Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/render/intern/raytrace/reorganize.h')
-rw-r--r--source/blender/render/intern/raytrace/reorganize.h516
1 files changed, 516 insertions, 0 deletions
diff --git a/source/blender/render/intern/raytrace/reorganize.h b/source/blender/render/intern/raytrace/reorganize.h
new file mode 100644
index 00000000000..f0335b769d5
--- /dev/null
+++ b/source/blender/render/intern/raytrace/reorganize.h
@@ -0,0 +1,516 @@
+/**
+ * $Id$
+ *
+ * ***** BEGIN GPL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ *
+ * The Original Code is Copyright (C) 2009 Blender Foundation.
+ * All rights reserved.
+ *
+ * The Original Code is: all of this file.
+ *
+ * Contributor(s): André Pinto.
+ *
+ * ***** END GPL LICENSE BLOCK *****
+ */
+#include <stdio.h>
+#include <math.h>
+#include <algorithm>
+#include <vector>
+#include <queue>
+
+extern int tot_pushup;
+extern int tot_pushdown;
+
+template<class Node>
+bool node_fits_inside(Node *a, Node *b)
+{
+ return bb_fits_inside(b->bb, b->bb+3, a->bb, a->bb+3);
+}
+
+template<class Node>
+void reorganize_find_fittest_parent(Node *tree, Node *node, std::pair<float,Node*> &cost)
+{
+ std::queue<Node*> q;
+ q.push(tree);
+
+ while(!q.empty())
+ {
+ Node *parent = q.front();
+ q.pop();
+
+ if(parent == node) continue;
+ if(node_fits_inside(node, parent) && RE_rayobject_isAligned(parent->child) )
+ {
+ float pcost = bb_area(parent->bb, parent->bb+3);
+ cost = std::min( cost, std::make_pair(pcost,parent) );
+ for(Node *child = parent->child; child; child = child->sibling)
+ q.push(child);
+ }
+ }
+}
+
+static int tot_moves = 0;
+template<class Node>
+void reorganize(Node *root)
+{
+ std::queue<Node*> q;
+
+ q.push(root);
+ while(!q.empty())
+ {
+ Node * node = q.front();
+ q.pop();
+
+ if( RE_rayobject_isAligned(node->child) )
+ {
+ for(Node **prev = &node->child; *prev; )
+ {
+ assert( RE_rayobject_isAligned(*prev) );
+ q.push(*prev);
+
+ std::pair<float,Node*> best(FLT_MAX, root);
+ reorganize_find_fittest_parent( root, *prev, best );
+
+ if(best.second == node)
+ {
+ //Already inside the fitnest BB
+ prev = &(*prev)->sibling;
+ }
+ else
+ {
+ Node *tmp = *prev;
+ *prev = (*prev)->sibling;
+
+ tmp->sibling = best.second->child;
+ best.second->child = tmp;
+
+ tot_moves++;
+ }
+
+
+ }
+ }
+ if(node != root)
+ {
+ }
+ }
+}
+
+/*
+ * Prunes useless nodes from trees:
+ * erases nodes with total ammount of primitives = 0
+ * prunes nodes with only one child (except if that child is a primitive)
+ */
+template<class Node>
+void remove_useless(Node *node, Node **new_node)
+{
+ if( RE_rayobject_isAligned(node->child) )
+ {
+
+ for(Node **prev = &node->child; *prev; )
+ {
+ Node *next = (*prev)->sibling;
+ remove_useless(*prev, prev);
+ if(*prev == 0)
+ *prev = next;
+ else
+ {
+ (*prev)->sibling = next;
+ prev = &((*prev)->sibling);
+ }
+ }
+ }
+ if(node->child)
+ {
+ if(RE_rayobject_isAligned(node->child) && node->child->sibling == 0)
+ *new_node = node->child;
+ }
+ else if(node->child == 0)
+ *new_node = 0;
+}
+
+/*
+ * Minimizes expected number of BBtest by colapsing nodes
+ * it uses surface area heuristic for determining whether a node should be colapsed
+ */
+template<class Node>
+void pushup(Node *parent)
+{
+ if(is_leaf(parent)) return;
+
+ float p_area = bb_area(parent->bb, parent->bb+3);
