Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/render/intern/source/sunsky.c')
-rw-r--r--source/blender/render/intern/source/sunsky.c506
1 files changed, 0 insertions, 506 deletions
diff --git a/source/blender/render/intern/source/sunsky.c b/source/blender/render/intern/source/sunsky.c
deleted file mode 100644
index 80dd52c220c..00000000000
--- a/source/blender/render/intern/source/sunsky.c
+++ /dev/null
@@ -1,506 +0,0 @@
-/*
- * ***** BEGIN GPL LICENSE BLOCK *****
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version 2
- * of the License, or (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
- *
- * ***** END GPL LICENSE BLOCK *****
- */
-
-/** \file blender/render/intern/source/sunsky.c
- * \ingroup render
- *
- * This feature comes from Preetham paper on "A Practical Analytic Model for Daylight"
- * and example code from Brian Smits, another author of that paper in
- * http://www.cs.utah.edu/vissim/papers/sunsky/code/
- */
-
-#include "sunsky.h"
-#include "BLI_math.h"
-
-/**
- * These macros are defined for vector operations
- * */
-
-/**
- * compute v1 = v2 op v3
- * v1, v2 and v3 are vectors contains 3 float
- * */
-#define VEC3OPV(v1, v2, op, v3) \
- { \
- v1[0] = (v2[0] op v3[0]); \
- v1[1] = (v2[1] op v3[1]); \
- v1[2] = (v2[2] op v3[2]); \
- } (void)0
-
-/**
- * compute v1 = v2 op f1
- * v1, v2 are vectors contains 3 float
- * and f1 is a float
- * */
-#define VEC3OPF(v1, v2, op, f1) \
- { \
- v1[0] = (v2[0] op(f1)); \
- v1[1] = (v2[1] op(f1)); \
- v1[2] = (v2[2] op(f1)); \
- } (void)0
-
-/**
- * compute v1 = f1 op v2
- * v1, v2 are vectors contains 3 float
- * and f1 is a float
- * */
-#define FOPVEC3(v1, f1, op, v2) \
- { \
- v1[0] = ((f1) op v2[0]); \
- v1[1] = ((f1) op v2[1]); \
- v1[2] = ((f1) op v2[2]); \
- } (void)0
-
-/**
- * ClipColor:
- * clip a color to range [0, 1];
- * */
-void ClipColor(float c[3])
-{
- if (c[0] > 1.0f) c[0] = 1.0f;
- if (c[0] < 0.0f) c[0] = 0.0f;
- if (c[1] > 1.0f) c[1] = 1.0f;
- if (c[1] < 0.0f) c[1] = 0.0f;
- if (c[2] > 1.0f) c[2] = 1.0f;
- if (c[2] < 0.0f) c[2] = 0.0f;
-}
-
-/**
- * AngleBetween:
- * compute angle between to direction
- * all angles are in radians
- * */
-static float AngleBetween(float thetav, float phiv, float theta, float phi)
-{
- float cospsi = sinf(thetav) * sinf(theta) * cosf(phi - phiv) + cosf(thetav) * cosf(theta);
-
- if (cospsi > 1.0f)
- return 0;
- if (cospsi < -1.0f)
- return M_PI;
-
- return acosf(cospsi);
-}
-
-/**
- * DirectionToThetaPhi:
- * this function convert a direction to it's theta and phi value
- * parameters:
- * toSun: contains direction information
- * theta, phi, are return values from this conversion
- * */
-static void DirectionToThetaPhi(float *toSun, float *theta, float *phi)
-{
- *theta = acosf(toSun[2]);
- if (fabsf(*theta) < 1e-5f)
- *phi = 0;
- else
- *phi = atan2f(toSun[1], toSun[0]);
-}
-
-/**
- * PerezFunction:
- * compute perez function value based on input parameters
- */
-static float PerezFunction(struct SunSky *sunsky, const float *lam, float theta, float gamma, float lvz)
