Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/render/intern/source/sss.c')
-rw-r--r--source/blender/render/intern/source/sss.c1074
1 files changed, 1074 insertions, 0 deletions
diff --git a/source/blender/render/intern/source/sss.c b/source/blender/render/intern/source/sss.c
new file mode 100644
index 00000000000..5919b8130d7
--- /dev/null
+++ b/source/blender/render/intern/source/sss.c
@@ -0,0 +1,1074 @@
+/*
+ * ***** BEGIN GPL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * The Original Code is Copyright (C) 2007 Blender Foundation.
+ * All rights reserved.
+ *
+ * The Original Code is: all of this file.
+ *
+ * Contributor(s): none yet.
+ *
+ * ***** END GPL LICENSE BLOCK *****
+ */
+
+/** \file blender/render/intern/source/sss.c
+ * \ingroup render
+ */
+
+/* Possible Improvements:
+ * - add fresnel terms
+ * - adapt Rd table to scale, now with small scale there are a lot of misses?
+ * - possible interesting method: perform sss on all samples in the tree,
+ * and then use those values interpolated somehow later. can also do this
+ * filtering on demand for speed. since we are doing things in screen
+ * space now there is an exact correspondence
+ * - avoid duplicate shading (filtering points in advance, irradiance cache
+ * like lookup?)
+ * - lower resolution samples
+ */
+
+#include <math.h>
+#include <string.h>
+#include <stdio.h>
+#include <string.h>
+
+/* external modules: */
+#include "MEM_guardedalloc.h"
+
+#include "BLI_math.h"
+#include "BLI_blenlib.h"
+#include "BLI_utildefines.h"
+#include "BLI_ghash.h"
+#include "BLI_memarena.h"
+
+#include "BLT_translation.h"
+
+
+#include "DNA_material_types.h"
+
+#include "BKE_global.h"
+#include "BKE_main.h"
+#include "BKE_scene.h"
+
+
+/* this module */
+#include "render_types.h"
+#include "sss.h"
+
+/* Generic Multiple Scattering API */
+
+/* Relevant papers:
+ * [1] A Practical Model for Subsurface Light Transport
+ * [2] A Rapid Hierarchical Rendering Technique for Translucent Materials
+ * [3] Efficient Rendering of Local Subsurface Scattering
+ * [4] Implementing a skin BSSRDF (or several...)
+ */
+
+/* Defines */
+
+#define RD_TABLE_RANGE 100.0f
+#define RD_TABLE_RANGE_2 10000.0f
+#define RD_TABLE_SIZE 10000
+
+#define MAX_OCTREE_NODE_POINTS 8
+#define MAX_OCTREE_DEPTH 15
+
+/* Struct Definitions */
+
+struct ScatterSettings {
+ float eta; /* index of refraction */
+ float sigma_a; /* absorption coefficient */
+ float sigma_s_; /* reduced scattering coefficient */
+ float sigma_t_; /* reduced extinction coefficient */
+ float sigma; /* effective extinction coefficient */
+ float Fdr; /* diffuse fresnel reflectance */
+ float D; /* diffusion constant */
+ float A;
+ float alpha_; /* reduced albedo */
+ float zr; /* distance of virtual lightsource above surface */
+ float zv; /* distance of virtual lightsource below surface */
+ float ld; /* mean free path */
+ float ro; /* diffuse reflectance */
+ float color;
+ float invsigma_t_;
+ float frontweight;
+ float backweight;
+
+ float *tableRd; /* lookup table to avoid computing Rd */
+ float *tableRd2; /* lookup table to avoid computing Rd for bigger values */
+};
+
+typedef struct ScatterPoint {
+ float co[3];
+ float rad[3];
+ float area;
+ int back;
+} ScatterPoint;
+
+typedef struct ScatterNode {
+ float co[3];
+ float rad[3];
+ float backrad[3];
+ float area, backarea;
+
+ int totpoint;
+ ScatterPoint *points;
+
+ float split[3];
+ struct ScatterNode *child[8];
