Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/render/intern/source/volumetric.c')
-rw-r--r--source/blender/render/intern/source/volumetric.c836
1 files changed, 836 insertions, 0 deletions
diff --git a/source/blender/render/intern/source/volumetric.c b/source/blender/render/intern/source/volumetric.c
new file mode 100644
index 00000000000..583353ed8cf
--- /dev/null
+++ b/source/blender/render/intern/source/volumetric.c
@@ -0,0 +1,836 @@
+/*
+ * ***** BEGIN GPL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
+ * All rights reserved.
+ *
+ * The Original Code is: all of this file.
+ *
+ * Contributor(s): Matt Ebb, Raul Fernandez Hernandez (Farsthary)
+ *
+ * ***** END GPL LICENSE BLOCK *****
+ */
+
+/** \file blender/render/intern/source/volumetric.c
+ * \ingroup render
+ */
+
+#include <math.h>
+#include <stdlib.h>
+#include <string.h>
+#include <float.h>
+
+#include "BLI_math.h"
+#include "BLI_rand.h"
+#include "BLI_voxel.h"
+#include "BLI_utildefines.h"
+
+#include "RE_shader_ext.h"
+
+#include "IMB_colormanagement.h"
+
+#include "DNA_material_types.h"
+#include "DNA_group_types.h"
+#include "DNA_lamp_types.h"
+#include "DNA_meta_types.h"
+
+
+#include "render_types.h"
+#include "pixelshading.h"
+#include "rayintersection.h"
+#include "rayobject.h"
+#include "renderdatabase.h"
+#include "shading.h"
+#include "shadbuf.h"
+#include "texture.h"
+#include "volumetric.h"
+#include "volume_precache.h"
+
+/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */
+/* defined in pipeline.c, is hardcopy of active dynamic allocated Render */
+/* only to be used here in this file, it's for speed */
+extern struct Render R;
+/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */
+
+/* tracing */
+static float vol_get_shadow(ShadeInput *shi, LampRen *lar, const float co[3])
+{
+ float visibility = 1.f;
+
+ if (lar->shb) {
+ float dxco[3] = {0.f, 0.f, 0.f}, dyco[3] = {0.f, 0.f, 0.f};
+
+ visibility = testshadowbuf(&R, lar->shb, co, dxco, dyco, 1.0, 0.0);
+ }
+ else if (lar->mode & LA_SHAD_RAY) {
+ /* trace shadow manually, no good lamp api atm */
+ Isect is;
+
+ copy_v3_v3(is.start, co);
+ if (lar->type == LA_SUN || lar->type == LA_HEMI) {
+ is.dir[0] = -lar->vec[0];
+ is.dir[1] = -lar->vec[1];
+ is.dir[2] = -lar->vec[2];
+ is.dist = R.maxdist;
+ }
+ else {
+ sub_v3_v3v3(is.dir, lar->co, is.start);
+ is.dist = normalize_v3(is.dir);
+ }
+
+ is.mode = RE_RAY_MIRROR;
+ is.check = RE_CHECK_VLR_NON_SOLID_MATERIAL;
+ is.skip = 0;
+
+ if (lar->mode & (LA_LAYER | LA_LAYER_SHADOW))
+ is.lay = lar->lay;
+ else
+ is.lay = -1;
+
+ is.orig.ob = NULL;
+ is.orig.face = NULL;
+ is.last_hit = lar->last_hit[shi->thread];
+
+ RE_instance_rotate_ray(shi->obi, &is);
+
+ if (RE_rayobject_raycast(R.raytree, &is)) {
+ RE_instance_rotate_ray_restore(shi->obi, &is);
+
+ visibility = 0.f;
+ }
+
+ lar->last_hit[shi->thread] = is.last_hit;
+ }
+ return visibility;
+}
+
+static int vol_get_bounds(ShadeInput *shi, const float co[3], const float vec[3], float hitco[3], Isect *isect, int intersect_type)
+{
+
+ copy_v3_v3(isect->start, co);
+ copy_v3_v3(isect->dir, vec);
+ isect->dist = FLT_MAX;
+ isect->mode = RE_RAY_MIRROR;
+ isect->last_hit = NULL;
+ isect->lay = -1;
+ isect->check = RE_CHECK_VLR_NONE;
+
+ if (intersect_type == VOL_BOUNDS_DEPTH) {