+ Node **prev = &parent->child;
+ for(Node *child = parent->child; RE_rayobject_isAligned(child) && child; )
+ {
+ float c_area = bb_area(child->bb, child->bb+3) ;
+ int nchilds = count_childs(child);
+ float original_cost = (c_area / p_area)*nchilds + 1;
+ float flatten_cost = nchilds;
+ if(flatten_cost < original_cost && nchilds >= 2)
+ {
+ append_sibling(child, child->child);
+ child = child->sibling;
+ *prev = child;
+
+// *prev = child->child;
+// append_sibling( *prev, child->sibling );
+// child = *prev;
+ tot_pushup++;
+ }
+ else
+ {
+ *prev = child;
+ prev = &(*prev)->sibling;
+ child = *prev;
+ }
+ }
+
+ for(Node *child = parent->child; RE_rayobject_isAligned(child) && child; child = child->sibling)
+ pushup(child);
+}
+
+/*
+ * try to optimize number of childs to be a multiple of SSize
+ */
+template<class Node, int SSize>
+void pushup_simd(Node *parent)
+{
+ if(is_leaf(parent)) return;
+
+ int n = count_childs(parent);
+
+ Node **prev = &parent->child;
+ for(Node *child = parent->child; RE_rayobject_isAligned(child) && child; )
+ {
+ int cn = count_childs(child);
+ if(cn-1 <= (SSize - (n%SSize) ) % SSize && RE_rayobject_isAligned(child->child) )
+ {
+ n += (cn - 1);
+ append_sibling(child, child->child);
+ child = child->sibling;
+ *prev = child;
+ }
+ else
+ {
+ *prev = child;
+ prev = &(*prev)->sibling;
+ child = *prev;
+ }
+ }
+
+ for(Node *child = parent->child; RE_rayobject_isAligned(child) && child; child = child->sibling)
+ pushup_simd<Node,SSize>(child);
+}
+
+
+/*
+ * Pushdown
+ * makes sure no child fits inside any of its sibling
+ */
+template<class Node>
+void pushdown(Node *parent)
+{
+ Node **s_child = &parent->child;
+ Node * child = parent->child;
+
+ while(child && RE_rayobject_isAligned(child))
+ {
+ Node *next = child->sibling;
+ Node **next_s_child = &child->sibling;
+
+ //assert(bb_fits_inside(parent->bb, parent->bb+3, child->bb, child->bb+3));
+
+ for(Node *i = parent->child; RE_rayobject_isAligned(i) && i; i = i->sibling)
+ if(child != i && bb_fits_inside(i->bb, i->bb+3, child->bb, child->bb+3) && RE_rayobject_isAligned(i->child))
+ {
+// todo optimize (should the one with the smallest area?)
+// float ia = bb_area(i->bb, i->bb+3)
+// if(child->i)
+ *s_child = child->sibling;
+ child->sibling = i->child;
+ i->child = child;
+ next_s_child = s_child;
+
+ tot_pushdown++;
+ break;
+ }
+ child = next;
+ s_child = next_s_child;
+ }
+
+ for(Node *i = parent->child; RE_rayobject_isAligned(i) && i; i = i->sibling)
+ pushdown( i );
+}
+
+
+/*
+ * BVH refit
+ * reajust nodes BB (useful if nodes childs where modified)
+ */
+template<class Node>
+float bvh_refit(Node *node)
+{
+ if(is_leaf(node)) return 0;
+ if(is_leaf(node->child)) return 0;
+
+ float total = 0;
+
+ for(Node *child = node->child; child; child = child->sibling)
+ total += bvh_refit(child);
+
+ float old_area = bb_area(node->bb, node->bb+3);
+ INIT_MINMAX(node->bb, node->bb+3);
+ for(Node *child = node->child; child; child = child->sibling)
+ {
+ DO_MIN(child->bb, node->bb);
+ DO_MAX(child->bb+3, node->bb+3);
+ }
+ total += old_area - bb_area(node->bb, node->bb+3);
+ return total;
+}
+
+
+/*
+ * this finds the best way to packing a tree acording to a given test cost function
+ * with the purpose to reduce the expected cost (eg.: number of BB tests).