-{
- float den, num;
-
- den = ((1 + lam[0] * expf(lam[1])) *
- (1 + lam[2] * expf(lam[3] * sunsky->theta) + lam[4] * cosf(sunsky->theta) * cosf(sunsky->theta)));
-
- num = ((1 + lam[0] * expf(lam[1] / cosf(theta))) *
- (1 + lam[2] * expf(lam[3] * gamma) + lam[4] * cosf(gamma) * cosf(gamma)));
-
- return(lvz * num / den);
-}
-
-/**
- * InitSunSky:
- * this function compute some sun,sky parameters according to input parameters and also initiate some other sun, sky parameters
- * parameters:
- * sunSky, is a structure that contains information about sun, sky and atmosphere, in this function, most of its values initiated
- * turb, is atmosphere turbidity
- * toSun, contains sun direction
- * horizon_brighness, controls the brightness of the horizon colors
- * spread, controls colors spreed at horizon
- * sun_brightness, controls sun's brightness
- * sun_size, controls sun's size
- * back_scatter, controls back scatter light
- * */
-void InitSunSky(struct SunSky *sunsky, float turb, const float toSun[3], float horizon_brightness,
- float spread, float sun_brightness, float sun_size, float back_scatter,
- float skyblendfac, short skyblendtype, float sky_exposure, float sky_colorspace)
-{
- float theta2;
- float theta3;
- float T;
- float T2;
- float chi;
-
- sunsky->turbidity = turb;
-
- sunsky->horizon_brightness = horizon_brightness;
- sunsky->spread = spread;
- sunsky->sun_brightness = sun_brightness;
- sunsky->sun_size = sun_size;
- sunsky->backscattered_light = back_scatter;
- sunsky->skyblendfac = skyblendfac;
- sunsky->skyblendtype = skyblendtype;
- sunsky->sky_exposure = -sky_exposure;
- sunsky->sky_colorspace = sky_colorspace;
-
- sunsky->toSun[0] = toSun[0];
- sunsky->toSun[1] = toSun[1];
- sunsky->toSun[2] = toSun[2];
-
- DirectionToThetaPhi(sunsky->toSun, &sunsky->theta, &sunsky->phi);
-
- sunsky->sunSolidAngle = 0.25 * M_PI * 1.39 * 1.39 / (150 * 150); /* = 6.7443e-05 */
-
- theta2 = sunsky->theta * sunsky->theta;
- theta3 = theta2 * sunsky->theta;
- T = turb;
- T2 = turb * turb;
-
- chi = (4.0f / 9.0f - T / 120.0f) * ((float)M_PI - 2.0f * sunsky->theta);
- sunsky->zenith_Y = (4.0453f * T - 4.9710f) * tanf(chi) - 0.2155f * T + 2.4192f;
- sunsky->zenith_Y *= 1000; /* conversion from kcd/m^2 to cd/m^2 */
-
- if (sunsky->zenith_Y <= 0)
- sunsky->zenith_Y = 1e-6;
-
- sunsky->zenith_x =
- (+0.00165f * theta3 - 0.00374f * theta2 + 0.00208f * sunsky->theta + 0.0f) * T2 +
- (-0.02902f * theta3 + 0.06377f * theta2 - 0.03202f * sunsky->theta + 0.00394f) * T +
- (+0.11693f * theta3 - 0.21196f * theta2 + 0.06052f * sunsky->theta + 0.25885f);
-
- sunsky->zenith_y =
- (+0.00275f * theta3 - 0.00610f * theta2 + 0.00316f * sunsky->theta + 0.0f) * T2 +
- (-0.04214f * theta3 + 0.08970f * theta2 - 0.04153f * sunsky->theta + 0.00515f) * T +
- (+0.15346f * theta3 - 0.26756f * theta2 + 0.06669f * sunsky->theta + 0.26688f);
-
-
- sunsky->perez_Y[0] = 0.17872f * T - 1.46303f;
- sunsky->perez_Y[1] = -0.35540f * T + 0.42749f;
- sunsky->perez_Y[2] = -0.02266f * T + 5.32505f;
- sunsky->perez_Y[3] = 0.12064f * T - 2.57705f;