+} ScatterNode;
+
+struct ScatterTree {
+ MemArena *arena;
+
+ ScatterSettings *ss[3];
+ float error, scale;
+
+ ScatterNode *root;
+ ScatterPoint *points;
+ ScatterPoint **refpoints;
+ ScatterPoint **tmppoints;
+ int totpoint;
+ float min[3], max[3];
+};
+
+typedef struct ScatterResult {
+ float rad[3];
+ float backrad[3];
+ float rdsum[3];
+ float backrdsum[3];
+} ScatterResult;
+
+/* Functions for BSSRDF reparametrization in to more intuitive parameters,
+ * see [2] section 4 for more info. */
+
+static float f_Rd(float alpha_, float A, float ro)
+{
+ float sq;
+
+ sq = sqrtf(3.0f * (1.0f - alpha_));
+ return (alpha_/2.0f)*(1.0f + expf((-4.0f/3.0f)*A*sq))*expf(-sq) - ro;
+}
+
+static float compute_reduced_albedo(ScatterSettings *ss)
+{
+ const float tolerance= 1e-8;
+ const int max_iteration_count= 20;
+ float d, fsub, xn_1= 0.0f, xn= 1.0f, fxn, fxn_1;
+ int i;
+
+ /* use secant method to compute reduced albedo using Rd function inverse
+ * with a given reflectance */
+ fxn= f_Rd(xn, ss->A, ss->ro);
+ fxn_1= f_Rd(xn_1, ss->A, ss->ro);
+
+ for (i= 0; i < max_iteration_count; i++) {
+ fsub= (fxn - fxn_1);
+ if (fabsf(fsub) < tolerance)
+ break;
+ d= ((xn - xn_1)/fsub)*fxn;
+ if (fabsf(d) < tolerance)
+ break;
+
+ xn_1= xn;
+ fxn_1= fxn;
+ xn= xn - d;
+
+ if (xn > 1.0f) xn= 1.0f;
+ if (xn_1 > 1.0f) xn_1= 1.0f;
+
+ fxn= f_Rd(xn, ss->A, ss->ro);
+ }
+
+ /* avoid division by zero later */
+ if (xn <= 0.0f)
+ xn= 0.00001f;
+
+ return xn;
+}
+
+/* Exponential falloff functions */
+
+static float Rd_rsquare(ScatterSettings *ss, float rr)
+{
+ float sr, sv, Rdr, Rdv;
+
+ sr = sqrtf(rr + ss->zr * ss->zr);
+ sv = sqrtf(rr + ss->zv * ss->zv);
+
+ Rdr= ss->zr*(1.0f + ss->sigma*sr)*expf(-ss->sigma*sr)/(sr*sr*sr);
+ Rdv= ss->zv*(1.0f + ss->sigma*sv)*expf(-ss->sigma*sv)/(sv*sv*sv);
+
+ return /*ss->alpha_*/(1.0f/(4.0f*(float)M_PI))*(Rdr + Rdv);
+}
+
+static float Rd(ScatterSettings *ss, float r)
+{
+ return Rd_rsquare(ss, r*r);
+}
+
+/* table lookups for Rd. this avoids expensive exp calls. we use two
+ * separate tables as well for lower and higher numbers to improve
+ * precision, since the number are poorly distributed because we do
+ * a lookup with the squared distance for smaller distances, saving
+ * another sqrt. */
+
+static void approximate_Rd_rgb(ScatterSettings **ss, float rr, float *rd)
+{
+ float indexf, t, idxf;
+ int index;
+
+ if (rr > (RD_TABLE_RANGE_2 * RD_TABLE_RANGE_2)) {
+ /* pass */
+ }
+ else if (rr > RD_TABLE_RANGE) {
+ rr = sqrtf(rr);
+ indexf= rr*(RD_TABLE_SIZE/RD_TABLE_RANGE_2);
+ index= (int)indexf;
+ idxf= (float)index;
+ t= indexf - idxf;
+
+ if (index >= 0 && index < RD_TABLE_SIZE) {
+ rd[0]= (ss[0]->tableRd2[index]*(1-t) + ss[0]->tableRd2[index+1]*t);
+ rd[1]= (ss[1]->tableRd2[index]*(1-t) + ss[1]->tableRd2[index+1]*t);
+ rd[2]= (ss[2]->tableRd2[index]*(1-t) + ss[2]->tableRd2[index+1]*t);
+ return;
+ }
+ }
+ else {
+ indexf= rr*(RD_TABLE_SIZE/RD_TABLE_RANGE);
+ index= (int)indexf;
+ idxf= (float)index;
+ t= indexf - idxf;
+
+ if (index >= 0 && index < RD_TABLE_SIZE) {
+ rd[0]= (ss[0]->tableRd[index]*(1-t) + ss[0]->tableRd[index+1]*t);
+ rd[1]= (ss[1]->tableRd[index]*(1-t) + ss[1]->tableRd[index+1]*t);
+ rd[2]= (ss[2]->tableRd[index]*(1-t) + ss[2]->tableRd[index+1]*t);
+ return;
+ }
+ }
+
+ /* fallback to slow Rd computation */
+ rd[0]= Rd_rsquare(ss[0], rr);
+ rd[1]= Rd_rsquare(ss[1], rr);
+ rd[2]= Rd_rsquare(ss[2], rr);
+}
+