+ */
+#include <vector>
+#include <cmath>
+#define MAX_CUT_SIZE 16
+#define MAX_OPTIMIZE_CHILDS MAX_CUT_SIZE
+
+struct OVBVHNode
+{
+ float bb[6];
+
+ OVBVHNode *child;
+ OVBVHNode *sibling;
+
+ /*
+ * Returns min cost to represent the subtree starting at the given node,
+ * allowing it to have a given cutsize
+ */
+ float cut_cost[MAX_CUT_SIZE];
+ float get_cost(int cutsize)
+ {
+ return cut_cost[cutsize-1];
+ }
+
+ /*
+ * This saves the cut size of this child, when parent is reaching
+ * its minimum cut with the given cut size
+ */
+ int cut_size[MAX_CUT_SIZE];
+ int get_cut_size(int parent_cut_size)
+ {
+ return cut_size[parent_cut_size-1];
+ }
+
+ /*
+ * Reorganize the node based on calculated cut costs
+ */
+ int best_cutsize;
+ void set_cut(int cutsize, OVBVHNode ***cut)
+ {
+ if(cutsize == 1)
+ {
+ **cut = this;
+ *cut = &(**cut)->sibling;
+ }
+ else
+ {
+ if(cutsize > MAX_CUT_SIZE)
+ {
+ for(OVBVHNode *child = this->child; child && RE_rayobject_isAligned(child); child = child->sibling)
+ {
+ child->set_cut( 1, cut );
+ cutsize--;
+ }
+ assert(cutsize == 0);
+ }
+ else
+ for(OVBVHNode *child = this->child; child && RE_rayobject_isAligned(child); child = child->sibling)
+ child->set_cut( child->get_cut_size( cutsize ), cut );
+ }
+ }
+
+ void optimize()
+ {
+ if(RE_rayobject_isAligned(this->child))
+ {
+ //Calc new childs
+ {
+ OVBVHNode **cut = &(this->child);
+ set_cut( best_cutsize, &cut );
+ *cut = NULL;
+ }
+
+ //Optimize new childs
+ for(OVBVHNode *child = this->child; child && RE_rayobject_isAligned(child); child = child->sibling)
+ child->optimize();
+ }
+ }
+};
+
+/*
+ * Calculates an optimal SIMD packing
+ *
+ */
+template<class Node, class TestCost>
+struct VBVH_optimalPackSIMD
+{
+ TestCost testcost;
+
+ VBVH_optimalPackSIMD(TestCost testcost)
+ {
+ this->testcost = testcost;
+ }
+
+ /*
+ * calc best cut on a node
+ */
+ struct calc_best
+ {
+ Node *child[MAX_OPTIMIZE_CHILDS];
+ float child_hit_prob[MAX_OPTIMIZE_CHILDS];
+
+ calc_best(Node *node)
+ {
+ int nchilds = 0;
+ //Fetch childs and needed data
+ {
+ float parent_area = bb_area(node->bb, node->bb+3);
+ for(Node *child = node->child; child && RE_rayobject_isAligned(child); child = child->sibling)
+ {
+ this->child[nchilds] = child;
+ this->child_hit_prob[nchilds] = bb_area(child->bb, child->bb+3) / parent_area;
+ nchilds++;
+ }
+
+ assert(nchilds >= 2 && nchilds <= MAX_OPTIMIZE_CHILDS);
+ }
+
+
+ //Build DP table to find minimum cost to represent this node with a given cutsize
+ int bt [MAX_OPTIMIZE_CHILDS+1][MAX_CUT_SIZE+1]; //backtrace table