- sunsky->perez_Y[4] = -0.06696f * T + 0.37027f;
-
- sunsky->perez_x[0] = -0.01925f * T - 0.25922f;
- sunsky->perez_x[1] = -0.06651f * T + 0.00081f;
- sunsky->perez_x[2] = -0.00041f * T + 0.21247f;
- sunsky->perez_x[3] = -0.06409f * T - 0.89887f;
- sunsky->perez_x[4] = -0.00325f * T + 0.04517f;
-
- sunsky->perez_y[0] = -0.01669f * T - 0.26078f;
- sunsky->perez_y[1] = -0.09495f * T + 0.00921f;
- sunsky->perez_y[2] = -0.00792f * T + 0.21023f;
- sunsky->perez_y[3] = -0.04405f * T - 1.65369f;
- sunsky->perez_y[4] = -0.01092f * T + 0.05291f;
-
- /* suggested by glome in patch [#8063] */
- sunsky->perez_Y[0] *= sunsky->horizon_brightness;
- sunsky->perez_x[0] *= sunsky->horizon_brightness;
- sunsky->perez_y[0] *= sunsky->horizon_brightness;
-
- sunsky->perez_Y[1] *= sunsky->spread;
- sunsky->perez_x[1] *= sunsky->spread;
- sunsky->perez_y[1] *= sunsky->spread;
-
- sunsky->perez_Y[2] *= sunsky->sun_brightness;
- sunsky->perez_x[2] *= sunsky->sun_brightness;
- sunsky->perez_y[2] *= sunsky->sun_brightness;
-
- sunsky->perez_Y[3] *= sunsky->sun_size;
- sunsky->perez_x[3] *= sunsky->sun_size;
- sunsky->perez_y[3] *= sunsky->sun_size;
-
- sunsky->perez_Y[4] *= sunsky->backscattered_light;
- sunsky->perez_x[4] *= sunsky->backscattered_light;
- sunsky->perez_y[4] *= sunsky->backscattered_light;
-}
-
-/**
- * GetSkyXYZRadiance:
- * this function compute sky radiance according to a view parameters `theta' and `phi'and sunSky values
- * parameters:
- * sunSky, sontains sun and sky parameters
- * theta, is sun's theta
- * phi, is sun's phi
- * color_out, is computed color that shows sky radiance in XYZ color format
- * */
-void GetSkyXYZRadiance(struct SunSky *sunsky, float theta, float phi, float color_out[3])
-{
- float gamma;
- float x, y, Y, X, Z;
- float hfade = 1, nfade = 1;
-
-
- if (theta > (float)M_PI_2) {
- hfade = 1.0f - (theta * (float)M_1_PI - 0.5f) * 2.0f;
- hfade = hfade * hfade * (3.0f - 2.0f * hfade);
- theta = M_PI_2;
- }
-
- if (sunsky->theta > (float)M_PI_2) {
- if (theta <= (float)M_PI_2) {
- nfade = 1.0f - (0.5f - theta * (float)M_1_PI) * 2.0f;
- nfade *= 1.0f - (sunsky->theta * (float)M_1_PI - 0.5f) * 2.0f;
- nfade = nfade * nfade * (3.0f - 2.0f * nfade);
- }
- }
-
- gamma = AngleBetween(theta, phi, sunsky->theta, sunsky->phi);
-
- /* Compute xyY values */
- x = PerezFunction(sunsky, sunsky->perez_x, theta, gamma, sunsky->zenith_x);
- y = PerezFunction(sunsky, sunsky->perez_y, theta, gamma, sunsky->zenith_y);
- Y = 6.666666667e-5f * nfade * hfade * PerezFunction(sunsky, sunsky->perez_Y, theta, gamma, sunsky->zenith_Y);
-
- if (sunsky->sky_exposure != 0.0f)
- Y = 1.0 - exp(Y * sunsky->sky_exposure);
-
- X = (x / y) * Y;
- Z = ((1 - x - y) / y) * Y;
-
- color_out[0] = X;
- color_out[1] = Y;
- color_out[2] = Z;
-}
-
-/**
- * GetSkyXYZRadiancef:
- * this function compute sky radiance according to a view direction `varg' and sunSky values
- * parameters:
- * sunSky, sontains sun and sky parameters
- * varg, shows direction
- * color_out, is computed color that shows sky radiance in XYZ color format
