arg lineB_p2: Second point of the second line\n"
-" :type lineB_p2: :class:`mathutils.Vector`\n"
-" :return: The point of intersection or None when not found\n"
-" :rtype: :class:`mathutils.Vector` or None\n"
-);
+PyDoc_STRVAR(
+ M_Geometry_intersect_line_line_2d_doc,
+ ".. function:: intersect_line_line_2d(lineA_p1, lineA_p2, lineB_p1, lineB_p2)\n"
+ "\n"
+ " Takes 2 segments (defined by 4 vectors) and returns a vector for their point of "
+ "intersection or None.\n"
+ "\n"
+ " .. warning:: Despite its name, this function works on segments, and not on lines.\n"
+ "\n"
+ " :arg lineA_p1: First point of the first line\n"
+ " :type lineA_p1: :class:`mathutils.Vector`\n"
+ " :arg lineA_p2: Second point of the first line\n"
+ " :type lineA_p2: :class:`mathutils.Vector`\n"
+ " :arg lineB_p1: First point of the second line\n"
+ " :type lineB_p1: :class:`mathutils.Vector`\n"
+ " :arg lineB_p2: Second point of the second line\n"
+ " :type lineB_p2: :class:`mathutils.Vector`\n"
+ " :return: The point of intersection or None when not found\n"
+ " :rtype: :class:`mathutils.Vector` or None\n");
static PyObject *M_Geometry_intersect_line_line_2d(PyObject *UNUSED(self), PyObject *args)
{
- const char *error_prefix = "intersect_line_line_2d";
- PyObject *py_lines[4];
- float lines[4][2];
- float vi[2];
- int i;
-
- if (!PyArg_ParseTuple(
- args, "OOOO:intersect_line_line_2d",
- UNPACK4_EX(&, py_lines, )))
- {
- return NULL;
- }
-
- for (i = 0; i < ARRAY_SIZE(lines); i++) {
- if (mathutils_array_parse(lines[i], 2, 2 | MU_ARRAY_SPILL, py_lines[i], error_prefix) == -1) {
- return NULL;
- }
- }
-
- if (isect_seg_seg_v2_point(UNPACK4(lines), vi) == 1) {
- return Vector_CreatePyObject(vi, 2, NULL);
- }
- else {
- Py_RETURN_NONE;
- }
+ const char *error_prefix = "intersect_line_line_2d";
+ PyObject *py_lines[4];
+ float lines[4][2];
+ float vi[2];
+ int i;
+
+ if (!PyArg_ParseTuple(args, "OOOO:intersect_line_line_2d", UNPACK4_EX(&, py_lines, ))) {
+ return NULL;
+ }
+
+ for (i = 0; i < ARRAY_SIZE(lines); i++) {
+ if (mathutils_array_parse(lines[i], 2, 2 | MU_ARRAY_SPILL, py_lines[i], error_prefix) == -1) {
+ return NULL;
+ }
+ }
+
+ if (isect_seg_seg_v2_point(UNPACK4(lines), vi) == 1) {
+ return Vector_CreatePyObject(vi, 2, NULL);
+ }
+ else {
+ Py_RETURN_NONE;
+ }
}
-
-PyDoc_STRVAR(M_Geometry_intersect_line_plane_doc,
-".. function:: intersect_line_plane(line_a, line_b, plane_co, plane_no, no_flip=False)\n"
-"\n"
-" Calculate the intersection between a line (as 2 vectors) and a plane.\n"
-" Returns a vector for the intersection or None.\n"
-"\n"
-" :arg line_a: First point of the first line\n"
-" :type line_a: :class:`mathutils.Vector`\n"
-" :arg line_b: Second point of the first line\n"
-" :type line_b: :class:`mathutils.Vector`\n"
-" :arg plane_co: A point on the plane\n"
-" :type plane_co: :class:`mathutils.Vector`\n"
-" :arg plane_no: The direction the plane is facing\n"
-" :type plane_no: :class:`mathutils.Vector`\n"
-" :return: The point of intersection or None when not found\n"
-" :rtype: :class:`mathutils.Vector` or None\n"
-);
+PyDoc_STRVAR(
+ M_Geometry_intersect_line_plane_doc,
+ ".. function:: intersect_line_plane(line_a, line_b, plane_co, plane_no, no_flip=False)\n"
+ "\n"
+ " Calculate the intersection between a line (as 2 vectors) and a plane.\n"
+ " Returns a vector for the intersection or None.\n"
+ "\n"
+ " :arg line_a: First point of the first line\n"
+ " :type line_a: :class:`mathutils.Vector`\n"
+ " :arg line_b: Second point of the first line\n"
+ " :type line_b: :class:`mathutils.Vector`\n"
+ " :arg plane_co: A point on the plane\n"
+ " :type plane_co: :class:`mathutils.Vector`\n"
+ " :arg plane_no: The direction the plane is facing\n"
+ " :type plane_no: :class:`mathutils.Vector`\n"
+ " :return: The point of intersection or None when not found\n"
+ " :rtype: :class:`mathutils.Vector` or None\n");
static PyObject *M_Geometry_intersect_line_plane(PyObject *UNUSED(self), PyObject *args)
{
- const char *error_prefix = "intersect_line_plane";
- PyObject *py_line_a, *py_line_b, *py_plane_co, *py_plane_no;
- float line_a[3], line_b[3], plane_co[3], plane_no[3];
- float isect[3];
- bool no_flip = false;
-
- if (!PyArg_ParseTuple(
- args, "OOOO|O&:intersect_line_plane",
- &py_line_a, &py_line_b, &py_plane_co, &py_plane_no,
- PyC_ParseBool, &no_flip))
- {
- return NULL;
- }
-
- if (((mathutils_array_parse(line_a, 3, 3 | MU_ARRAY_SPILL, py_line_a, error_prefix) != -1) &&
- (mathutils_array_parse(line_b, 3, 3 | MU_ARRAY_SPILL, py_line_b, error_prefix) != -1) &&
- (mathutils_array_parse(plane_co, 3, 3 | MU_ARRAY_SPILL, py_plane_co, error_prefix) != -1) &&
- (mathutils_array_parse(plane_no, 3, 3 | MU_ARRAY_SPILL, py_plane_no, error_prefix) != -1)) == 0)
- {
- return NULL;
- }
-
- /* TODO: implements no_flip */
- if (isect_line_plane_v3(isect, line_a, line_b, plane_co, plane_no) == 1) {
- return Vector_CreatePyObject(isect, 3, NULL);
- }
- else {
- Py_RETURN_NONE;
- }
+ const char *error_prefix = "intersect_line_plane";
+ PyObject *py_line_a, *py_line_b, *py_plane_co, *py_plane_no;
+ float line_a[3], line_b[3], plane_co[3], plane_no[3];
+ float isect[3];
+ bool no_flip = false;
+
+ if (!PyArg_ParseTuple(args,
+ "OOOO|O&:intersect_line_plane",
+ &py_line_a,
+ &py_line_b,
+ &py_plane_co,
+ &py_plane_no,
+ PyC_ParseBool,
+ &no_flip)) {
+ return NULL;
+ }
+
+ if (((mathutils_array_parse(line_a, 3, 3 | MU_ARRAY_SPILL, py_line_a, error_prefix) != -1) &&
+ (mathutils_array_parse(line_b, 3, 3 | MU_ARRAY_SPILL, py_line_b, error_prefix) != -1) &&
+ (mathutils_array_parse(plane_co, 3, 3 | MU_ARRAY_SPILL, py_plane_co, error_prefix) != -1) &&
+ (mathutils_array_parse(plane_no, 3, 3 | MU_ARRAY_SPILL, py_plane_no, error_prefix) !=
+ -1)) == 0) {
+ return NULL;
+ }
+
+ /* TODO: implements no_flip */
+ if (isect_line_plane_v3(isect, line_a, line_b, plane_co, plane_no) == 1) {
+ return Vector_CreatePyObject(isect, 3, NULL);
+ }
+ else {
+ Py_RETURN_NONE;
+ }
}
-PyDoc_STRVAR(M_Geometry_intersect_plane_plane_doc,
-".. function:: intersect_plane_plane(plane_a_co, plane_a_no, plane_b_co, plane_b_no)\n"
-"\n"
-" Return the intersection between two planes\n"
-"\n"
-" :arg plane_a_co: Point on the first plane\n"
-" :type plane_a_co: :class:`mathutils.Vector`\n"
-" :arg plane_a_no: Normal of the first plane\n"
-" :type plane_a_no: :class:`mathutils.Vector`\n"
-" :arg plane_b_co: Point on the second plane\n"
-" :type plane_b_co: :class:`mathutils.Vector`\n"
-" :arg plane_b_no: Normal of the second plane\n"
-" :type plane_b_no: :class:`mathutils.Vector`\n"
-" :return: The line of the intersection represented as a point and a vector\n"
-" :rtype: tuple pair of :class:`mathutils.Vector` or None if the intersection can't be calculated\n"
-);
+PyDoc_STRVAR(
+ M_Geometry_intersect_plane_plane_doc,
+ ".. function:: intersect_plane_plane(plane_a_co, plane_a_no, plane_b_co, plane_b_no)\n"
+ "\n"
+ " Return the intersection between two planes\n"
+ "\n"
+ " :arg plane_a_co: Point on the first plane\n"
+ " :type plane_a_co: :class:`mathutils.Vector`\n"
+ " :arg plane_a_no: Normal of the first plane\n"
+ " :type plane_a_no: :class:`mathutils.Vector`\n"
+ " :arg plane_b_co: Point on the second plane\n"
+ " :type plane_b_co: :class:`mathutils.Vector`\n"
+ " :arg plane_b_no: Normal of the second plane\n"
+ " :type plane_b_no: :class:`mathutils.Vector`\n"
+ " :return: The line of the intersection represented as a point and a vector\n"
+ " :rtype: tuple pair of :class:`mathutils.Vector` or None if the intersection can't be "
+ "calculated\n");
static PyObject *M_Geometry_intersect_plane_plane(PyObject *UNUSED(self), PyObject *args)
{
- const char *error_prefix = "intersect_plane_plane";
- PyObject *ret, *ret_co, *ret_no;
- PyObject *py_plane_a_co, *py_plane_a_no, *py_plane_b_co, *py_plane_b_no;
- float plane_a_co[3], plane_a_no[3], plane_b_co[3], plane_b_no[3];
- float plane_a[4], plane_b[4];
-
- float isect_co[3];
- float isect_no[3];
-
- if (!PyArg_ParseTuple(
- args, "OOOO:intersect_plane_plane",
- &py_plane_a_co, &py_plane_a_no, &py_plane_b_co, &py_plane_b_no))
- {
- return NULL;
- }
-
- if (((mathutils_array_parse(plane_a_co, 3, 3 | MU_ARRAY_SPILL, py_plane_a_co, error_prefix) != -1) &&
- (mathutils_array_parse(plane_a_no, 3, 3 | MU_ARRAY_SPILL, py_plane_a_no, error_prefix) != -1) &&
- (mathutils_array_parse(plane_b_co, 3, 3 | MU_ARRAY_SPILL, py_plane_b_co, error_prefix) != -1) &&
- (mathutils_array_parse(plane_b_no, 3, 3 | MU_ARRAY_SPILL, py_plane_b_no, error_prefix) != -1)) == 0)
- {
- return NULL;
- }
-
- plane_from_point_normal_v3(plane_a, plane_a_co, plane_a_no);
- plane_from_point_normal_v3(plane_b, plane_b_co, plane_b_no);
-
- if (isect_plane_plane_v3(
- plane_a, plane_b,
- isect_co, isect_no))
- {
- normalize_v3(isect_no);
-
- ret_co = Vector_CreatePyObject(isect_co, 3, NULL);