+static void build_Rd_table(ScatterSettings *ss)
+{
+ float r;
+ int i, size = RD_TABLE_SIZE+1;
+
+ ss->tableRd= MEM_mallocN(sizeof(float)*size, "scatterTableRd");
+ ss->tableRd2= MEM_mallocN(sizeof(float)*size, "scatterTableRd");
+
+ for (i= 0; i < size; i++) {
+ r= i*(RD_TABLE_RANGE/RD_TABLE_SIZE);
+#if 0
+ if (r < ss->invsigma_t_*ss->invsigma_t_) {
+ r= ss->invsigma_t_*ss->invsigma_t_;
+ }
+#endif
+ ss->tableRd[i]= Rd(ss, sqrtf(r));
+
+ r= i*(RD_TABLE_RANGE_2/RD_TABLE_SIZE);
+#if 0
+ if (r < ss->invsigma_t_) {
+ r= ss->invsigma_t_;
+ }
+#endif
+ ss->tableRd2[i]= Rd(ss, r);
+ }
+}
+
+ScatterSettings *scatter_settings_new(float refl, float radius, float ior, float reflfac, float frontweight, float backweight)
+{
+ ScatterSettings *ss;
+
+ ss= MEM_callocN(sizeof(ScatterSettings), "ScatterSettings");
+
+ /* see [1] and [3] for these formulas */
+ ss->eta= ior;
+ ss->Fdr= -1.440f/ior*ior + 0.710f/ior + 0.668f + 0.0636f*ior;
+ ss->A= (1.0f + ss->Fdr)/(1.0f - ss->Fdr);
+ ss->ld= radius;
+ ss->ro= min_ff(refl, 0.99f);
+ ss->color= ss->ro*reflfac + (1.0f-reflfac);
+
+ ss->alpha_= compute_reduced_albedo(ss);
+
+ ss->sigma= 1.0f/ss->ld;
+ ss->sigma_t_= ss->sigma/sqrtf(3.0f*(1.0f - ss->alpha_));
+ ss->sigma_s_= ss->alpha_*ss->sigma_t_;
+ ss->sigma_a= ss->sigma_t_ - ss->sigma_s_;
+
+ ss->D= 1.0f/(3.0f*ss->sigma_t_);
+
+ ss->zr= 1.0f/ss->sigma_t_;
+ ss->zv= ss->zr + 4.0f*ss->A*ss->D;
+
+ ss->invsigma_t_= 1.0f/ss->sigma_t_;
+
+ ss->frontweight= frontweight;
+ ss->backweight= backweight;
+
+ /* precompute a table of Rd values for quick lookup */
+ build_Rd_table(ss);
+
+ return ss;
+}
+
+void scatter_settings_free(ScatterSettings *ss)
+{
+ MEM_freeN(ss->tableRd);
+ MEM_freeN(ss->tableRd2);
+ MEM_freeN(ss);
+}
+
+/* Hierarchical method as in [2]. */
+
+/* traversal */
+
+#define SUBNODE_INDEX(co, split) \
+ ((co[0]>=split[0]) + (co[1]>=split[1])*2 + (co[2]>=split[2])*4)
+
+static void add_radiance(ScatterTree *tree, float *frontrad, float *backrad, float area, float backarea, float rr, ScatterResult *result)
+{
+ float rd[3], frontrd[3], backrd[3];
+
+ approximate_Rd_rgb(tree->ss, rr, rd);
+
+ if (frontrad && area) {
+ frontrd[0] = rd[0]*area;
+ frontrd[1] = rd[1]*area;
+ frontrd[2] = rd[2]*area;
+
+ result->rad[0] += frontrad[0]*frontrd[0];
+ result->rad[1] += frontrad[1]*frontrd[1];
+ result->rad[2] += frontrad[2]*frontrd[2];
+
+ result->rdsum[0] += frontrd[0];
+ result->rdsum[1] += frontrd[1];
+ result->rdsum[2] += frontrd[2];
+ }
+ if (backrad && backarea) {
+ backrd[0] = rd[0]*backarea;
+ backrd[1] = rd[1]*backarea;
+ backrd[2] = rd[2]*backarea;
+
+ result->backrad[0] += backrad[0]*backrd[0];
+ result->backrad[1] += backrad[1]*backrd[1];
+ result->backrad[2] += backrad[2]*backrd[2];
+
+ result->backrdsum[0] += backrd[0];
+ result->backrdsum[1] += backrd[1];
+ result->backrdsum[2] += backrd[2];
+ }
+}
+
+static void traverse_octree(ScatterTree *tree, ScatterNode *node, const float co[3], int self, ScatterResult *result)
+{
+ float sub[3], dist;
+ int i, index = 0;
+
+ if (node->totpoint > 0) {
+ /* leaf - add radiance from all samples */
+ for (i=0; i<node->totpoint; i++) {
+ ScatterPoint *p= &node->points[i];
+
+ sub_v3_v3v3(sub, co, p->co);
+ dist= dot_v3v3(sub, sub);
+
+ if (p->back)
+ add_radiance(tree, NULL, p->rad, 0.0f, p->area, dist, result);
+ else
+ add_radiance(tree, p->rad, NULL, p->area, 0.0f, dist, result);
+ }
+ }
+ else {
+ /* branch */
+ if (self)
+ index = SUBNODE_INDEX(co, node->split);
+