- * */
-void GetSkyXYZRadiancef(struct SunSky *sunsky, const float varg[3], float color_out[3])
-{
- float theta, phi;
- float v[3];
-
- normalize_v3_v3(v, varg);
-
- if (v[2] < 0.001f) {
- v[2] = 0.001f;
- normalize_v3(v);
- }
-
- DirectionToThetaPhi(v, &theta, &phi);
- GetSkyXYZRadiance(sunsky, theta, phi, color_out);
-}
-
-/**
- * ComputeAttenuatedSunlight:
- * this function compute attenuated sun light based on sun's theta and atmosphere turbidity
- * parameters:
- * theta, is sun's theta
- * turbidity: is atmosphere turbidity
- * fTau: contains computed attenuated sun light
- * */
-static void ComputeAttenuatedSunlight(float theta, int turbidity, float fTau[3])
-{
- float fBeta;
- float fTauR, fTauA;
- float m;
- float fAlpha;
-
- int i;
- float fLambda[3];
- fLambda[0] = 0.65f;
- fLambda[1] = 0.57f;
- fLambda[2] = 0.475f;
-
- fAlpha = 1.3f;
- fBeta = 0.04608365822050f * turbidity - 0.04586025928522f;
-
- m = 1.0f / (cosf(theta) + 0.15f * powf(93.885f - theta / (float)M_PI * 180.0f, -1.253f));
-
- for (i = 0; i < 3; i++) {
- /* Rayleigh Scattering */
- fTauR = expf(-m * 0.008735f * powf(fLambda[i], (float)(-4.08f)));
-
- /* Aerosal (water + dust) attenuation */
- fTauA = exp(-m * fBeta * powf(fLambda[i], -fAlpha));
-
- fTau[i] = fTauR * fTauA;
- }
-}
-
-/**
- * InitAtmosphere:
- * this function initiate sunSky structure with user input parameters.
- * parameters:
- * sunSky, contains information about sun, and in this function some atmosphere parameters will initiated
- * sun_intens, shows sun intensity value
- * mief, Mie scattering factor this factor currently call with 1.0
- * rayf, Rayleigh scattering factor, this factor currently call with 1.0
- * inscattf, inscatter light factor that range from 0.0 to 1.0, 0.0 means no inscatter light and 1.0 means full inscatter light
- * extincf, extinction light factor that range from 0.0 to 1.0, 0.0 means no extinction and 1.0 means full extinction
- * disf, is distance factor, multiplied to pixle's z value to compute each pixle's distance to camera,
- * */
-void InitAtmosphere(struct SunSky *sunSky, float sun_intens, float mief, float rayf,
- float inscattf, float extincf, float disf)
-{
- const float pi = M_PI;
- const float n = 1.003f; /* refractive index */
- const float N = 2.545e25;
- const float pn = 0.035f;
- const float T = 2.0f;
- float fTemp, fTemp2, fTemp3, fBeta, fBetaDash;
- float c = (6.544f * T - 6.51f) * 1e-17f;
- float K[3] = {0.685f, 0.679f, 0.670f};
- float vBetaMieTemp[3];
-
- float fLambda[3], fLambda2[3], fLambda4[3];
- float vLambda2[3];
- float vLambda4[3];
-
- int i;
-
- sunSky->atm_SunIntensity = sun_intens;
- sunSky->atm_BetaMieMultiplier = mief;
- sunSky->atm_BetaRayMultiplier = rayf;
- sunSky->atm_InscatteringMultiplier = inscattf;
- sunSky->atm_ExtinctionMultiplier = extincf;
- sunSky->atm_DistanceMultiplier = disf;
-
- sunSky->atm_HGg = 0.8;
-
- fLambda[0] = 1 / 650e-9f;
- fLambda[1] = 1 / 570e-9f;
- fLambda[2] = 1 / 475e-9f;
- for (i = 0; i < 3; i++) {
- fLambda2[i] = fLambda[i] * fLambda[i];