- ret_no = Vector_CreatePyObject(isect_no, 3, NULL);
- }
- else {
- ret_co = Py_INCREF_RET(Py_None);
- ret_no = Py_INCREF_RET(Py_None);
- }
-
- ret = PyTuple_New(2);
- PyTuple_SET_ITEMS(ret,
- ret_co,
- ret_no);
- return ret;
+ const char *error_prefix = "intersect_plane_plane";
+ PyObject *ret, *ret_co, *ret_no;
+ PyObject *py_plane_a_co, *py_plane_a_no, *py_plane_b_co, *py_plane_b_no;
+ float plane_a_co[3], plane_a_no[3], plane_b_co[3], plane_b_no[3];
+ float plane_a[4], plane_b[4];
+
+ float isect_co[3];
+ float isect_no[3];
+
+ if (!PyArg_ParseTuple(args,
+ "OOOO:intersect_plane_plane",
+ &py_plane_a_co,
+ &py_plane_a_no,
+ &py_plane_b_co,
+ &py_plane_b_no)) {
+ return NULL;
+ }
+
+ if (((mathutils_array_parse(plane_a_co, 3, 3 | MU_ARRAY_SPILL, py_plane_a_co, error_prefix) !=
+ -1) &&
+ (mathutils_array_parse(plane_a_no, 3, 3 | MU_ARRAY_SPILL, py_plane_a_no, error_prefix) !=
+ -1) &&
+ (mathutils_array_parse(plane_b_co, 3, 3 | MU_ARRAY_SPILL, py_plane_b_co, error_prefix) !=
+ -1) &&
+ (mathutils_array_parse(plane_b_no, 3, 3 | MU_ARRAY_SPILL, py_plane_b_no, error_prefix) !=
+ -1)) == 0) {
+ return NULL;
+ }
+
+ plane_from_point_normal_v3(plane_a, plane_a_co, plane_a_no);
+ plane_from_point_normal_v3(plane_b, plane_b_co, plane_b_no);
+
+ if (isect_plane_plane_v3(plane_a, plane_b, isect_co, isect_no)) {
+ normalize_v3(isect_no);
+
+ ret_co = Vector_CreatePyObject(isect_co, 3, NULL);
+ ret_no = Vector_CreatePyObject(isect_no, 3, NULL);
+ }
+ else {
+ ret_co = Py_INCREF_RET(Py_None);
+ ret_no = Py_INCREF_RET(Py_None);
+ }
+
+ ret = PyTuple_New(2);
+ PyTuple_SET_ITEMS(ret, ret_co, ret_no);
+ return ret;
}
-PyDoc_STRVAR(M_Geometry_intersect_line_sphere_doc,
-".. function:: intersect_line_sphere(line_a, line_b, sphere_co, sphere_radius, clip=True)\n"
-"\n"
-" Takes a line (as 2 points) and a sphere (as a point and a radius) and\n"
-" returns the intersection\n"
-"\n"
-" :arg line_a: First point of the line\n"
-" :type line_a: :class:`mathutils.Vector`\n"
-" :arg line_b: Second point of the line\n"
-" :type line_b: :class:`mathutils.Vector`\n"
-" :arg sphere_co: The center of the sphere\n"
-" :type sphere_co: :class:`mathutils.Vector`\n"
-" :arg sphere_radius: Radius of the sphere\n"
-" :type sphere_radius: sphere_radius\n"
-" :return: The intersection points as a pair of vectors or None when there is no intersection\n"
-" :rtype: A tuple pair containing :class:`mathutils.Vector` or None\n"
-);
+PyDoc_STRVAR(
+ M_Geometry_intersect_line_sphere_doc,
+ ".. function:: intersect_line_sphere(line_a, line_b, sphere_co, sphere_radius, clip=True)\n"
+ "\n"
+ " Takes a line (as 2 points) and a sphere (as a point and a radius) and\n"
+ " returns the intersection\n"
+ "\n"
+ " :arg line_a: First point of the line\n"
+ " :type line_a: :class:`mathutils.Vector`\n"
+ " :arg line_b: Second point of the line\n"
+ " :type line_b: :class:`mathutils.Vector`\n"
+ " :arg sphere_co: The center of the sphere\n"
+ " :type sphere_co: :class:`mathutils.Vector`\n"
+ " :arg sphere_radius: Radius of the sphere\n"
+ " :type sphere_radius: sphere_radius\n"
+ " :return: The intersection points as a pair of vectors or None when there is no "
+ "intersection\n"
+ " :rtype: A tuple pair containing :class:`mathutils.Vector` or None\n");
static PyObject *M_Geometry_intersect_line_sphere(PyObject *UNUSED(self), PyObject *args)
{
- const char *error_prefix = "intersect_line_sphere";
- PyObject *py_line_a, *py_line_b, *py_sphere_co;
- float line_a[3], line_b[3], sphere_co[3];
- float sphere_radius;
- bool clip = true;
-
- float isect_a[3];
- float isect_b[3];
-
- if (!PyArg_ParseTuple(
- args, "OOOf|O&:intersect_line_sphere",
- &py_line_a, &py_line_b, &py_sphere_co, &sphere_radius,
- PyC_ParseBool, &clip))
- {
- return NULL;
- }
-
- if (((mathutils_array_parse(line_a, 3, 3 | MU_ARRAY_SPILL, py_line_a, error_prefix) != -1) &&
- (mathutils_array_parse(line_b, 3, 3 | MU_ARRAY_SPILL, py_line_b, error_prefix) != -1) &&
- (mathutils_array_parse(sphere_co, 3, 3 | MU_ARRAY_SPILL, py_sphere_co, error_prefix) != -1)) == 0)
- {
- return NULL;
- }
- else {
- bool use_a = true;
- bool use_b = true;
- float lambda;
-
- PyObject *ret = PyTuple_New(2);
-
- switch (isect_line_sphere_v3(line_a, line_b, sphere_co, sphere_radius, isect_a, isect_b)) {
- case 1:
- if (!(!clip || (((lambda = line_point_factor_v3(isect_a, line_a, line_b)) >= 0.0f) && (lambda <= 1.0f)))) { use_a = false; }
- use_b = false;
- break;
- case 2:
- if (!(!clip || (((lambda = line_point_factor_v3(isect_a, line_a, line_b)) >= 0.0f) && (lambda <= 1.0f)))) { use_a = false; }
- if (!(!clip || (((lambda = line_point_factor_v3(isect_b, line_a, line_b)) >= 0.0f) && (lambda <= 1.0f)))) { use_b = false; }
- break;
- default:
- use_a = false;
- use_b = false;
- break;
- }
-
- PyTuple_SET_ITEMS(ret,
- use_a ? Vector_CreatePyObject(isect_a, 3, NULL) : Py_INCREF_RET(Py_None),
- use_b ? Vector_CreatePyObject(isect_b, 3, NULL) : Py_INCREF_RET(Py_None));
-
- return ret;
- }
+ const char *error_prefix = "intersect_line_sphere";
+ PyObject *py_line_a, *py_line_b, *py_sphere_co;
+ float line_a[3], line_b[3], sphere_co[3];
+ float sphere_radius;
+ bool clip = true;
+
+ float isect_a[3];
+ float isect_b[3];
+
+ if (!PyArg_ParseTuple(args,
+ "OOOf|O&:intersect_line_sphere",
+ &py_line_a,
+ &py_line_b,
+ &py_sphere_co,
+ &sphere_radius,
+ PyC_ParseBool,
+ &clip)) {
+ return NULL;
+ }
+
+ if (((mathutils_array_parse(line_a, 3, 3 | MU_ARRAY_SPILL, py_line_a, error_prefix) != -1) &&
+ (mathutils_array_parse(line_b, 3, 3 | MU_ARRAY_SPILL, py_line_b, error_prefix) != -1) &&
+ (mathutils_array_parse(sphere_co, 3, 3 | MU_ARRAY_SPILL, py_sphere_co, error_prefix) !=
+ -1)) == 0) {
+ return NULL;
+ }
+ else {
+ bool use_a = true;
+ bool use_b = true;
+ float lambda;
+
+ PyObject *ret = PyTuple_New(2);
+
+ switch (isect_line_sphere_v3(line_a, line_b, sphere_co, sphere_radius, isect_a, isect_b)) {
+ case 1:
+ if (!(!clip || (((lambda = line_point_factor_v3(isect_a, line_a, line_b)) >= 0.0f) &&
+ (lambda <= 1.0f)))) {
+ use_a = false;
+ }
+ use_b = false;
+ break;
+ case 2:
+ if (!(!clip || (((lambda = line_point_factor_v3(isect_a, line_a, line_b)) >= 0.0f) &&
+ (lambda <= 1.0f)))) {
+ use_a = false;
+ }
+ if (!(!clip || (((lambda = line_point_factor_v3(isect_b, line_a, line_b)) >= 0.0f) &&
+ (lambda <= 1.0f)))) {
+ use_b = false;
+ }
+ break;
+ default:
+ use_a = false;
+ use_b = false;
+ break;
+ }
+
+ PyTuple_SET_ITEMS(ret,
+ use_a ? Vector_CreatePyObject(isect_a, 3, NULL) : Py_INCREF_RET(Py_None),
+ use_b ? Vector_CreatePyObject(isect_b, 3, NULL) : Py_INCREF_RET(Py_None));
+
+ return ret;
+ }
}
/* keep in sync with M_Geometry_intersect_line_sphere */
-PyDoc_STRVAR(M_Geometry_intersect_line_sphere_2d_doc,
-".. function:: intersect_line_sphere_2d(line_a, line_b, sphere_co, sphere_radius, clip=True)\n"
-"\n"
-" Takes a line (as 2 points) and a sphere (as a point and a radius) and\n"
-" returns the intersection\n"
-"\n"
-" :arg line_a: First point of the line\n"
-" :type line_a: :class:`mathutils.Vector`\n"
-" :arg line_b: Second point of the line\n"
-" :type line_b: :class:`mathutils.Vector`\n"
-" :arg sphere_co: The center of the sphere\n"
-" :type sphere_co: :class:`mathutils.Vector`\n"
-" :arg sphere_radius: Radius of the sphere\n"
-" :type sphere_radius: sphere_radius\n"
-" :return: The intersection points as a pair of vectors or None when there is no intersection\n"
-" :rtype: A tuple pair containing :class:`mathutils.Vector` or None\n"
-);
+PyDoc_STRVAR(
+ M_Geometry_intersect_line_sphere_2d_doc,
+ ".. function:: intersect_line_sphere_2d(line_a, line_b, sphere_co, sphere_radius, clip=True)\n"
+ "\n"
+ " Takes a line (as 2 points) and a sphere (as a point and a radius) and\n"
+ " returns the intersection\n"
+ "\n"
+ " :arg line_a: First point of the line\n"
+ " :type line_a: :class:`mathutils.Vector`\n"
+ " :arg line_b: Second point of the line\n"
+ " :type line_b: :class:`mathutils.Vector`\n"
+ " :arg sphere_co: The center of the sphere\n"
+ " :type sphere_co: :class:`mathutils.Vector`\n"
+ " :arg sphere_radius: Radius of the sphere\n"
+ " :type sphere_radius: sphere_radius\n"
+ " :return: The intersection points as a pair of vectors or None when there is no "
+ "intersection\n"
+ " :rtype: A tuple pair containing :class:`mathutils.Vector` or None\n");
static PyObject *M_Geometry_intersect_line_sphere_2d(PyObject *UNUSED(self), PyObject *args)
{
- const char *error_prefix = "intersect_line_sphere_2d";
- PyObject *py_line_a, *py_line_b, *py_sphere_co;
- float line_a[2], line_b[2], sphere_co[2];
- float sphere_radius;
- bool clip = true;
-
- float isect_a[2];
- float isect_b[2];
-
- if (!PyArg_ParseTuple(
- args, "OOOf|O&:intersect_line_sphere_2d",
- &py_line_a, &py_line_b, &py_sphere_co, &sphere_radius,
- PyC_ParseBool, &clip))