+ for (i=0; i<8; i++) {
+ if (node->child[i]) {
+ ScatterNode *subnode= node->child[i];
+
+ if (self && index == i) {
+ /* always traverse node containing the point */
+ traverse_octree(tree, subnode, co, 1, result);
+ }
+ else {
+ /* decide subnode traversal based on maximum solid angle */
+ sub_v3_v3v3(sub, co, subnode->co);
+ dist= dot_v3v3(sub, sub);
+
+ /* actually area/dist > error, but this avoids division */
+ if (subnode->area+subnode->backarea>tree->error*dist) {
+ traverse_octree(tree, subnode, co, 0, result);
+ }
+ else {
+ add_radiance(tree, subnode->rad, subnode->backrad,
+ subnode->area, subnode->backarea, dist, result);
+ }
+ }
+ }
+ }
+ }
+}
+
+static void compute_radiance(ScatterTree *tree, const float co[3], float *rad)
+{
+ ScatterResult result;
+ float rdsum[3], backrad[3], backrdsum[3];
+
+ memset(&result, 0, sizeof(result));
+
+ traverse_octree(tree, tree->root, co, 1, &result);
+
+ /* the original paper doesn't do this, but we normalize over the
+ * sampled area and multiply with the reflectance. this is because
+ * our point samples are incomplete, there are no samples on parts
+ * of the mesh not visible from the camera. this can not only make
+ * it darker, but also lead to ugly color shifts */
+
+ mul_v3_fl(result.rad, tree->ss[0]->frontweight);
+ mul_v3_fl(result.backrad, tree->ss[0]->backweight);
+
+ copy_v3_v3(rad, result.rad);
+ add_v3_v3v3(backrad, result.rad, result.backrad);
+
+ copy_v3_v3(rdsum, result.rdsum);
+ add_v3_v3v3(backrdsum, result.rdsum, result.backrdsum);
+
+ if (rdsum[0] > 1e-16f) rad[0]= tree->ss[0]->color*rad[0]/rdsum[0];
+ if (rdsum[1] > 1e-16f) rad[1]= tree->ss[1]->color*rad[1]/rdsum[1];
+ if (rdsum[2] > 1e-16f) rad[2]= tree->ss[2]->color*rad[2]/rdsum[2];
+
+ if (backrdsum[0] > 1e-16f) backrad[0]= tree->ss[0]->color*backrad[0]/backrdsum[0];
+ if (backrdsum[1] > 1e-16f) backrad[1]= tree->ss[1]->color*backrad[1]/backrdsum[1];
+ if (backrdsum[2] > 1e-16f) backrad[2]= tree->ss[2]->color*backrad[2]/backrdsum[2];
+
+ rad[0]= MAX2(rad[0], backrad[0]);
+ rad[1]= MAX2(rad[1], backrad[1]);
+ rad[2]= MAX2(rad[2], backrad[2]);
+}
+
+/* building */
+
+static void sum_leaf_radiance(ScatterTree *UNUSED(tree), ScatterNode *node)
+{
+ ScatterPoint *p;
+ float rad, totrad= 0.0f, inv;
+ int i;
+
+ node->co[0]= node->co[1]= node->co[2]= 0.0;
+ node->rad[0]= node->rad[1]= node->rad[2]= 0.0;
+ node->backrad[0]= node->backrad[1]= node->backrad[2]= 0.0;
+
+ /* compute total rad, rad weighted average position,
+ * and total area */
+ for (i=0; i<node->totpoint; i++) {
+ p= &node->points[i];
+
+ rad= p->area*fabsf(p->rad[0] + p->rad[1] + p->rad[2]);
+ totrad += rad;
+
+ node->co[0] += rad*p->co[0];
+ node->co[1] += rad*p->co[1];
+ node->co[2] += rad*p->co[2];
+
+ if (p->back) {
+ node->backrad[0] += p->rad[0]*p->area;
+ node->backrad[1] += p->rad[1]*p->area;
+ node->backrad[2] += p->rad[2]*p->area;
+
+ node->backarea += p->area;
+ }
+ else {
+ node->rad[0] += p->rad[0]*p->area;
+ node->rad[1] += p->rad[1]*p->area;
+ node->rad[2] += p->rad[2]*p->area;
+
+ node->area += p->area;
+ }
+ }
+
+ if (node->area > 1e-16f) {
+ inv= 1.0f/node->area;
+ node->rad[0] *= inv;
+ node->rad[1] *= inv;
+ node->rad[2] *= inv;
+ }
+ if (node->backarea > 1e-16f) {
+ inv= 1.0f/node->backarea;
+ node->backrad[0] *= inv;
+ node->backrad[1] *= inv;
+ node->backrad[2] *= inv;
+ }
+
+ if (totrad > 1e-16f) {
+ inv= 1.0f/totrad;
+ node->co[0] *= inv;
+ node->co[1] *= inv;