+ isect->skip = RE_SKIP_VLR_NEIGHBOUR;
+ isect->orig.face = (void *)shi->vlr;
+ isect->orig.ob = (void *)shi->obi;
+ }
+ else { // if (intersect_type == VOL_BOUNDS_SS) {
+ isect->skip = 0;
+ isect->orig.face = NULL;
+ isect->orig.ob = NULL;
+ }
+
+ RE_instance_rotate_ray(shi->obi, isect);
+
+ if (RE_rayobject_raycast(R.raytree, isect)) {
+ RE_instance_rotate_ray_restore(shi->obi, isect);
+
+ hitco[0] = isect->start[0] + isect->dist * isect->dir[0];
+ hitco[1] = isect->start[1] + isect->dist * isect->dir[1];
+ hitco[2] = isect->start[2] + isect->dist * isect->dir[2];
+ return 1;
+ }
+ else {
+ return 0;
+ }
+}
+
+static void shade_intersection(ShadeInput *shi, float col_r[4], Isect *is)
+{
+ ShadeInput shi_new;
+ ShadeResult shr_new;
+
+ memset(&shi_new, 0, sizeof(ShadeInput));
+
+ shi_new.mask = shi->mask;
+ shi_new.osatex = shi->osatex;
+ shi_new.thread = shi->thread;
+ shi_new.depth = shi->depth + 1;
+ shi_new.volume_depth = shi->volume_depth + 1;
+ shi_new.xs = shi->xs;
+ shi_new.ys = shi->ys;
+ shi_new.lay = shi->lay;
+ shi_new.passflag = SCE_PASS_COMBINED; /* result of tracing needs no pass info */
+ shi_new.combinedflag = 0xFFFFFF; /* ray trace does all options */
+ shi_new.light_override = shi->light_override;
+ shi_new.mat_override = shi->mat_override;
+
+ copy_v3_v3(shi_new.camera_co, is->start);
+
+ memset(&shr_new, 0, sizeof(ShadeResult));
+
+ /* hardcoded limit of 100 for now - prevents problems in weird geometry */
+ if (shi->volume_depth < 100) {
+ shade_ray(is, &shi_new, &shr_new);
+ }
+
+ copy_v3_v3(col_r, shr_new.combined);
+ col_r[3] = shr_new.alpha;
+}
+
+static void vol_trace_behind(ShadeInput *shi, VlakRen *vlr, const float co[3], float col_r[4])
+{
+ Isect isect;
+
+ copy_v3_v3(isect.start, co);
+ copy_v3_v3(isect.dir, shi->view);
+ isect.dist = FLT_MAX;
+
+ isect.mode = RE_RAY_MIRROR;
+ isect.check = RE_CHECK_VLR_NONE;
+ isect.skip = RE_SKIP_VLR_NEIGHBOUR;
+ isect.orig.ob = (void *) shi->obi;
+ isect.orig.face = (void *)vlr;
+ isect.last_hit = NULL;
+ isect.lay = -1;
+
+ /* check to see if there's anything behind the volume, otherwise shade the sky */
+ RE_instance_rotate_ray(shi->obi, &isect);
+
+ if (RE_rayobject_raycast(R.raytree, &isect)) {
+ RE_instance_rotate_ray_restore(shi->obi, &isect);
+
+ shade_intersection(shi, col_r, &isect);
+ }
+ else {
+ shadeSkyView(col_r, co, shi->view, NULL, shi->thread);
+ shadeSunView(col_r, shi->view);
+ }
+}
+
+
+/* trilinear interpolation */
+static void vol_get_precached_scattering(Render *re, ShadeInput *shi, float scatter_col[3], const float co[3])
+{
+ VolumePrecache *vp = shi->obi->volume_precache;
+ float bbmin[3], bbmax[3], dim[3];
+ float world_co[3], sample_co[3];
+
+ if (!vp) return;
+
+ /* find sample point in global space bounding box 0.0-1.0 */
+ global_bounds_obi(re, shi->obi, bbmin, bbmax);
+ sub_v3_v3v3(dim, bbmax, bbmin);
+ mul_v3_m4v3(world_co, re->viewinv, co);
+
+ /* sample_co in 0.0-1.0 */
+ sample_co[0] = (world_co[0] - bbmin[0]) / dim[0];
+ sample_co[1] = (world_co[1] - bbmin[1]) / dim[1];
+ sample_co[2] = (world_co[2] - bbmin[2]) / dim[2];
+
+ scatter_col[0] = BLI_voxel_sample_triquadratic(vp->data_r, vp->res, sample_co);
+ scatter_col[1] = BLI_voxel_sample_triquadratic(vp->data_g, vp->res, sample_co);
+ scatter_col[2] = BLI_voxel_sample_triquadratic(vp->data_b, vp->res, sample_co);