- {
- return NULL;
- }
-
- if (((mathutils_array_parse(line_a, 2, 2 | MU_ARRAY_SPILL, py_line_a, error_prefix) != -1) &&
- (mathutils_array_parse(line_b, 2, 2 | MU_ARRAY_SPILL, py_line_b, error_prefix) != -1) &&
- (mathutils_array_parse(sphere_co, 2, 2 | MU_ARRAY_SPILL, py_sphere_co, error_prefix) != -1)) == 0)
- {
- return NULL;
- }
- else {
- bool use_a = true;
- bool use_b = true;
- float lambda;
-
- PyObject *ret = PyTuple_New(2);
-
- switch (isect_line_sphere_v2(line_a, line_b, sphere_co, sphere_radius, isect_a, isect_b)) {
- case 1:
- if (!(!clip || (((lambda = line_point_factor_v2(isect_a, line_a, line_b)) >= 0.0f) && (lambda <= 1.0f)))) { use_a = false; }
- use_b = false;
- break;
- case 2:
- if (!(!clip || (((lambda = line_point_factor_v2(isect_a, line_a, line_b)) >= 0.0f) && (lambda <= 1.0f)))) { use_a = false; }
- if (!(!clip || (((lambda = line_point_factor_v2(isect_b, line_a, line_b)) >= 0.0f) && (lambda <= 1.0f)))) { use_b = false; }
- break;
- default:
- use_a = false;
- use_b = false;
- break;
- }
-
- PyTuple_SET_ITEMS(ret,
- use_a ? Vector_CreatePyObject(isect_a, 2, NULL) : Py_INCREF_RET(Py_None),
- use_b ? Vector_CreatePyObject(isect_b, 2, NULL) : Py_INCREF_RET(Py_None));
-
- return ret;
- }
+ const char *error_prefix = "intersect_line_sphere_2d";
+ PyObject *py_line_a, *py_line_b, *py_sphere_co;
+ float line_a[2], line_b[2], sphere_co[2];
+ float sphere_radius;
+ bool clip = true;
+
+ float isect_a[2];
+ float isect_b[2];
+
+ if (!PyArg_ParseTuple(args,
+ "OOOf|O&:intersect_line_sphere_2d",
+ &py_line_a,
+ &py_line_b,
+ &py_sphere_co,
+ &sphere_radius,
+ PyC_ParseBool,
+ &clip)) {
+ return NULL;
+ }
+
+ if (((mathutils_array_parse(line_a, 2, 2 | MU_ARRAY_SPILL, py_line_a, error_prefix) != -1) &&
+ (mathutils_array_parse(line_b, 2, 2 | MU_ARRAY_SPILL, py_line_b, error_prefix) != -1) &&
+ (mathutils_array_parse(sphere_co, 2, 2 | MU_ARRAY_SPILL, py_sphere_co, error_prefix) !=
+ -1)) == 0) {
+ return NULL;
+ }
+ else {
+ bool use_a = true;
+ bool use_b = true;
+ float lambda;
+
+ PyObject *ret = PyTuple_New(2);
+
+ switch (isect_line_sphere_v2(line_a, line_b, sphere_co, sphere_radius, isect_a, isect_b)) {
+ case 1:
+ if (!(!clip || (((lambda = line_point_factor_v2(isect_a, line_a, line_b)) >= 0.0f) &&
+ (lambda <= 1.0f)))) {
+ use_a = false;
+ }
+ use_b = false;
+ break;
+ case 2:
+ if (!(!clip || (((lambda = line_point_factor_v2(isect_a, line_a, line_b)) >= 0.0f) &&
+ (lambda <= 1.0f)))) {
+ use_a = false;
+ }
+ if (!(!clip || (((lambda = line_point_factor_v2(isect_b, line_a, line_b)) >= 0.0f) &&
+ (lambda <= 1.0f)))) {
+ use_b = false;
+ }
+ break;
+ default:
+ use_a = false;
+ use_b = false;
+ break;
+ }
+
+ PyTuple_SET_ITEMS(ret,
+ use_a ? Vector_CreatePyObject(isect_a, 2, NULL) : Py_INCREF_RET(Py_None),
+ use_b ? Vector_CreatePyObject(isect_b, 2, NULL) : Py_INCREF_RET(Py_None));
+
+ return ret;
+ }
}
-PyDoc_STRVAR(M_Geometry_intersect_point_line_doc,
-".. function:: intersect_point_line(pt, line_p1, line_p2)\n"
-"\n"
-" Takes a point and a line and returns a tuple with the closest point on the line and its distance from the first point of the line as a percentage of the length of the line.\n"
-"\n"
-" :arg pt: Point\n"
-" :type pt: :class:`mathutils.Vector`\n"
-" :arg line_p1: First point of the line\n"
-" :type line_p1: :class:`mathutils.Vector`\n"
-" :arg line_p1: Second point of the line\n"
-" :type line_p1: :class:`mathutils.Vector`\n"
-" :rtype: (:class:`mathutils.Vector`, float)\n"
-);
+PyDoc_STRVAR(
+ M_Geometry_intersect_point_line_doc,
+ ".. function:: intersect_point_line(pt, line_p1, line_p2)\n"
+ "\n"
+ " Takes a point and a line and returns a tuple with the closest point on the line and its "
+ "distance from the first point of the line as a percentage of the length of the line.\n"
+ "\n"
+ " :arg pt: Point\n"
+ " :type pt: :class:`mathutils.Vector`\n"
+ " :arg line_p1: First point of the line\n"
+ " :type line_p1: :class:`mathutils.Vector`\n"
+ " :arg line_p1: Second point of the line\n"
+ " :type line_p1: :class:`mathutils.Vector`\n"
+ " :rtype: (:class:`mathutils.Vector`, float)\n");
static PyObject *M_Geometry_intersect_point_line(PyObject *UNUSED(self), PyObject *args)
{
- const char *error_prefix = "intersect_point_line";
- PyObject *py_pt, *py_line_a, *py_line_b;
- float pt[3], pt_out[3], line_a[3], line_b[3];
- float lambda;
- PyObject *ret;
- int size = 2;
-
- if (!PyArg_ParseTuple(
- args, "OOO:intersect_point_line",
- &py_pt, &py_line_a, &py_line_b))
- {
- return NULL;
- }
-
- /* accept 2d verts */
- if ((((size = mathutils_array_parse(pt, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_pt, error_prefix)) != -1) &&
- (mathutils_array_parse(line_a, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_line_a, error_prefix) != -1) &&
- (mathutils_array_parse(line_b, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_line_b, error_prefix) != -1)) == 0)
- {
- return NULL;
- }
-
- /* do the calculation */
- lambda = closest_to_line_v3(pt_out, pt, line_a, line_b);
-
- ret = PyTuple_New(2);
- PyTuple_SET_ITEMS(ret,
- Vector_CreatePyObject(pt_out, size, NULL),
- PyFloat_FromDouble(lambda));
- return ret;
+ const char *error_prefix = "intersect_point_line";
+ PyObject *py_pt, *py_line_a, *py_line_b;
+ float pt[3], pt_out[3], line_a[3], line_b[3];
+ float lambda;
+ PyObject *ret;
+ int size = 2;
+
+ if (!PyArg_ParseTuple(args, "OOO:intersect_point_line", &py_pt, &py_line_a, &py_line_b)) {
+ return NULL;
+ }
+
+ /* accept 2d verts */
+ if ((((size = mathutils_array_parse(
+ pt, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_pt, error_prefix)) != -1) &&
+ (mathutils_array_parse(
+ line_a, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_line_a, error_prefix) != -1) &&
+ (mathutils_array_parse(
+ line_b, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_line_b, error_prefix) != -1)) == 0) {
+ return NULL;
+ }
+
+ /* do the calculation */
+ lambda = closest_to_line_v3(pt_out, pt, line_a, line_b);
+
+ ret = PyTuple_New(2);
+ PyTuple_SET_ITEMS(ret, Vector_CreatePyObject(pt_out, size, NULL), PyFloat_FromDouble(lambda));
+ return ret;
}
PyDoc_STRVAR(M_Geometry_intersect_point_tri_doc,
-".. function:: intersect_point_tri(pt, tri_p1, tri_p2, tri_p3)\n"
-"\n"
-" Takes 4 vectors: one is the point and the next 3 define the triangle.\n"
-"\n"
-" :arg pt: Point\n"
-" :type pt: :class:`mathutils.Vector`\n"
-" :arg tri_p1: First point of the triangle\n"
-" :type tri_p1: :class:`mathutils.Vector`\n"
-" :arg tri_p2: Second point of the triangle\n"
-" :type tri_p2: :class:`mathutils.Vector`\n"
-" :arg tri_p3: Third point of the triangle\n"
-" :type tri_p3: :class:`mathutils.Vector`\n"
-" :return: Point on the triangles plane or None if its outside the triangle\n"
-" :rtype: :class:`mathutils.Vector` or None\n"
-);
+ ".. function:: intersect_point_tri(pt, tri_p1, tri_p2, tri_p3)\n"
+ "\n"
+ " Takes 4 vectors: one is the point and the next 3 define the triangle.\n"
+ "\n"
+ " :arg pt: Point\n"
+ " :type pt: :class:`mathutils.Vector`\n"
+ " :arg tri_p1: First point of the triangle\n"
+ " :type tri_p1: :class:`mathutils.Vector`\n"
+ " :arg tri_p2: Second point of the triangle\n"
+ " :type tri_p2: :class:`mathutils.Vector`\n"
+ " :arg tri_p3: Third point of the triangle\n"
+ " :type tri_p3: :class:`mathutils.Vector`\n"
+ " :return: Point on the triangles plane or None if its outside the triangle\n"
+ " :rtype: :class:`mathutils.Vector` or None\n");
static PyObject *M_Geometry_intersect_point_tri(PyObject *UNUSED(self), PyObject *args)
{
- const char *error_prefix = "intersect_point_tri";
- PyObject *py_pt, *py_tri[3];
- float pt[3], tri[3][3];
- float vi[3];
- int i;
-
- if (!PyArg_ParseTuple(
- args, "OOOO:intersect_point_tri",
- &py_pt, UNPACK3_EX(&, py_tri, )))
- {
- return NULL;
- }
-
- if (mathutils_array_parse(pt, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_pt, error_prefix) == -1) {
- return NULL;
- }
- for (i = 0; i < ARRAY_SIZE(tri); i++) {
- if (mathutils_array_parse(tri[i], 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_tri[i], error_prefix) == -1) {
- return NULL;
- }
- }
-
- if (isect_point_tri_v3(pt, UNPACK3(tri), vi)) {
- return Vector_CreatePyObject(vi, 3, NULL);
- }
- else {
- Py_RETURN_NONE;
- }
+ const char *error_prefix = "intersect_point_tri";
+ PyObject *py_pt, *py_tri[3];
+ float pt[3], tri[3][3];
+ float vi[3];
+ int i;
+
+ if (!PyArg_ParseTuple(args, "OOOO:intersect_point_tri", &py_pt, UNPACK3_EX(&, py_tri, ))) {
+ return NULL;
+ }
+
+ if (mathutils_array_parse(pt, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_pt, error_prefix) ==
+ -1) {
+ return NULL;
+ }
+ for (i = 0; i < ARRAY_SIZE(tri); i++) {
+ if (mathutils_array_parse(
+ tri[i], 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_tri[i], error_prefix) == -1) {
+ return NULL;
+ }
+ }
+