+ float cost[MAX_OPTIMIZE_CHILDS+1][MAX_CUT_SIZE+1]; //cost table (can be reduced to float[2][MAX_CUT_COST])
+
+ for(int i=0; i<=nchilds; i++)
+ for(int j=0; j<=MAX_CUT_SIZE; j++)
+ cost[i][j] = INFINITY;
+
+ cost[0][0] = 0;
+
+ for(int i=1; i<=nchilds; i++)
+ for(int size=i-1; size/*+(nchilds-i)*/<=MAX_CUT_SIZE; size++)
+ for(int cut=1; cut+size/*+(nchilds-i)*/<=MAX_CUT_SIZE; cut++)
+ {
+ float new_cost = cost[i-1][size] + child_hit_prob[i-1]*child[i-1]->get_cost(cut);
+ if(new_cost < cost[i][size+cut])
+ {
+ cost[i][size+cut] = new_cost;
+ bt[i][size+cut] = cut;
+ }
+ }
+
+ //Save the ways to archieve the minimum cost with a given cutsize
+ for(int i = nchilds; i <= MAX_CUT_SIZE; i++)
+ {
+ node->cut_cost[i-1] = cost[nchilds][i];
+ if(cost[nchilds][i] < INFINITY)
+ {
+ int current_size = i;
+ for(int j=nchilds; j>0; j--)
+ {
+ child[j-1]->cut_size[i-1] = bt[j][current_size];
+ current_size -= bt[j][current_size];
+ }
+ }
+ }
+ }
+ };
+
+ void calc_costs(Node *node)
+ {
+
+ if( RE_rayobject_isAligned(node->child) )
+ {
+ int nchilds = 0;
+ for(Node *child = node->child; child && RE_rayobject_isAligned(child); child = child->sibling)
+ {
+ calc_costs(child);
+ nchilds++;
+ }
+
+ for(int i=0; i<MAX_CUT_SIZE; i++)
+ node->cut_cost[i] = INFINITY;
+
+ //We are not allowed to look on nodes with with so many childs
+ if(nchilds > MAX_CUT_SIZE)
+ {
+ float cost = 0;
+
+ float parent_area = bb_area(node->bb, node->bb+3);
+ for(Node *child = node->child; child && RE_rayobject_isAligned(child); child = child->sibling)
+ {
+ cost += ( bb_area(child->bb, child->bb+3) / parent_area ) * child->get_cost(1);
+ }
+
+ cost += testcost(nchilds);
+ node->cut_cost[0] = cost;
+ node->best_cutsize = nchilds;
+ }
+ else
+ {
+ calc_best calc(node);
+
+ //calc expected cost if we optimaly pack this node
+ for(int cutsize=nchilds; cutsize<=MAX_CUT_SIZE; cutsize++)
+ {
+ float m = node->get_cost(cutsize) + testcost(cutsize);
+ if(m < node->cut_cost[0])
+ {
+ node->cut_cost[0] = m;
+ node->best_cutsize = cutsize;
+ }
+ }
+ }
+ assert(node->cut_cost[0] != INFINITY);
+ }
+ else
+ {
+ node->cut_cost[0] = 1.0f;
+ for(int i=1; i<MAX_CUT_SIZE; i++)
+ node->cut_cost[i] = INFINITY;
+ }
+ }
+
+ Node *transform(Node *node)
+ {
+ if(RE_rayobject_isAligned(node->child))
+ {
+ static int num = 0;
+ bool first = false;
+ if(num == 0) { num++; first = true; }
+
+ calc_costs(node);
+ if(first) printf("expected cost = %f (%d)\n", node->cut_cost[0], node->best_cutsize );
+ node->optimize();
+ }
+ return node;
+ }
+};