+ node->co[2] *= inv;
+ }
+ else {
+ /* make sure that if radiance is 0.0f, we still have these points in
+ * the tree at a good position, they count for rdsum too */
+ for (i=0; i<node->totpoint; i++) {
+ p= &node->points[i];
+
+ node->co[0] += p->co[0];
+ node->co[1] += p->co[1];
+ node->co[2] += p->co[2];
+ }
+
+ node->co[0] /= node->totpoint;
+ node->co[1] /= node->totpoint;
+ node->co[2] /= node->totpoint;
+ }
+}
+
+static void sum_branch_radiance(ScatterTree *UNUSED(tree), ScatterNode *node)
+{
+ ScatterNode *subnode;
+ float rad, totrad= 0.0f, inv;
+ int i, totnode;
+
+ node->co[0]= node->co[1]= node->co[2]= 0.0;
+ node->rad[0]= node->rad[1]= node->rad[2]= 0.0;
+ node->backrad[0]= node->backrad[1]= node->backrad[2]= 0.0;
+
+ /* compute total rad, rad weighted average position,
+ * and total area */
+ for (i=0; i<8; i++) {
+ if (node->child[i] == NULL)
+ continue;
+
+ subnode= node->child[i];
+
+ rad= subnode->area*fabsf(subnode->rad[0] + subnode->rad[1] + subnode->rad[2]);
+ rad += subnode->backarea*fabsf(subnode->backrad[0] + subnode->backrad[1] + subnode->backrad[2]);
+ totrad += rad;
+
+ node->co[0] += rad*subnode->co[0];
+ node->co[1] += rad*subnode->co[1];
+ node->co[2] += rad*subnode->co[2];
+
+ node->rad[0] += subnode->rad[0]*subnode->area;
+ node->rad[1] += subnode->rad[1]*subnode->area;
+ node->rad[2] += subnode->rad[2]*subnode->area;
+
+ node->backrad[0] += subnode->backrad[0]*subnode->backarea;
+ node->backrad[1] += subnode->backrad[1]*subnode->backarea;
+ node->backrad[2] += subnode->backrad[2]*subnode->backarea;
+
+ node->area += subnode->area;
+ node->backarea += subnode->backarea;
+ }
+
+ if (node->area > 1e-16f) {
+ inv= 1.0f/node->area;
+ node->rad[0] *= inv;
+ node->rad[1] *= inv;
+ node->rad[2] *= inv;
+ }
+ if (node->backarea > 1e-16f) {
+ inv= 1.0f/node->backarea;
+ node->backrad[0] *= inv;
+ node->backrad[1] *= inv;
+ node->backrad[2] *= inv;
+ }
+
+ if (totrad > 1e-16f) {
+ inv= 1.0f/totrad;
+ node->co[0] *= inv;
+ node->co[1] *= inv;
+ node->co[2] *= inv;
+ }
+ else {
+ /* make sure that if radiance is 0.0f, we still have these points in
+ * the tree at a good position, they count for rdsum too */
+ totnode= 0;
+
+ for (i=0; i<8; i++) {
+ if (node->child[i]) {
+ subnode= node->child[i];
+
+ node->co[0] += subnode->co[0];
+ node->co[1] += subnode->co[1];
+ node->co[2] += subnode->co[2];
+
+ totnode++;
+ }
+ }
+
+ node->co[0] /= totnode;
+ node->co[1] /= totnode;
+ node->co[2] /= totnode;
+ }
+}
+
+static void sum_radiance(ScatterTree *tree, ScatterNode *node)
+{
+ if (node->totpoint > 0) {
+ sum_leaf_radiance(tree, node);
+ }
+ else {
+ int i;
+
+ for (i=0; i<8; i++)
+ if (node->child[i])
+ sum_radiance(tree, node->child[i]);
+
+ sum_branch_radiance(tree, node);
+ }
+}
+
+static void subnode_middle(int i, float *mid, float *subsize, float *submid)
+{
+ int x= i & 1, y= i & 2, z= i & 4;
+
+ submid[0]= mid[0] + ((x)? subsize[0]: -subsize[0]);
+ submid[1]= mid[1] + ((y)? subsize[1]: -subsize[1]);
+ submid[2]= mid[2] + ((z)? subsize[2]: -subsize[2]);
+}
+
+static void create_octree_node(ScatterTree *tree, ScatterNode *node, float *mid, float *size, ScatterPoint **refpoints, int depth)
+{
+ ScatterNode *subnode;
+ ScatterPoint **subrefpoints, **tmppoints= tree->tmppoints;
+ int index, nsize[8], noffset[8], i, subco, used_nodes, usedi;
+ float submid[3], subsize[3];
+
+ /* stopping condition */
+ if (node->totpoint <= MAX_OCTREE_NODE_POINTS || depth == MAX_OCTREE_DEPTH) {