+ if (isect_point_tri_v3(pt, UNPACK3(tri), vi)) {
+ return Vector_CreatePyObject(vi, 3, NULL);
+ }
+ else {
+ Py_RETURN_NONE;
+ }
}
-PyDoc_STRVAR(M_Geometry_intersect_point_tri_2d_doc,
-".. function:: intersect_point_tri_2d(pt, tri_p1, tri_p2, tri_p3)\n"
-"\n"
-" Takes 4 vectors (using only the x and y coordinates): one is the point and the next 3 define the triangle. Returns 1 if the point is within the triangle, otherwise 0.\n"
-"\n"
-" :arg pt: Point\n"
-" :type pt: :class:`mathutils.Vector`\n"
-" :arg tri_p1: First point of the triangle\n"
-" :type tri_p1: :class:`mathutils.Vector`\n"
-" :arg tri_p2: Second point of the triangle\n"
-" :type tri_p2: :class:`mathutils.Vector`\n"
-" :arg tri_p3: Third point of the triangle\n"
-" :type tri_p3: :class:`mathutils.Vector`\n"
-" :rtype: int\n"
-);
+PyDoc_STRVAR(
+ M_Geometry_intersect_point_tri_2d_doc,
+ ".. function:: intersect_point_tri_2d(pt, tri_p1, tri_p2, tri_p3)\n"
+ "\n"
+ " Takes 4 vectors (using only the x and y coordinates): one is the point and the next 3 "
+ "define the triangle. Returns 1 if the point is within the triangle, otherwise 0.\n"
+ "\n"
+ " :arg pt: Point\n"
+ " :type pt: :class:`mathutils.Vector`\n"
+ " :arg tri_p1: First point of the triangle\n"
+ " :type tri_p1: :class:`mathutils.Vector`\n"
+ " :arg tri_p2: Second point of the triangle\n"
+ " :type tri_p2: :class:`mathutils.Vector`\n"
+ " :arg tri_p3: Third point of the triangle\n"
+ " :type tri_p3: :class:`mathutils.Vector`\n"
+ " :rtype: int\n");
static PyObject *M_Geometry_intersect_point_tri_2d(PyObject *UNUSED(self), PyObject *args)
{
- const char *error_prefix = "intersect_point_tri_2d";
- PyObject *py_pt, *py_tri[3];
- float pt[2], tri[3][2];
- int i;
-
- if (!PyArg_ParseTuple(
- args, "OOOO:intersect_point_tri_2d",
- &py_pt, UNPACK3_EX(&, py_tri, )))
- {
- return NULL;
- }
-
- if (mathutils_array_parse(pt, 2, 2 | MU_ARRAY_SPILL, py_pt, error_prefix) == -1) {
- return NULL;
- }
- for (i = 0; i < ARRAY_SIZE(tri); i++) {
- if (mathutils_array_parse(tri[i], 2, 2 | MU_ARRAY_SPILL, py_tri[i], error_prefix) == -1) {
- return NULL;
- }
- }
-
- return PyLong_FromLong(isect_point_tri_v2(pt, UNPACK3(tri)));
+ const char *error_prefix = "intersect_point_tri_2d";
+ PyObject *py_pt, *py_tri[3];
+ float pt[2], tri[3][2];
+ int i;
+
+ if (!PyArg_ParseTuple(args, "OOOO:intersect_point_tri_2d", &py_pt, UNPACK3_EX(&, py_tri, ))) {
+ return NULL;
+ }
+
+ if (mathutils_array_parse(pt, 2, 2 | MU_ARRAY_SPILL, py_pt, error_prefix) == -1) {
+ return NULL;
+ }
+ for (i = 0; i < ARRAY_SIZE(tri); i++) {
+ if (mathutils_array_parse(tri[i], 2, 2 | MU_ARRAY_SPILL, py_tri[i], error_prefix) == -1) {
+ return NULL;
+ }
+ }
+
+ return PyLong_FromLong(isect_point_tri_v2(pt, UNPACK3(tri)));
}
PyDoc_STRVAR(M_Geometry_intersect_point_quad_2d_doc,
-".. function:: intersect_point_quad_2d(pt, quad_p1, quad_p2, quad_p3, quad_p4)\n"
-"\n"
-" Takes 5 vectors (using only the x and y coordinates): one is the point and the next 4 define the quad,\n"
-" only the x and y are used from the vectors. Returns 1 if the point is within the quad, otherwise 0.\n"
-" Works only with convex quads without singular edges.\n"
-"\n"
-" :arg pt: Point\n"
-" :type pt: :class:`mathutils.Vector`\n"
-" :arg quad_p1: First point of the quad\n"
-" :type quad_p1: :class:`mathutils.Vector`\n"
-" :arg quad_p2: Second point of the quad\n"
-" :type quad_p2: :class:`mathutils.Vector`\n"
-" :arg quad_p3: Third point of the quad\n"
-" :type quad_p3: :class:`mathutils.Vector`\n"
-" :arg quad_p4: Fourth point of the quad\n"
-" :type quad_p4: :class:`mathutils.Vector`\n"
-" :rtype: int\n"
-);
+ ".. function:: intersect_point_quad_2d(pt, quad_p1, quad_p2, quad_p3, quad_p4)\n"
+ "\n"
+ " Takes 5 vectors (using only the x and y coordinates): one is the point and the "
+ "next 4 define the quad,\n"
+ " only the x and y are used from the vectors. Returns 1 if the point is within the "
+ "quad, otherwise 0.\n"
+ " Works only with convex quads without singular edges.\n"
+ "\n"
+ " :arg pt: Point\n"
+ " :type pt: :class:`mathutils.Vector`\n"
+ " :arg quad_p1: First point of the quad\n"
+ " :type quad_p1: :class:`mathutils.Vector`\n"
+ " :arg quad_p2: Second point of the quad\n"
+ " :type quad_p2: :class:`mathutils.Vector`\n"
+ " :arg quad_p3: Third point of the quad\n"
+ " :type quad_p3: :class:`mathutils.Vector`\n"
+ " :arg quad_p4: Fourth point of the quad\n"
+ " :type quad_p4: :class:`mathutils.Vector`\n"
+ " :rtype: int\n");
static PyObject *M_Geometry_intersect_point_quad_2d(PyObject *UNUSED(self), PyObject *args)
{
- const char *error_prefix = "intersect_point_quad_2d";
- PyObject *py_pt, *py_quad[4];
- float pt[2], quad[4][2];
- int i;
-
- if (!PyArg_ParseTuple(
- args, "OOOOO:intersect_point_quad_2d",
- &py_pt, UNPACK4_EX(&, py_quad, )))
- {
- return NULL;
- }
-
- if (mathutils_array_parse(pt, 2, 2 | MU_ARRAY_SPILL, py_pt, error_prefix) == -1) {
- return NULL;
- }
- for (i = 0; i < ARRAY_SIZE(quad); i++) {
- if (mathutils_array_parse(quad[i], 2, 2 | MU_ARRAY_SPILL, py_quad[i], error_prefix) == -1) {
- return NULL;
- }
- }
-
- return PyLong_FromLong(isect_point_quad_v2(pt, UNPACK4(quad)));
+ const char *error_prefix = "intersect_point_quad_2d";
+ PyObject *py_pt, *py_quad[4];
+ float pt[2], quad[4][2];
+ int i;
+
+ if (!PyArg_ParseTuple(args, "OOOOO:intersect_point_quad_2d", &py_pt, UNPACK4_EX(&, py_quad, ))) {
+ return NULL;
+ }
+
+ if (mathutils_array_parse(pt, 2, 2 | MU_ARRAY_SPILL, py_pt, error_prefix) == -1) {
+ return NULL;
+ }
+ for (i = 0; i < ARRAY_SIZE(quad); i++) {
+ if (mathutils_array_parse(quad[i], 2, 2 | MU_ARRAY_SPILL, py_quad[i], error_prefix) == -1) {
+ return NULL;
+ }
+ }
+
+ return PyLong_FromLong(isect_point_quad_v2(pt, UNPACK4(quad)));
}
PyDoc_STRVAR(M_Geometry_distance_point_to_plane_doc,
-".. function:: distance_point_to_plane(pt, plane_co, plane_no)\n"
-"\n"
-" Returns the signed distance between a point and a plane "
-" (negative when below the normal).\n"
-"\n"
-" :arg pt: Point\n"
-" :type pt: :class:`mathutils.Vector`\n"
-" :arg plane_co: A point on the plane\n"
-" :type plane_co: :class:`mathutils.Vector`\n"
-" :arg plane_no: The direction the plane is facing\n"
-" :type plane_no: :class:`mathutils.Vector`\n"
-" :rtype: float\n"
-);
+ ".. function:: distance_point_to_plane(pt, plane_co, plane_no)\n"
+ "\n"
+ " Returns the signed distance between a point and a plane "
+ " (negative when below the normal).\n"
+ "\n"
+ " :arg pt: Point\n"
+ " :type pt: :class:`mathutils.Vector`\n"
+ " :arg plane_co: A point on the plane\n"
+ " :type plane_co: :class:`mathutils.Vector`\n"
+ " :arg plane_no: The direction the plane is facing\n"
+ " :type plane_no: :class:`mathutils.Vector`\n"
+ " :rtype: float\n");
static PyObject *M_Geometry_distance_point_to_plane(PyObject *UNUSED(self), PyObject *args)
{
- const char *error_prefix = "distance_point_to_plane";
- PyObject *py_pt, *py_plane_co, *py_plane_no;
- float pt[3], plane_co[3], plane_no[3];
- float plane[4];
-
- if (!PyArg_ParseTuple(
- args, "OOO:distance_point_to_plane",
- &py_pt, &py_plane_co, &py_plane_no))
- {
- return NULL;
- }
-
- if (((mathutils_array_parse(pt, 3, 3 | MU_ARRAY_SPILL, py_pt, error_prefix) != -1) &&
- (mathutils_array_parse(plane_co, 3, 3 | MU_ARRAY_SPILL, py_plane_co, error_prefix) != -1) &&
- (mathutils_array_parse(plane_no, 3, 3 | MU_ARRAY_SPILL, py_plane_no, error_prefix) != -1)) == 0)
- {
- return NULL;
- }
-
- plane_from_point_normal_v3(plane, plane_co, plane_no);
- return PyFloat_FromDouble(dist_signed_to_plane_v3(pt, plane));
+ const char *error_prefix = "distance_point_to_plane";
+ PyObject *py_pt, *py_plane_co, *py_plane_no;
+ float pt[3], plane_co[3], plane_no[3];
+ float plane[4];
+
+ if (!PyArg_ParseTuple(args, "OOO:distance_point_to_plane", &py_pt, &py_plane_co, &py_plane_no)) {
+ return NULL;
+ }
+
+ if (((mathutils_array_parse(pt, 3, 3 | MU_ARRAY_SPILL, py_pt, error_prefix) != -1) &&
+ (mathutils_array_parse(plane_co, 3, 3 | MU_ARRAY_SPILL, py_plane_co, error_prefix) != -1) &&
+ (mathutils_array_parse(plane_no, 3, 3 | MU_ARRAY_SPILL, py_plane_no, error_prefix) !=
+ -1)) == 0) {
+ return NULL;
+ }
+
+ plane_from_point_normal_v3(plane, plane_co, plane_no);
+ return PyFloat_FromDouble(dist_signed_to_plane_v3(pt, plane));
}
-PyDoc_STRVAR(M_Geometry_barycentric_transform_doc,
-".. function:: barycentric_transform(point, tri_a1, tri_a2, tri_a3, tri_b1, tri_b2, tri_b3)\n"
-"\n"
-" Return a transformed point, the transformation is defined by 2 triangles.\n"
-"\n"
-" :arg point: The point to transform.\n"
-" :type point: :class:`mathutils.Vector`\n"
-" :arg tri_a1: source triangle vertex.\n"
-" :type tri_a1: :class:`mathutils.Vector`\n"
-" :arg tri_a2: source triangle vertex.\n"
-" :type tri_a2: :class:`mathutils.Vector`\n"
-" :arg tri_a3: source triangle vertex.\n"