- fLambda4[i] = fLambda2[i] * fLambda2[i];
- }
-
- vLambda2[0] = fLambda2[0];
- vLambda2[1] = fLambda2[1];
- vLambda2[2] = fLambda2[2];
-
- vLambda4[0] = fLambda4[0];
- vLambda4[1] = fLambda4[1];
- vLambda4[2] = fLambda4[2];
-
- /* Rayleigh scattering constants. */
- fTemp = pi * pi * (n * n - 1) * (n * n - 1) * (6 + 3 * pn) / (6 - 7 * pn) / N;
- fBeta = 8 * fTemp * pi / 3;
-
- VEC3OPF(sunSky->atm_BetaRay, vLambda4, *, fBeta);
- fBetaDash = fTemp / 2;
- VEC3OPF(sunSky->atm_BetaDashRay, vLambda4, *, fBetaDash);
-
-
- /* Mie scattering constants. */
- fTemp2 = 0.434f * c * (2 * pi) * (2 * pi) * 0.5f;
- VEC3OPF(sunSky->atm_BetaDashMie, vLambda2, *, fTemp2);
-
- fTemp3 = 0.434f * c * pi * (2 * pi) * (2 * pi);
-
- VEC3OPV(vBetaMieTemp, K, *, fLambda);
- VEC3OPF(sunSky->atm_BetaMie, vBetaMieTemp, *, fTemp3);
-
-}
-
-/**
- * AtmospherePixleShader:
- * this function apply atmosphere effect on a pixle color `rgb' at distance `s'
- * parameters:
- * sunSky, contains information about sun parameters and user values
- * view, is camera view vector
- * s, is distance
- * rgb, contains rendered color value for a pixle
- * */
-void AtmospherePixleShader(struct SunSky *sunSky, float view[3], float s, float rgb[3])
-{
- float costheta;
- float Phase_1;
- float Phase_2;
- float sunColor[3];
-
- float E[3];
- float E1[3];
-
-
- float I[3];
- float fTemp;
- float vTemp1[3], vTemp2[3];
-
- float sunDirection[3];
-
- s *= sunSky->atm_DistanceMultiplier;
-
- sunDirection[0] = sunSky->toSun[0];
- sunDirection[1] = sunSky->toSun[1];
- sunDirection[2] = sunSky->toSun[2];
-
- costheta = dot_v3v3(view, sunDirection); /* cos(theta) */
- Phase_1 = 1 + (costheta * costheta); /* Phase_1 */
-
- VEC3OPF(sunSky->atm_BetaRay, sunSky->atm_BetaRay, *, sunSky->atm_BetaRayMultiplier);
- VEC3OPF(sunSky->atm_BetaMie, sunSky->atm_BetaMie, *, sunSky->atm_BetaMieMultiplier);
- VEC3OPV(sunSky->atm_BetaRM, sunSky->atm_BetaRay, +, sunSky->atm_BetaMie);
-
- /* e^(-(beta_1 + beta_2) * s) = E1 */
- VEC3OPF(E1, sunSky->atm_BetaRM, *, -s / (float)M_LN2);
- E1[0] = exp(E1[0]);
- E1[1] = exp(E1[1]);
- E1[2] = exp(E1[2]);
-
- copy_v3_v3(E, E1);
-
- /* Phase2(theta) = (1-g^2)/(1+g-2g*cos(theta))^(3/2) */
- fTemp = 1 + sunSky->atm_HGg - 2 * sunSky->atm_HGg * costheta;
- fTemp = fTemp * sqrtf(fTemp);
- Phase_2 = (1 - sunSky->atm_HGg * sunSky->atm_HGg) / fTemp;
-
- VEC3OPF(vTemp1, sunSky->atm_BetaDashRay, *, Phase_1);
- VEC3OPF(vTemp2, sunSky->atm_BetaDashMie, *, Phase_2);
-
- VEC3OPV(vTemp1, vTemp1, +, vTemp2);
- FOPVEC3(vTemp2, 1.0f, -, E1);
- VEC3OPV(vTemp1, vTemp1, *, vTemp2);
-
- FOPVEC3(vTemp2, 1.0f, /, sunSky->atm_BetaRM);
-
- VEC3OPV(I, vTemp1, *, vTemp2);
-
- VEC3OPF(I, I, *, sunSky->atm_InscatteringMultiplier);
- VEC3OPF(E, E, *, sunSky->atm_ExtinctionMultiplier);
-
- /* scale to color sun */
- ComputeAttenuatedSunlight(sunSky->theta, sunSky->turbidity, sunColor);
- VEC3OPV(E, E, *, sunColor);
-
- VEC3OPF(I, I, *, sunSky->atm_SunIntensity);
-
- VEC3OPV(rgb, rgb, *, E);
- VEC3OPV(rgb, rgb, +, I);
-}
-
-#undef VEC3OPV
-#undef VEC3OPF
-#undef FOPVEC3
-
-/* EOF */