+ for (i=0; i<node->totpoint; i++)
+ node->points[i]= *(refpoints[i]);
+
+ return;
+ }
+
+ subsize[0]= size[0]*0.5f;
+ subsize[1]= size[1]*0.5f;
+ subsize[2]= size[2]*0.5f;
+
+ node->split[0]= mid[0];
+ node->split[1]= mid[1];
+ node->split[2]= mid[2];
+
+ memset(nsize, 0, sizeof(nsize));
+ memset(noffset, 0, sizeof(noffset));
+
+ /* count points in subnodes */
+ for (i=0; i<node->totpoint; i++) {
+ index= SUBNODE_INDEX(refpoints[i]->co, node->split);
+ tmppoints[i]= refpoints[i];
+ nsize[index]++;
+ }
+
+ /* here we check if only one subnode is used. if this is the case, we don't
+ * create a new node, but rather call this function again, with different
+ * size and middle position for the same node. */
+ for (usedi=0, used_nodes=0, i=0; i<8; i++) {
+ if (nsize[i]) {
+ used_nodes++;
+ usedi = i;
+ }
+ if (i != 0)
+ noffset[i]= noffset[i-1]+nsize[i-1];
+ }
+
+ if (used_nodes <= 1) {
+ subnode_middle(usedi, mid, subsize, submid);
+ create_octree_node(tree, node, submid, subsize, refpoints, depth+1);
+ return;
+ }
+
+ /* reorder refpoints by subnode */
+ for (i=0; i<node->totpoint; i++) {
+ index= SUBNODE_INDEX(tmppoints[i]->co, node->split);
+ refpoints[noffset[index]]= tmppoints[i];
+ noffset[index]++;
+ }
+
+ /* create subnodes */
+ for (subco=0, i=0; i<8; subco+=nsize[i], i++) {
+ if (nsize[i] > 0) {
+ subnode= BLI_memarena_alloc(tree->arena, sizeof(ScatterNode));
+ node->child[i]= subnode;
+ subnode->points= node->points + subco;
+ subnode->totpoint= nsize[i];
+ subrefpoints= refpoints + subco;
+
+ subnode_middle(i, mid, subsize, submid);
+
+ create_octree_node(tree, subnode, submid, subsize, subrefpoints,
+ depth+1);
+ }
+ else
+ node->child[i]= NULL;
+ }
+
+ node->points= NULL;
+ node->totpoint= 0;
+}
+
+/* public functions */
+
+ScatterTree *scatter_tree_new(ScatterSettings *ss[3], float scale, float error,
+ float (*co)[3], float (*color)[3], float *area, int totpoint)
+{
+ ScatterTree *tree;
+ ScatterPoint *points, **refpoints;
+ int i;
+
+ /* allocate tree */
+ tree= MEM_callocN(sizeof(ScatterTree), "ScatterTree");
+ tree->scale= scale;
+ tree->error= error;
+ tree->totpoint= totpoint;
+
+ tree->ss[0]= ss[0];
+ tree->ss[1]= ss[1];
+ tree->ss[2]= ss[2];
+
+ points = MEM_callocN(sizeof(ScatterPoint) * totpoint, "ScatterPoints");
+ refpoints = MEM_callocN(sizeof(ScatterPoint *) * totpoint, "ScatterRefPoints");
+
+ tree->points= points;
+ tree->refpoints= refpoints;
+
+ /* build points */
+ INIT_MINMAX(tree->min, tree->max);
+
+ for (i=0; i<totpoint; i++) {
+ copy_v3_v3(points[i].co, co[i]);
+ copy_v3_v3(points[i].rad, color[i]);
+ points[i].area= fabsf(area[i])/(tree->scale*tree->scale);
+ points[i].back= (area[i] < 0.0f);
+
+ mul_v3_fl(points[i].co, 1.0f / tree->scale);
+ minmax_v3v3_v3(tree->min, tree->max, points[i].co);
+
+ refpoints[i]= points + i;
+ }
+
+ return tree;
+}
+
+void scatter_tree_build(ScatterTree *tree)
+{
+ ScatterPoint *newpoints, **tmppoints;
+ float mid[3], size[3];
+ int totpoint= tree->totpoint;
+
+ newpoints = MEM_callocN(sizeof(ScatterPoint) * totpoint, "ScatterPoints");
+ tmppoints = MEM_callocN(sizeof(ScatterPoint *) * totpoint, "ScatterTmpPoints");
+ tree->tmppoints= tmppoints;
+
+ tree->arena= BLI_memarena_new(0x8000 * sizeof(ScatterNode), "sss tree arena");
+ BLI_memarena_use_calloc(tree->arena);
+
+ /* build tree */
+ tree->root= BLI_memarena_alloc(tree->arena, sizeof(ScatterNode));
+ tree->root->points= newpoints;