-" :type tri_a3: :class:`mathutils.Vector`\n"
-" :arg tri_b1: target triangle vertex.\n"
-" :type tri_b1: :class:`mathutils.Vector`\n"
-" :arg tri_b2: target triangle vertex.\n"
-" :type tri_b2: :class:`mathutils.Vector`\n"
-" :arg tri_b3: target triangle vertex.\n"
-" :type tri_b3: :class:`mathutils.Vector`\n"
-" :return: The transformed point\n"
-" :rtype: :class:`mathutils.Vector`'s\n"
-);
+PyDoc_STRVAR(
+ M_Geometry_barycentric_transform_doc,
+ ".. function:: barycentric_transform(point, tri_a1, tri_a2, tri_a3, tri_b1, tri_b2, tri_b3)\n"
+ "\n"
+ " Return a transformed point, the transformation is defined by 2 triangles.\n"
+ "\n"
+ " :arg point: The point to transform.\n"
+ " :type point: :class:`mathutils.Vector`\n"
+ " :arg tri_a1: source triangle vertex.\n"
+ " :type tri_a1: :class:`mathutils.Vector`\n"
+ " :arg tri_a2: source triangle vertex.\n"
+ " :type tri_a2: :class:`mathutils.Vector`\n"
+ " :arg tri_a3: source triangle vertex.\n"
+ " :type tri_a3: :class:`mathutils.Vector`\n"
+ " :arg tri_b1: target triangle vertex.\n"
+ " :type tri_b1: :class:`mathutils.Vector`\n"
+ " :arg tri_b2: target triangle vertex.\n"
+ " :type tri_b2: :class:`mathutils.Vector`\n"
+ " :arg tri_b3: target triangle vertex.\n"
+ " :type tri_b3: :class:`mathutils.Vector`\n"
+ " :return: The transformed point\n"
+ " :rtype: :class:`mathutils.Vector`'s\n");
static PyObject *M_Geometry_barycentric_transform(PyObject *UNUSED(self), PyObject *args)
{
- const char *error_prefix = "barycentric_transform";
- PyObject *py_pt_src, *py_tri_src[3], *py_tri_dst[3];
- float pt_src[3], pt_dst[3], tri_src[3][3], tri_dst[3][3];
- int i;
-
- if (!PyArg_ParseTuple(
- args, "OOOOOOO:barycentric_transform",
- &py_pt_src,
- UNPACK3_EX(&, py_tri_src, ),
- UNPACK3_EX(&, py_tri_dst, )))
- {
- return NULL;
- }
-
- if (mathutils_array_parse(pt_src, 3, 3 | MU_ARRAY_SPILL, py_pt_src, error_prefix) == -1) {
- return NULL;
- }
- for (i = 0; i < ARRAY_SIZE(tri_src); i++) {
- if (((mathutils_array_parse(tri_src[i], 3, 3 | MU_ARRAY_SPILL, py_tri_src[i], error_prefix) != -1) &&
- (mathutils_array_parse(tri_dst[i], 3, 3 | MU_ARRAY_SPILL, py_tri_dst[i], error_prefix) != -1)) == 0)
- {
- return NULL;
- }
- }
-
- transform_point_by_tri_v3(
- pt_dst, pt_src,
- UNPACK3(tri_dst),
- UNPACK3(tri_src));
-
- return Vector_CreatePyObject(pt_dst, 3, NULL);
+ const char *error_prefix = "barycentric_transform";
+ PyObject *py_pt_src, *py_tri_src[3], *py_tri_dst[3];
+ float pt_src[3], pt_dst[3], tri_src[3][3], tri_dst[3][3];
+ int i;
+
+ if (!PyArg_ParseTuple(args,
+ "OOOOOOO:barycentric_transform",
+ &py_pt_src,
+ UNPACK3_EX(&, py_tri_src, ),
+ UNPACK3_EX(&, py_tri_dst, ))) {
+ return NULL;
+ }
+
+ if (mathutils_array_parse(pt_src, 3, 3 | MU_ARRAY_SPILL, py_pt_src, error_prefix) == -1) {
+ return NULL;
+ }
+ for (i = 0; i < ARRAY_SIZE(tri_src); i++) {
+ if (((mathutils_array_parse(tri_src[i], 3, 3 | MU_ARRAY_SPILL, py_tri_src[i], error_prefix) !=
+ -1) &&
+ (mathutils_array_parse(tri_dst[i], 3, 3 | MU_ARRAY_SPILL, py_tri_dst[i], error_prefix) !=
+ -1)) == 0) {
+ return NULL;
+ }
+ }
+
+ transform_point_by_tri_v3(pt_dst, pt_src, UNPACK3(tri_dst), UNPACK3(tri_src));
+
+ return Vector_CreatePyObject(pt_dst, 3, NULL);
}
PyDoc_STRVAR(M_Geometry_points_in_planes_doc,
-".. function:: points_in_planes(planes)\n"
-"\n"
-" Returns a list of points inside all planes given and a list of index values for the planes used.\n"
-"\n"
-" :arg planes: List of planes (4D vectors).\n"
-" :type planes: list of :class:`mathutils.Vector`\n"
-" :return: two lists, once containing the vertices inside the planes, another containing the plane indices used\n"
-" :rtype: pair of lists\n"
-);
+ ".. function:: points_in_planes(planes)\n"
+ "\n"
+ " Returns a list of points inside all planes given and a list of index values for "
+ "the planes used.\n"
+ "\n"
+ " :arg planes: List of planes (4D vectors).\n"
+ " :type planes: list of :class:`mathutils.Vector`\n"
+ " :return: two lists, once containing the vertices inside the planes, another "
+ "containing the plane indices used\n"
+ " :rtype: pair of lists\n");
/* note: this function could be optimized by some spatial structure */
static PyObject *M_Geometry_points_in_planes(PyObject *UNUSED(self), PyObject *args)
{
- PyObject *py_planes;
- float (*planes)[4];
- unsigned int planes_len;
-
- if (!PyArg_ParseTuple(
- args, "O:points_in_planes",
- &py_planes))
- {
- return NULL;
- }
-
- if ((planes_len = mathutils_array_parse_alloc_v((float **)&planes, 4, py_planes, "points_in_planes")) == -1) {
- return NULL;
- }
- else {
- /* note, this could be refactored into plain C easy - py bits are noted */
- const float eps = 0.0001f;
- const unsigned int len = (unsigned int)planes_len;
- unsigned int i, j, k, l;
-
- float n1n2[3], n2n3[3], n3n1[3];
- float potentialVertex[3];
- char *planes_used = PyMem_Malloc(sizeof(char) * len);
-
- /* python */
- PyObject *py_verts = PyList_New(0);
- PyObject *py_plane_index = PyList_New(0);
-
- memset(planes_used, 0, sizeof(char) * len);
-
- for (i = 0; i < len; i++) {
- const float *N1 = planes[i];
- for (j = i + 1; j < len; j++) {
- const float *N2 = planes[j];
- cross_v3_v3v3(n1n2, N1, N2);
- if (len_squared_v3(n1n2) > eps) {
- for (k = j + 1; k < len; k++) {
- const float *N3 = planes[k];
- cross_v3_v3v3(n2n3, N2, N3);
- if (len_squared_v3(n2n3) > eps) {
- cross_v3_v3v3(n3n1, N3, N1);
- if (len_squared_v3(n3n1) > eps) {
- const float quotient = dot_v3v3(N1, n2n3);
- if (fabsf(quotient) > eps) {
- /* potentialVertex = (n2n3 * N1[3] + n3n1 * N2[3] + n1n2 * N3[3]) * (-1.0 / quotient); */
- const float quotient_ninv = -1.0f / quotient;
- potentialVertex[0] = ((n2n3[0] * N1[3]) + (n3n1[0] * N2[3]) + (n1n2[0] * N3[3])) * quotient_ninv;
- potentialVertex[1] = ((n2n3[1] * N1[3]) + (n3n1[1] * N2[3]) + (n1n2[1] * N3[3])) * quotient_ninv;
- potentialVertex[2] = ((n2n3[2] * N1[3]) + (n3n1[2] * N2[3]) + (n1n2[2] * N3[3])) * quotient_ninv;
- for (l = 0; l < len; l++) {
- const float *NP = planes[l];
- if ((dot_v3v3(NP, potentialVertex) + NP[3]) > 0.000001f) {
- break;
- }
- }
-
- if (l == len) { /* ok */
- /* python */
- PyList_APPEND(py_verts, Vector_CreatePyObject(potentialVertex, 3, NULL));
- planes_used[i] = planes_used[j] = planes_used[k] = true;
- }
- }
- }
- }
- }
- }
- }
- }
-
- PyMem_Free(planes);
-
- /* now make a list of used planes */
- for (i = 0; i < len; i++) {
- if (planes_used[i]) {
- PyList_APPEND(py_plane_index, PyLong_FromLong(i));
- }
- }
- PyMem_Free(planes_used);
-
- {
- PyObject *ret = PyTuple_New(2);
- PyTuple_SET_ITEMS(ret,
- py_verts,
- py_plane_index);
- return ret;
- }
- }
+ PyObject *py_planes;
+ float(*planes)[4];
+ unsigned int planes_len;
+
+ if (!PyArg_ParseTuple(args, "O:points_in_planes", &py_planes)) {
+ return NULL;
+ }
+
+ if ((planes_len = mathutils_array_parse_alloc_v(
+ (float **)&planes, 4, py_planes, "points_in_planes")) == -1) {
+ return NULL;
+ }
+ else {
+ /* note, this could be refactored into plain C easy - py bits are noted */
+ const float eps = 0.0001f;
+ const unsigned int len = (unsigned int)planes_len;
+ unsigned int i, j, k, l;
+
+ float n1n2[3], n2n3[3], n3n1[3];
+ float potentialVertex[3];
+ char *planes_used = PyMem_Malloc(sizeof(char) * len);
+
+ /* python */
+ PyObject *py_verts = PyList_New(0);
+ PyObject *py_plane_index = PyList_New(0);
+
+ memset(planes_used, 0, sizeof(char) * len);
+
+ for (i = 0; i < len; i++) {
+ const float *N1 = planes[i];
+ for (j = i + 1; j < len; j++) {
+ const float *N2 = planes[j];
+ cross_v3_v3v3(n1n2, N1, N2);
+ if (len_squared_v3(n1n2) > eps) {
+ for (k = j + 1; k < len; k++) {
+ const float *N3 = planes[k];
+ cross_v3_v3v3(n2n3, N2, N3);
+ if (len_squared_v3(n2n3) > eps) {
+ cross_v3_v3v3(n3n1, N3, N1);
+ if (len_squared_v3(n3n1) > eps) {
+ const float quotient = dot_v3v3(N1, n2n3);
+ if (fabsf(quotient) > eps) {
+ /* potentialVertex = (n2n3 * N1[3] + n3n1 * N2[3] + n1n2 * N3[3]) * (-1.0 / quotient); */
+ const float quotient_ninv = -1.0f / quotient;
+ potentialVertex[0] = ((n2n3[0] * N1[3]) + (n3n1[0] * N2[3]) +
+ (n1n2[0] * N3[3])) *
+ quotient_ninv;
+ potentialVertex[1] = ((n2n3[1] * N1[3]) + (n3n1[1] * N2[3]) +
+ (n1n2[1] * N3[3])) *
+ quotient_ninv;
+ potentialVertex[2] = ((n2n3[2] * N1[3]) + (n3n1[2] * N2[3]) +
+ (n1n2[2] * N3[3])) *
+ quotient_ninv;
+ for (l = 0; l < len; l++) {
+ const float *NP = planes[l];
+ if ((dot_v3v3(NP, potentialVertex) + NP[3]) > 0.000001f) {
+ break;
+ }
+ }
+
+ if (l == len) { /* ok */
+ /* python */
+ PyList_APPEND(py_verts, Vector_CreatePyObject(potentialVertex, 3, NULL));
+ planes_used[i] = planes_used[j] = planes_used[k] = true;
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+
+ PyMem_Free(planes);
+
+ /* now make a list of used planes */
+ for (i = 0; i < len; i++) {
+ if (planes_used[i]) {
+ PyList_APPEND(py_plane_index, PyLong_FromLong(i));
+ }
+ }
+ PyMem_Free(planes_used);
+
+ {
+ PyObject *ret = PyTuple_New(2);
+ PyTuple_SET_ITEMS(ret, py_verts, py_plane_index);
+ return ret;
+ }
+ }
}
#ifndef MATH_STANDALONE
PyDoc_STRVAR(M_Geometry_interpolate_bezier_doc,
-".. function:: interpolate_bezier(knot1, handle1, handle2, knot2, resolution)\n"
-"\n"
-" Interpolate a bezier spline segment.\n"
-"\n"
-" :arg knot1: First bezier spline point.\n"
-" :type knot1: :class:`mathutils.Vector`\n"
-" :arg handle1: First bezier spline handle.\n"
-" :type handle1: :class:`mathutils.Vector`\n"
-" :arg handle2: Second bezier spline handle.\n"
-" :type handle2: :class:`mathutils.Vector`\n"
-" :arg knot2: Second bezier spline point.\n"
-" :type knot2: :class:`mathutils.Vector`\n"
-" :arg resolution: Number of points to return.\n"
-" :type resolution: int\n"
-" :return: The interpolated points\n"
-" :rtype: list of :class:`mathutils.Vector`'s\n"
-);
+ ".. function:: interpolate_bezier(knot1, handle1, handle2, knot2, resolution)\n"
+ "\n"
+ " Interpolate a bezier spline segment.\n"
+ "\n"
+ " :arg knot1: First bezier spline point.\n"
+ " :type knot1: :class:`mathutils.Vector`\n"
+ " :arg handle1: First bezier spline handle.\n"
+ " :type handle1: :class:`mathutils.Vector`\n"
+ " :arg handle2: Second bezier spline handle.\n"
+ " :type handle2: :class:`mathutils.Vector`\n"
+ " :arg knot2: Second bezier spline point.\n"
+ " :type knot2: :class:`mathutils.Vector`\n"
+ " :arg resolution: Number of points to return.\n"
+ " :type resolution: int\n"
+ " :return: The interpolated points\n"
+ " :rtype: list of :class:`mathutils.Vector`'s\n");
static PyObject *M_Geometry_interpolate_bezier(PyObject *UNUSED(self), PyObject *args)
{
- const char *error_prefix = "interpolate_bezier";
- PyObject *py_data[4];
- float data[4][4] = {{0.0f}};
- int resolu;
- int dims = 0;
- int i;
- float *coord_array, *fp;
- PyObject *list;
-
- if (!PyArg_ParseTuple(
- args, "OOOOi:interpolate_bezier",
- UNPACK4_EX(&, py_data, ), &resolu))
- {
- return NULL;
- }
-
- for (i = 0; i < 4; i++) {
- int dims_tmp;
- if ((dims_tmp = mathutils_array_parse(data[i], 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_data[i], error_prefix)) == -1) {
- return NULL;
- }
- dims = max_ii(dims, dims_tmp);
- }
-
- if (resolu <= 1) {
- PyErr_SetString(PyExc_ValueError,
- "resolution must be 2 or over");
- return NULL;
- }
-
- coord_array = MEM_callocN(dims * (resolu) * sizeof(float), error_prefix);
- for (i = 0; i < dims; i++) {
- BKE_curve_forward_diff_bezier(UNPACK4_EX(, data, [i]), coord_array + i, resolu - 1, sizeof(float) * dims);
- }
-
- list = PyList_New(resolu);
- fp = coord_array;
- for (i = 0; i < resolu; i++, fp = fp + dims) {
- PyList_SET_ITEM(list, i, Vector_CreatePyObject(fp, dims, NULL));
- }
- MEM_freeN(coord_array);
- return list;
+ const char *error_prefix = "interpolate_bezier";
+ PyObject *py_data[4];
+ float data[4][4] = {{0.0f}};
+ int resolu;
+ int dims = 0;
+ int i;
+ float *coord_array, *fp;
+ PyObject *list;
+
+ if (!PyArg_ParseTuple(args, "OOOOi:interpolate_bezier", UNPACK4_EX(&, py_data, ), &resolu)) {
+ return NULL;
+ }
+
+ for (i = 0; i < 4; i++) {
+ int dims_tmp;
+ if ((dims_tmp = mathutils_array_parse(
+ data[i], 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_data[i], error_prefix)) == -1) {
+ return NULL;
+ }
+ dims = max_ii(dims, dims_tmp);
+ }
+
+ if (resolu <= 1) {
+ PyErr_SetString(PyExc_ValueError, "resolution must be 2 or over");
+ return NULL;
+ }
+
+ coord_array = MEM_callocN(dims * (resolu) * sizeof(float), error_prefix);
+ for (i = 0; i < dims; i++) {
+ BKE_curve_forward_diff_bezier(
+ UNPACK4_EX(, data, [i]), coord_array + i, resolu - 1, sizeof(float) * dims);
+ }
+
+ list = PyList_New(resolu);
+ fp = coord_array;
+ for (i = 0; i < resolu; i++, fp = fp + dims) {
+ PyList_SET_ITEM(list, i, Vector_CreatePyObject(fp, dims, NULL));
+ }
+ MEM_freeN(coord_array);
+ return list;
}
-
PyDoc_STRVAR(M_Geometry_tessellate_polygon_doc,
-".. function:: tessellate_polygon(veclist_list)\n"
-"\n"
-" Takes a list of polylines (each point a vector) and returns the point indices for a polyline filled with triangles.\n"
-"\n"
-" :arg veclist_list: list of polylines\n"
-" :rtype: list\n"
-);
+ ".. function:: tessellate_polygon(veclist_list)\n"
+ "\n"
+ " Takes a list of polylines (each point a vector) and returns the point indices "
+ "for a polyline filled with triangles.\n"
+ "\n"
+ " :arg veclist_list: list of polylines\n"
+ " :rtype: list\n");
/* PolyFill function, uses Blenders scanfill to fill multiple poly lines */
static PyObject *M_Geometry_tessellate_polygon(PyObject *UNUSED(self), PyObject *polyLineSeq)
{
- PyObject *tri_list; /*return this list of tri's */
- PyObject *polyLine, *polyVec;
- int i, len_polylines, len_polypoints, ls_error = 0;
-
- /* display listbase */
- ListBase dispbase = {NULL, NULL};
- DispList *dl;
- float *fp; /*pointer to the array of malloced dl->verts to set the points from the vectors */
- int index, *dl_face, totpoints = 0;
-
- if (!PySequence_Check(polyLineSeq)) {
- PyErr_SetString(PyExc_TypeError,
- "expected a sequence of poly lines");
- return NULL;
- }
-
- len_polylines = PySequence_Size(polyLineSeq);
-
- for (i = 0; i < len_polylines; i++) {
- polyLine = PySequence_GetItem(polyLineSeq, i);
- if (!PySequence_Check(polyLine)) {
- BKE_displist_free(&dispbase);
- Py_XDECREF(polyLine); /* may be null so use Py_XDECREF*/
- PyErr_SetString(PyExc_TypeError,
- "One or more of the polylines is not a sequence of mathutils.Vector's");
- return NULL;
- }
-
- len_polypoints = PySequence_Size(polyLine);
- if (len_polypoints > 0) { /* don't bother adding edges as polylines */
-#if 0
- if (EXPP_check_sequence_consistency(polyLine, &vector_Type) != 1) {
- freedisplist(&dispbase);
- Py_DECREF(polyLine);
- PyErr_SetString(PyExc_TypeError,
- "A point in one of the polylines is not a mathutils.Vector type");
- return NULL;
- }
-#endif
- dl = MEM_callocN(sizeof(DispList), "poly disp");
- BLI_addtail(&dispbase, dl);
- dl->type = DL_INDEX3;
- dl->nr = len_polypoints;
- dl->type = DL_POLY;
- dl->parts = 1; /* no faces, 1 edge loop */
- dl->col = 0; /* no material */
- dl->verts = fp = MEM_callocN(sizeof(float) * 3 * len_polypoints, "dl verts");
- dl->index = MEM_callocN(sizeof(int) * 3 * len_polypoints, "dl index");
-
- for (index = 0; index < len_polypoints; index++, fp += 3) {
- polyVec = PySequence_GetItem(polyLine, index);
- if (VectorObject_Check(polyVec)) {
-
- if (BaseMath_ReadCallback((VectorObject *)polyVec) == -1) {
- ls_error = 1;
- }
-
- fp[0] = ((VectorObject *)polyVec)->vec[0];
- fp[1] = ((VectorObject *)polyVec)->vec[1];
- if (((VectorObject *)polyVec)->size > 2) {
- fp[2] = ((VectorObject *)polyVec)->vec[2];
- }
- else {
- /* if its a 2d vector then set the z to be zero */
- fp[2] = 0.0f;
- }
- }
- else {
- ls_error = 1;
- }
-
- totpoints++;
- Py_DECREF(polyVec);
- }
- }
- Py_DECREF(polyLine);
- }
-
- if (ls_error) {
- BKE_displist_free(&dispbase); /* possible some dl was allocated */
- PyErr_SetString(PyExc_TypeError,
- "A point in one of the polylines "
- "is not a mathutils.Vector type");
- return NULL;
- }
- else if (totpoints) {
- /* now make the list to return */
- /* TODO, add normal arg */
- BKE_displist_fill(&dispbase, &dispbase, NULL, false);
-
- /* The faces are stored in a new DisplayList
- * that's added to the head of the listbase */
- dl = dispbase.first;
-
- tri_list = PyList_New(dl->parts);
- if (!tri_list) {
- BKE_displist_free(&dispbase);
- PyErr_SetString(PyExc_RuntimeError,
- "failed to make a new list");
- return NULL;
- }
-
- index = 0;
- dl_face = dl->index;
- while (index < dl->parts) {
- PyList_SET_ITEM(tri_list, index, PyC_Tuple_Pack_I32(dl_face[0], dl_face[1], dl_face[2]));
- dl_face += 3;
- index++;
- }
- BKE_displist_free(&dispbase);
- }
- else {
- /* no points, do this so scripts don't barf */
- BKE_displist_free(&dispbase); /* possible some dl was allocated */
- tri_list = PyList_New(0);
- }
-
- return tri_list;
+ PyObject *tri_list; /*return this list of tri's */
+ PyObject *polyLine, *polyVec;
+ int i, len_polylines, len_polypoints, ls_error = 0;
+
+ /* display listbase */
+ ListBase dispbase = {NULL, NULL};
+ DispList *dl;
+ float *fp; /*pointer to the array of malloced dl->verts to set the points from the vectors */
+ int index, *dl_face, totpoints = 0;
+
+ if (!PySequence_Check(polyLineSeq)) {
+ PyErr_SetString(PyExc_TypeError, "expected a sequence of poly lines");
+ return NULL;
+ }
+
+ len_polylines = PySequence_Size(polyLineSeq);
+
+ for (i = 0; i < len_polylines; i++) {
+ polyLine = PySequence_GetItem(polyLineSeq, i);
+ if (!PySequence_Check(polyLine)) {
+ BKE_displist_free(&dispbase);
+ Py_XDECREF(polyLine); /* may be null so use Py_XDECREF*/
+ PyErr_SetString(PyExc_TypeError,