+ tree->root->totpoint= totpoint;
+
+ mid[0]= (tree->min[0]+tree->max[0])*0.5f;
+ mid[1]= (tree->min[1]+tree->max[1])*0.5f;
+ mid[2]= (tree->min[2]+tree->max[2])*0.5f;
+
+ size[0]= (tree->max[0]-tree->min[0])*0.5f;
+ size[1]= (tree->max[1]-tree->min[1])*0.5f;
+ size[2]= (tree->max[2]-tree->min[2])*0.5f;
+
+ create_octree_node(tree, tree->root, mid, size, tree->refpoints, 0);
+
+ MEM_freeN(tree->points);
+ MEM_freeN(tree->refpoints);
+ MEM_freeN(tree->tmppoints);
+ tree->refpoints= NULL;
+ tree->tmppoints= NULL;
+ tree->points= newpoints;
+
+ /* sum radiance at nodes */
+ sum_radiance(tree, tree->root);
+}
+
+void scatter_tree_sample(ScatterTree *tree, const float co[3], float color[3])
+{
+ float sco[3];
+
+ copy_v3_v3(sco, co);
+ mul_v3_fl(sco, 1.0f / tree->scale);
+
+ compute_radiance(tree, sco, color);
+}
+
+void scatter_tree_free(ScatterTree *tree)
+{
+ if (tree->arena) BLI_memarena_free(tree->arena);
+ if (tree->points) MEM_freeN(tree->points);
+ if (tree->refpoints) MEM_freeN(tree->refpoints);
+
+ MEM_freeN(tree);
+}
+
+/* Internal Renderer API */
+
+/* sss tree building */
+
+typedef struct SSSData {
+ ScatterTree *tree;
+ ScatterSettings *ss[3];
+} SSSData;
+
+typedef struct SSSPoints {
+ struct SSSPoints *next, *prev;
+
+ float (*co)[3];
+ float (*color)[3];
+ float *area;
+ int totpoint;
+} SSSPoints;
+
+static void sss_create_tree_mat(Render *re, Material *mat)
+{
+ SSSPoints *p;
+ RenderResult *rr;
+ ListBase points;
+ float (*co)[3] = NULL, (*color)[3] = NULL, *area = NULL;
+ int totpoint = 0, osa, osaflag, frsflag, partsdone;
+
+ if (re->test_break(re->tbh))
+ return;
+
+ points.first= points.last= NULL;
+
+ /* TODO: this is getting a bit ugly, copying all those variables and
+ * setting them back, maybe we need to create our own Render? */
+
+ /* do SSS preprocessing render */
+ BLI_rw_mutex_lock(&re->resultmutex, THREAD_LOCK_WRITE);
+ rr= re->result;
+ osa= re->osa;
+ osaflag= re->r.mode & R_OSA;
+ frsflag= re->r.mode & R_EDGE_FRS;
+ partsdone= re->i.partsdone;
+
+ re->osa= 0;
+ re->r.mode &= ~(R_OSA | R_EDGE_FRS);
+ re->sss_points= &points;
+ re->sss_mat= mat;
+ re->i.partsdone = 0;
+
+ if (!(re->r.scemode & (R_BUTS_PREVIEW|R_VIEWPORT_PREVIEW)))
+ re->result= NULL;
+ BLI_rw_mutex_unlock(&re->resultmutex);
+
+ RE_TileProcessor(re);
+
+ BLI_rw_mutex_lock(&re->resultmutex, THREAD_LOCK_WRITE);
+ if (!(re->r.scemode & (R_BUTS_PREVIEW|R_VIEWPORT_PREVIEW))) {
+ RE_FreeRenderResult(re->result);
+ re->result= rr;
+ }
+ BLI_rw_mutex_unlock(&re->resultmutex);
+
+ re->i.partsdone= partsdone;
+ re->sss_mat= NULL;
+ re->sss_points= NULL;
+ re->osa= osa;
+ if (osaflag) re->r.mode |= R_OSA;
+ if (frsflag) re->r.mode |= R_EDGE_FRS;
+
+ /* no points? no tree */
+ if (!points.first)
+ return;
+
+ /* merge points together into a single buffer */
+ if (!re->test_break(re->tbh)) {
+ for (totpoint=0, p=points.first; p; p=p->next)
+ totpoint += p->totpoint;
+
+ co= MEM_mallocN(sizeof(*co)*totpoint, "SSSCo");
+ color= MEM_mallocN(sizeof(*color)*totpoint, "SSSColor");
+ area= MEM_mallocN(sizeof(*area)*totpoint, "SSSArea");
+
+ for (totpoint=0, p=points.first; p; p=p->next) {
+ memcpy(co+totpoint, p->co, sizeof(*co)*p->totpoint);
+ memcpy(color+totpoint, p->color, sizeof(*color)*p->totpoint);
+ memcpy(area+totpoint, p->area, sizeof(*area)*p->totpoint);
+ totpoint += p->totpoint;
+ }
+ }
+
+ /* free points */
+ for (p=points.first; p; p=p->next) {
+ MEM_freeN(p->co);
+ MEM_freeN(p->color);