+ "One or more of the polylines is not a sequence of mathutils.Vector's");
+ return NULL;
+ }
+
+ len_polypoints = PySequence_Size(polyLine);
+ if (len_polypoints > 0) { /* don't bother adding edges as polylines */
+# if 0
+ if (EXPP_check_sequence_consistency(polyLine, &vector_Type) != 1) {
+ freedisplist(&dispbase);
+ Py_DECREF(polyLine);
+ PyErr_SetString(PyExc_TypeError,
+ "A point in one of the polylines is not a mathutils.Vector type");
+ return NULL;
+ }
+# endif
+ dl = MEM_callocN(sizeof(DispList), "poly disp");
+ BLI_addtail(&dispbase, dl);
+ dl->type = DL_INDEX3;
+ dl->nr = len_polypoints;
+ dl->type = DL_POLY;
+ dl->parts = 1; /* no faces, 1 edge loop */
+ dl->col = 0; /* no material */
+ dl->verts = fp = MEM_callocN(sizeof(float) * 3 * len_polypoints, "dl verts");
+ dl->index = MEM_callocN(sizeof(int) * 3 * len_polypoints, "dl index");
+
+ for (index = 0; index < len_polypoints; index++, fp += 3) {
+ polyVec = PySequence_GetItem(polyLine, index);
+ if (VectorObject_Check(polyVec)) {
+
+ if (BaseMath_ReadCallback((VectorObject *)polyVec) == -1) {
+ ls_error = 1;
+ }
+
+ fp[0] = ((VectorObject *)polyVec)->vec[0];
+ fp[1] = ((VectorObject *)polyVec)->vec[1];
+ if (((VectorObject *)polyVec)->size > 2) {
+ fp[2] = ((VectorObject *)polyVec)->vec[2];
+ }
+ else {
+ /* if its a 2d vector then set the z to be zero */
+ fp[2] = 0.0f;
+ }
+ }
+ else {
+ ls_error = 1;
+ }
+
+ totpoints++;
+ Py_DECREF(polyVec);
+ }
+ }
+ Py_DECREF(polyLine);
+ }
+
+ if (ls_error) {
+ BKE_displist_free(&dispbase); /* possible some dl was allocated */
+ PyErr_SetString(PyExc_TypeError,
+ "A point in one of the polylines "
+ "is not a mathutils.Vector type");
+ return NULL;
+ }
+ else if (totpoints) {
+ /* now make the list to return */
+ /* TODO, add normal arg */
+ BKE_displist_fill(&dispbase, &dispbase, NULL, false);
+
+ /* The faces are stored in a new DisplayList
+ * that's added to the head of the listbase */
+ dl = dispbase.first;
+
+ tri_list = PyList_New(dl->parts);
+ if (!tri_list) {
+ BKE_displist_free(&dispbase);
+ PyErr_SetString(PyExc_RuntimeError, "failed to make a new list");
+ return NULL;
+ }
+
+ index = 0;
+ dl_face = dl->index;
+ while (index < dl->parts) {
+ PyList_SET_ITEM(tri_list, index, PyC_Tuple_Pack_I32(dl_face[0], dl_face[1], dl_face[2]));
+ dl_face += 3;
+ index++;
+ }
+ BKE_displist_free(&dispbase);
+ }
+ else {
+ /* no points, do this so scripts don't barf */
+ BKE_displist_free(&dispbase); /* possible some dl was allocated */
+ tri_list = PyList_New(0);
+ }
+
+ return tri_list;
}
-
static int boxPack_FromPyObject(PyObject *value, BoxPack **boxarray)
{
- Py_ssize_t len, i;
- PyObject *list_item, *item_1, *item_2;
- BoxPack *box;
-
-
- /* Error checking must already be done */
- if (!PyList_Check(value)) {
- PyErr_SetString(PyExc_TypeError,
- "can only back a list of [x, y, w, h]");
- return -1;
- }
-
- len = PyList_GET_SIZE(value);
-
- *boxarray = MEM_mallocN(len * sizeof(BoxPack), "BoxPack box");
-
-
- for (i = 0; i < len; i++) {
- list_item = PyList_GET_ITEM(value, i);
- if (!PyList_Check(list_item) || PyList_GET_SIZE(list_item) < 4) {
- MEM_freeN(*boxarray);
- PyErr_SetString(PyExc_TypeError,
- "can only pack a list of [x, y, w, h]");
- return -1;
- }
-
- box = (*boxarray) + i;
-
- item_1 = PyList_GET_ITEM(list_item, 2);
- item_2 = PyList_GET_ITEM(list_item, 3);
-
- box->w = (float)PyFloat_AsDouble(item_1);
- box->h = (float)PyFloat_AsDouble(item_2);
- box->index = i;
-
- /* accounts for error case too and overwrites with own error */
- if (box->w < 0.0f || box->h < 0.0f) {
- MEM_freeN(*boxarray);
- PyErr_SetString(PyExc_TypeError,
- "error parsing width and height values from list: "
- "[x, y, w, h], not numbers or below zero");
- return -1;
- }
-
- /* verts will be added later */
- }
- return 0;
+ Py_ssize_t len, i;
+ PyObject *list_item, *item_1, *item_2;
+ BoxPack *box;
+
+ /* Error checking must already be done */
+ if (!PyList_Check(value)) {
+ PyErr_SetString(PyExc_TypeError, "can only back a list of [x, y, w, h]");
+ return -1;
+ }
+
+ len = PyList_GET_SIZE(value);
+
+ *boxarray = MEM_mallocN(len * sizeof(BoxPack), "BoxPack box");
+
+ for (i = 0; i < len; i++) {
+ list_item = PyList_GET_ITEM(value, i);
+ if (!PyList_Check(list_item) || PyList_GET_SIZE(list_item) < 4) {
+ MEM_freeN(*boxarray);
+ PyErr_SetString(PyExc_TypeError, "can only pack a list of [x, y, w, h]");
+ return -1;
+ }
+
+ box = (*boxarray) + i;
+
+ item_1 = PyList_GET_ITEM(list_item, 2);
+ item_2 = PyList_GET_ITEM(list_item, 3);
+
+ box->w = (float)PyFloat_AsDouble(item_1);
+ box->h = (float)PyFloat_AsDouble(item_2);
+ box->index = i;
+
+ /* accounts for error case too and overwrites with own error */
+ if (box->w < 0.0f || box->h < 0.0f) {
+ MEM_freeN(*boxarray);
+ PyErr_SetString(PyExc_TypeError,
+ "error parsing width and height values from list: "
+ "[x, y, w, h], not numbers or below zero");
+ return -1;
+ }
+
+ /* verts will be added later */
+ }
+ return 0;
}
static void boxPack_ToPyObject(PyObject *value, BoxPack **boxarray)
{
- Py_ssize_t len, i;
- PyObject *list_item;
- BoxPack *box;
-
- len = PyList_GET_SIZE(value);
-
- for (i = 0; i < len; i++) {
- box = (*boxarray) + i;
- list_item = PyList_GET_ITEM(value, box->index);
- PyList_SET_ITEM(list_item, 0, PyFloat_FromDouble(box->x));
- PyList_SET_ITEM(list_item, 1, PyFloat_FromDouble(box->y));
- }
- MEM_freeN(*boxarray);
+ Py_ssize_t len, i;
+ PyObject *list_item;
+ BoxPack *box;
+
+ len = PyList_GET_SIZE(value);
+
+ for (i = 0; i < len; i++) {
+ box = (*boxarray) + i;
+ list_item = PyList_GET_ITEM(value, box->index);
+ PyList_SET_ITEM(list_item, 0, PyFloat_FromDouble(box->x));
+ PyList_SET_ITEM(list_item, 1, PyFloat_FromDouble(box->y));
+ }
+ MEM_freeN(*boxarray);
}
PyDoc_STRVAR(M_Geometry_box_pack_2d_doc,
-".. function:: box_pack_2d(boxes)\n"
-"\n"
-" Returns the normal of the 3D tri or quad.\n"
-"\n"
-" :arg boxes: list of boxes, each box is a list where the first 4 items are [x, y, width, height, ...] other items are ignored.\n"
-" :type boxes: list\n"
-" :return: the width and height of the packed bounding box\n"
-" :rtype: tuple, pair of floats\n"
-);
+ ".. function:: box_pack_2d(boxes)\n"
+ "\n"
+ " Returns the normal of the 3D tri or quad.\n"
+ "\n"
+ " :arg boxes: list of boxes, each box is a list where the first 4 items are [x, y, "
+ "width, height, ...] other items are ignored.\n"
+ " :type boxes: list\n"
+ " :return: the width and height of the packed bounding box\n"
+ " :rtype: tuple, pair of floats\n");
static PyObject *M_Geometry_box_pack_2d(PyObject *UNUSED(self), PyObject *boxlist)
{
- float tot_width = 0.0f, tot_height = 0.0f;
- Py_ssize_t len;
-
- PyObject *ret;
-
- if (!PyList_Check(boxlist)) {
- PyErr_SetString(PyExc_TypeError,
- "expected a list of boxes [[x, y, w, h], ... ]");
- return NULL;
- }
-
- len = PyList_GET_SIZE(boxlist);
- if (len) {
- BoxPack *boxarray = NULL;
- if (boxPack_FromPyObject(boxlist, &boxarray) == -1) {
- return NULL; /* exception set */
- }
-
- /* Non Python function */
- BLI_box_pack_2d(boxarray, len, &tot_width, &tot_height);
-
- boxPack_ToPyObject(boxlist, &boxarray);
- }
-
- ret = PyTuple_New(2);
- PyTuple_SET_ITEMS(ret,
- PyFloat_FromDouble(tot_width),
- PyFloat_FromDouble(tot_height));
- return ret;
+ float tot_width = 0.0f, tot_height = 0.0f;
+ Py_ssize_t len;
+
+ PyObject *ret;
+
+ if (!PyList_Check(boxlist)) {
+ PyErr_SetString(PyExc_TypeError, "expected a list of boxes [[x, y, w, h], ... ]");
+ return NULL;
+ }
+
+ len = PyList_GET_SIZE(boxlist);
+ if (len) {
+ BoxPack *boxarray = NULL;
+ if (boxPack_FromPyObject(boxlist, &boxarray) == -1) {
+ return NULL; /* exception set */
+ }
+
+ /* Non Python function */
+ BLI_box_pack_2d(boxarray, len, &tot_width, &tot_height);
+
+ boxPack_ToPyObject(boxlist, &boxarray);
+ }
+
+ ret = PyTuple_New(2);
+ PyTuple_SET_ITEMS(ret, PyFloat_FromDouble(tot_width), PyFloat_FromDouble(tot_height));
+ return ret;
}
PyDoc_STRVAR(M_Geometry_box_fit_2d_doc,
-".. function:: box_fit_2d(points)\n"
-"\n"
-" Returns an angle that best fits the points to an axis aligned rectangle\n"
-"\n"
-" :arg points: list of 2d points.\n"
-" :type points: list\n"
-" :return: angle\n"
-" :rtype: float\n"
-);
+ ".. function:: box_fit_2d(points)\n"
+ "\n"
+ " Returns an angle that best fits the points to an axis aligned rectangle\n"
+ "\n"
+ " :arg points: list of 2d points.\n"
+ " :type points: list\n"
+ " :return: angle\n"
+ " :rtype: float\n");
static PyObject *M_Geometry_box_fit_2d(PyObject *UNUSED(self), PyObject *pointlist)
{
- float (*points)[2];
- Py_ssize_t len;
+ float(*points)[2];
+ Py_ssize_t len;
- float angle = 0.0f;
+ float angle = 0.0f;
- len = mathutils_array_parse_alloc_v(((float **)&points), 2, pointlist, "box_fit_2d");
- if (len == -1) {
- return NULL;
- }
+ len = mathutils_array_parse_alloc_v(((float **)&points), 2, pointlist, "box_fit_2d");
+ if (len == -1) {
+ return NULL;
+ }
- if (len) {
- /* Non Python function */
- angle = BLI_convexhull_aabb_fit_points_2d(points, len);
+ if (len) {
+ /* Non Python function */
+ angle = BLI_convexhull_aabb_fit_points_2d(points, len);
- PyMem_Free(points);
- }
+ PyMem_Free(points);
+ }
-
- return PyFloat_FromDouble(angle);
+ return PyFloat_FromDouble(angle);
}
PyDoc_STRVAR(M_Geometry_convex_hull_2d_doc,
-".. function:: convex_hull_2d(points)\n"
-"\n"
-" Returns a list of indices into the list given\n"
-"\n"
-" :arg points: list of 2d points.\n"
-" :type points: list\n"
-" :return: a list of indices\n"
-" :rtype: list of ints\n"
-);
+ ".. function:: convex_hull_2d(points)\n"
+ "\n"
+ " Returns a list of indices into the list given\n"
+ "\n"
+ " :arg points: list of 2d points.\n"
+ " :type points: list\n"
+ " :return: a list of indices\n"
+ " :rtype: list of ints\n");
static PyObject *M_Geometry_convex_hull_2d(PyObject *UNUSED(self), PyObject *pointlist)
{
- float (*points)[2];
- Py_ssize_t len;
-
- PyObject *ret;
+ float(*points)[2];
+ Py_ssize_t len;
- len = mathutils_array_parse_alloc_v(((float **)&points), 2, pointlist, "convex_hull_2d");
- if (len == -1) {
- return NULL;
- }
+ PyObject *ret;
- if (len) {
- int *index_map;
- Py_ssize_t len_ret, i;
+ len = mathutils_array_parse_alloc_v(((float **)&points), 2, pointlist, "convex_hull_2d");
+ if (len == -1) {
+ return NULL;
+ }
- index_map = MEM_mallocN(sizeof(*index_map) * len * 2, __func__);
+ if (len) {
+ int *index_map;
+ Py_ssize_t len_ret, i;
- /* Non Python function */
- len_ret = BLI_convexhull_2d(points, len, index_map);
+ index_map = MEM_mallocN(sizeof(*index_map) * len * 2, __func__);
- ret = PyList_New(len_ret);
- for (i = 0; i < len_ret; i++) {
- PyList_SET_ITEM(ret, i, PyLong_FromLong(index_map[i]));
- }
+ /* Non Python function */
+ len_ret = BLI_convexhull_2d(points, len, index_map);
- MEM_freeN(index_map);
+ ret = PyList_New(len_ret);
+ for (i = 0; i < len_ret; i++) {
+ PyList_SET_ITEM(ret, i, PyLong_FromLong(index_map[i]));
+ }
- PyMem_Free(points);
- }
- else {
- ret = PyList_New(0);
- }
+ MEM_freeN(index_map);
+ PyMem_Free(points);
+ }
+ else {
+ ret = PyList_New(0);
+ }
- return ret;
+ return ret;
}
#endif /* MATH_STANDALONE */
-
static PyMethodDef M_Geometry_methods[] = {
- {"intersect_ray_tri", (PyCFunction) M_Geometry_intersect_ray_tri, METH_VARARGS, M_Geometry_intersect_ray_tri_doc},
- {"intersect_point_line", (PyCFunction) M_Geometry_intersect_point_line, METH_VARARGS, M_Geometry_intersect_point_line_doc},
- {"intersect_point_tri", (PyCFunction) M_Geometry_intersect_point_tri, METH_VARARGS, M_Geometry_intersect_point_tri_doc},
- {"intersect_point_tri_2d", (PyCFunction) M_Geometry_intersect_point_tri_2d, METH_VARARGS, M_Geometry_intersect_point_tri_2d_doc},
- {"intersect_point_quad_2d", (PyCFunction) M_Geometry_intersect_point_quad_2d, METH_VARARGS, M_Geometry_intersect_point_quad_2d_doc},
- {"intersect_line_line", (PyCFunction) M_Geometry_intersect_line_line, METH_VARARGS, M_Geometry_intersect_line_line_doc},
- {"intersect_line_line_2d", (PyCFunction) M_Geometry_intersect_line_line_2d, METH_VARARGS, M_Geometry_intersect_line_line_2d_doc},
- {"intersect_line_plane", (PyCFunction) M_Geometry_intersect_line_plane, METH_VARARGS, M_Geometry_intersect_line_plane_doc},
- {"intersect_plane_plane", (PyCFunction) M_Geometry_intersect_plane_plane, METH_VARARGS, M_Geometry_intersect_plane_plane_doc},
- {"intersect_line_sphere", (PyCFunction) M_Geometry_intersect_line_sphere, METH_VARARGS, M_Geometry_intersect_line_sphere_doc},
- {"intersect_line_sphere_2d", (PyCFunction) M_Geometry_intersect_line_sphere_2d, METH_VARARGS, M_Geometry_intersect_line_sphere_2d_doc},
- {"distance_point_to_plane", (PyCFunction) M_Geometry_distance_point_to_plane, METH_VARARGS, M_Geometry_distance_point_to_plane_doc},
- {"intersect_sphere_sphere_2d", (PyCFunction) M_Geometry_intersect_sphere_sphere_2d, METH_VARARGS, M_Geometry_intersect_sphere_sphere_2d_doc},
- {"area_tri", (PyCFunction) M_Geometry_area_tri, METH_VARARGS, M_Geometry_area_tri_doc},
- {"volume_tetrahedron", (PyCFunction) M_Geometry_volume_tetrahedron, METH_VARARGS, M_Geometry_volume_tetrahedron_doc},
- {"normal", (PyCFunction) M_Geometry_normal, METH_VARARGS, M_Geometry_normal_doc},
- {"barycentric_transform", (PyCFunction) M_Geometry_barycentric_transform, METH_VARARGS, M_Geometry_barycentric_transform_doc},
- {"points_in_planes", (PyCFunction) M_Geometry_points_in_planes, METH_VARARGS, M_Geometry_points_in_planes_doc},
+ {"intersect_ray_tri",
+ (PyCFunction)M_Geometry_intersect_ray_tri,
+ METH_VARARGS,
+ M_Geometry_intersect_ray_tri_doc},
+ {"intersect_point_line",
+ (PyCFunction)M_Geometry_intersect_point_line,
+ METH_VARARGS,
+ M_Geometry_intersect_point_line_doc},
+ {"intersect_point_tri",
+ (PyCFunction)M_Geometry_intersect_point_tri,
+ METH_VARARGS,
+ M_Geometry_intersect_point_tri_doc},
+ {"intersect_point_tri_2d",
+ (PyCFunction)M_Geometry_intersect_point_tri_2d,
+ METH_VARARGS,
+ M_Geometry_intersect_point_tri_2d_doc},
+ {"intersect_point_quad_2d",
+ (PyCFunction)M_Geometry_intersect_point_quad_2d,
+ METH_VARARGS,
+ M_Geometry_intersect_point_quad_2d_doc},
+ {"intersect_line_line",
+ (PyCFunction)M_Geometry_intersect_line_line,
+ METH_VARARGS,
+ M_Geometry_intersect_line_line_doc},
+ {"intersect_line_line_2d",
+ (PyCFunction)M_Geometry_intersect_line_line_2d,
+ METH_VARARGS,
+ M_Geometry_intersect_line_line_2d_doc},
+ {"intersect_line_plane",
+ (PyCFunction)M_Geometry_intersect_line_plane,
+ METH_VARARGS,
+ M_Geometry_intersect_line_plane_doc},
+ {"intersect_plane_plane",
+ (PyCFunction)M_Geometry_intersect_plane_plane,
+ METH_VARARGS,
+ M_Geometry_intersect_plane_plane_doc},
+ {"intersect_line_sphere",
+ (PyCFunction)M_Geometry_intersect_line_sphere,
+ METH_VARARGS,
+ M_Geometry_intersect_line_sphere_doc},
+ {"intersect_line_sphere_2d",
+ (PyCFunction)M_Geometry_intersect_line_sphere_2d,
+ METH_VARARGS,
+ M_Geometry_intersect_line_sphere_2d_doc},
+ {"distance_point_to_plane",
+ (PyCFunction)M_Geometry_distance_point_to_plane,
+ METH_VARARGS,
+ M_Geometry_distance_point_to_plane_doc},
+ {"intersect_sphere_sphere_2d",
+ (PyCFunction)M_Geometry_intersect_sphere_sphere_2d,
+ METH_VARARGS,
+ M_Geometry_intersect_sphere_sphere_2d_doc},
+ {"area_tri", (PyCFunction)M_Geometry_area_tri, METH_VARARGS, M_Geometry_area_tri_doc},
+ {"volume_tetrahedron",
+ (PyCFunction)M_Geometry_volume_tetrahedron,
+ METH_VARARGS,
+ M_Geometry_volume_tetrahedron_doc},
+ {"normal", (PyCFunction)M_Geometry_normal, METH_VARARGS, M_Geometry_normal_doc},
+ {"barycentric_transform",
+ (PyCFunction)M_Geometry_barycentric_transform,
+ METH_VARARGS,
+ M_Geometry_barycentric_transform_doc},
+ {"points_in_planes",
+ (PyCFunction)M_Geometry_points_in_planes,
+ METH_VARARGS,
+ M_Geometry_points_in_planes_doc},
#ifndef MATH_STANDALONE
- {"interpolate_bezier", (PyCFunction) M_Geometry_interpolate_bezier, METH_VARARGS, M_Geometry_interpolate_bezier_doc},
- {"tessellate_polygon", (PyCFunction) M_Geometry_tessellate_polygon, METH_O, M_Geometry_tessellate_polygon_doc},
- {"convex_hull_2d", (PyCFunction) M_Geometry_convex_hull_2d, METH_O, M_Geometry_convex_hull_2d_doc},
- {"box_fit_2d", (PyCFunction) M_Geometry_box_fit_2d, METH_O, M_Geometry_box_fit_2d_doc},
- {"box_pack_2d", (PyCFunction) M_Geometry_box_pack_2d, METH_O, M_Geometry_box_pack_2d_doc},
+ {"interpolate_bezier",
+ (PyCFunction)M_Geometry_interpolate_bezier,
+ METH_VARARGS,
+ M_Geometry_interpolate_bezier_doc},
+ {"tessellate_polygon",
+ (PyCFunction)M_Geometry_tessellate_polygon,
+ METH_O,
+ M_Geometry_tessellate_polygon_doc},
+ {"convex_hull_2d",
+ (PyCFunction)M_Geometry_convex_hull_2d,
+ METH_O,
+ M_Geometry_convex_hull_2d_doc},
+ {"box_fit_2d", (PyCFunction)M_Geometry_box_fit_2d, METH_O, M_Geometry_box_fit_2d_doc},
+ {"box_pack_2d", (PyCFunction)M_Geometry_box_pack_2d, METH_O, M_Geometry_box_pack_2d_doc},
#endif
- {NULL, NULL, 0, NULL},
+ {NULL, NULL, 0, NULL},
};
static struct PyModuleDef M_Geometry_module_def = {
- PyModuleDef_HEAD_INIT,
- "mathutils.geometry", /* m_name */
- M_Geometry_doc, /* m_doc */
- 0, /* m_size */
- M_Geometry_methods, /* m_methods */
- NULL, /* m_reload */
- NULL, /* m_traverse */
- NULL, /* m_clear */
- NULL, /* m_free */
+ PyModuleDef_HEAD_INIT,
+ "mathutils.geometry", /* m_name */
+ M_Geometry_doc, /* m_doc */
+ 0, /* m_size */
+ M_Geometry_methods, /* m_methods */
+ NULL, /* m_reload */
+ NULL, /* m_traverse */
+ NULL, /* m_clear */
+ NULL, /* m_free */
};
/*----------------------------MODULE INIT-------------------------*/
PyMODINIT_FUNC PyInit_mathutils_geometry(void)
{
- PyObject *submodule = PyModule_Create(&M_Geometry_module_def);
- return submodule;
+ PyObject *submodule = PyModule_Create(&M_Geometry_module_def);
+ return submodule;
}