+ MEM_freeN(p->area);
+ }
+ BLI_freelistN(&points);
+
+ /* build tree */
+ if (!re->test_break(re->tbh)) {
+ SSSData *sss= MEM_callocN(sizeof(*sss), "SSSData");
+ float ior= mat->sss_ior, cfac= mat->sss_colfac;
+ const float *radius = mat->sss_radius;
+ float fw= mat->sss_front, bw= mat->sss_back;
+ float error = mat->sss_error;
+
+ error= get_render_aosss_error(&re->r, error);
+ if ((re->r.scemode & (R_BUTS_PREVIEW|R_VIEWPORT_PREVIEW)) && error < 0.5f)
+ error= 0.5f;
+
+ sss->ss[0]= scatter_settings_new(mat->sss_col[0], radius[0], ior, cfac, fw, bw);
+ sss->ss[1]= scatter_settings_new(mat->sss_col[1], radius[1], ior, cfac, fw, bw);
+ sss->ss[2]= scatter_settings_new(mat->sss_col[2], radius[2], ior, cfac, fw, bw);
+ sss->tree= scatter_tree_new(sss->ss, mat->sss_scale, error,
+ co, color, area, totpoint);
+
+ MEM_freeN(co);
+ MEM_freeN(color);
+ MEM_freeN(area);
+
+ scatter_tree_build(sss->tree);
+
+ BLI_ghash_insert(re->sss_hash, mat, sss);
+ }
+ else {
+ if (co) MEM_freeN(co);
+ if (color) MEM_freeN(color);
+ if (area) MEM_freeN(area);
+ }
+}
+
+void sss_add_points(Render *re, float (*co)[3], float (*color)[3], float *area, int totpoint)
+{
+ SSSPoints *p;
+
+ if (totpoint > 0) {
+ p= MEM_callocN(sizeof(SSSPoints), "SSSPoints");
+
+ p->co= co;
+ p->color= color;
+ p->area= area;
+ p->totpoint= totpoint;
+
+ BLI_thread_lock(LOCK_CUSTOM1);
+ BLI_addtail(re->sss_points, p);
+ BLI_thread_unlock(LOCK_CUSTOM1);
+ }
+}
+
+static void sss_free_tree(SSSData *sss)
+{
+ scatter_tree_free(sss->tree);
+ scatter_settings_free(sss->ss[0]);
+ scatter_settings_free(sss->ss[1]);
+ scatter_settings_free(sss->ss[2]);
+ MEM_freeN(sss);
+}
+
+/* public functions */
+
+void make_sss_tree(Render *re)
+{
+ Material *mat;
+ bool infostr_set = false;
+ const char *prevstr = NULL;
+
+ free_sss(re);
+
+ re->sss_hash= BLI_ghash_ptr_new("make_sss_tree gh");
+
+ re->stats_draw(re->sdh, &re->i);
+
+ for (mat= re->main->mat.first; mat; mat= mat->id.next) {
+ if (mat->id.us && (mat->flag & MA_IS_USED) && (mat->sss_flag & MA_DIFF_SSS)) {
+ if (!infostr_set) {
+ prevstr = re->i.infostr;
+ re->i.infostr = IFACE_("SSS preprocessing");
+ infostr_set = true;
+ }
+
+ sss_create_tree_mat(re, mat);
+ }
+ }
+
+ /* XXX preview exception */
+ /* localizing preview render data is not fun for node trees :( */
+ if (re->main!=G.main) {
+ for (mat= G.main->mat.first; mat; mat= mat->id.next) {
+ if (mat->id.us && (mat->flag & MA_IS_USED) && (mat->sss_flag & MA_DIFF_SSS)) {
+ if (!infostr_set) {
+ prevstr = re->i.infostr;
+ re->i.infostr = IFACE_("SSS preprocessing");
+ infostr_set = true;
+ }
+
+ sss_create_tree_mat(re, mat);
+ }
+ }
+ }
+
+ if (infostr_set)
+ re->i.infostr = prevstr;
+}
+
+void free_sss(Render *re)
+{
+ if (re->sss_hash) {
+ GHashIterator gh_iter;
+
+ GHASH_ITER (gh_iter, re->sss_hash) {
+ sss_free_tree(BLI_ghashIterator_getValue(&gh_iter));
+ }
+
+ BLI_ghash_free(re->sss_hash, NULL, NULL);
+ re->sss_hash= NULL;
+ }
+}
+
+int sample_sss(Render *re, Material *mat, const float co[3], float color[3])
+{
+ if (re->sss_hash) {
+ SSSData *sss= BLI_ghash_lookup(re->sss_hash, mat);
+
+ if (sss) {
+ scatter_tree_sample(sss->tree, co, color);
+ return 1;
+ }
+ else {
+ color[0]= 0.0f;
+ color[1]= 0.0f;
+ color[2]= 0.0f;
+ }
+ }
+
+ return 0;
+}
+
+int sss_pass_done(struct Render *re, struct Material *mat)
+{
+ return ((re->flag & R_BAKING) || !(re->r.mode & R_SSS) || (re->sss_hash && BLI_ghash_lookup(re->sss_hash, mat)));
+}
+