+}
+
+/* Meta object density, brute force for now
+ * (might be good enough anyway, don't need huge number of metaobs to model volumetric objects */
+static float metadensity(Object *ob, const float co[3])
+{
+ float mat[4][4], imat[4][4], dens = 0.f;
+ MetaBall *mb = (MetaBall *)ob->data;
+ MetaElem *ml;
+
+ /* transform co to meta-element */
+ float tco[3] = {co[0], co[1], co[2]};
+ mul_m4_m4m4(mat, R.viewmat, ob->obmat);
+ invert_m4_m4(imat, mat);
+ mul_m4_v3(imat, tco);
+
+ for (ml = mb->elems.first; ml; ml = ml->next) {
+ float bmat[3][3], dist2;
+
+ /* element rotation transform */
+ float tp[3] = {ml->x - tco[0], ml->y - tco[1], ml->z - tco[2]};
+ quat_to_mat3(bmat, ml->quat);
+ transpose_m3(bmat); /* rot.only, so inverse == transpose */
+ mul_m3_v3(bmat, tp);
+
+ /* MB_BALL default */
+ switch (ml->type) {
+ case MB_ELIPSOID:
+ tp[0] /= ml->expx;
+ tp[1] /= ml->expy;
+ tp[2] /= ml->expz;
+ break;
+ case MB_CUBE:
+ tp[2] = (tp[2] > ml->expz) ? (tp[2] - ml->expz) : ((tp[2] < -ml->expz) ? (tp[2] + ml->expz) : 0.f);
+ /* no break, xy as plane */
+ ATTR_FALLTHROUGH;
+ case MB_PLANE:
+ tp[1] = (tp[1] > ml->expy) ? (tp[1] - ml->expy) : ((tp[1] < -ml->expy) ? (tp[1] + ml->expy) : 0.f);
+ /* no break, x as tube */
+ ATTR_FALLTHROUGH;
+ case MB_TUBE:
+ tp[0] = (tp[0] > ml->expx) ? (tp[0] - ml->expx) : ((tp[0] < -ml->expx) ? (tp[0] + ml->expx) : 0.f);
+ }
+
+ /* ml->rad2 is not set */
+ dist2 = 1.0f - (dot_v3v3(tp, tp) / (ml->rad * ml->rad));
+ if (dist2 > 0.f)
+ dens += (ml->flag & MB_NEGATIVE) ? -ml->s * dist2 * dist2 * dist2 : ml->s * dist2 * dist2 * dist2;
+ }
+
+ dens -= mb->thresh;
+ return (dens < 0.f) ? 0.f : dens;
+}
+
+float vol_get_density(struct ShadeInput *shi, const float co[3])
+{
+ float density = shi->mat->vol.density;
+ float density_scale = shi->mat->vol.density_scale;
+
+ if (shi->mat->mapto_textured & MAP_DENSITY)
+ do_volume_tex(shi, co, MAP_DENSITY, NULL, &density, &R);
+
+ /* if meta-object, modulate by metadensity without increasing it */
+ if (shi->obi->obr->ob->type == OB_MBALL) {
+ const float md = metadensity(shi->obi->obr->ob, co);
+ if (md < 1.f) density *= md;
+ }
+
+ return density * density_scale;
+}
+
+
+/* Color of light that gets scattered out by the volume */
+/* Uses same physically based scattering parameter as in transmission calculations,
+ * along with artificial reflection scale/reflection color tint */
+static void vol_get_reflection_color(ShadeInput *shi, float ref_col[3], const float co[3])
+{
+ float scatter = shi->mat->vol.scattering;
+ float reflection = shi->mat->vol.reflection;
+ copy_v3_v3(ref_col, shi->mat->vol.reflection_col);
+
+ if (shi->mat->mapto_textured & (MAP_SCATTERING + MAP_REFLECTION_COL))
+ do_volume_tex(shi, co, MAP_SCATTERING + MAP_REFLECTION_COL, ref_col, &scatter, &R);
+
+ /* only one single float parameter at a time... :s */
+ if (shi->mat->mapto_textured & (MAP_REFLECTION))
+ do_volume_tex(shi, co, MAP_REFLECTION, NULL, &reflection, &R);
+
+ ref_col[0] = reflection * ref_col[0] * scatter;
+ ref_col[1] = reflection * ref_col[1] * scatter;
+ ref_col[2] = reflection * ref_col[2] * scatter;
+}
+
+/* compute emission component, amount of radiance to add per segment
+ * can be textured with 'emit' */
+static void vol_get_emission(ShadeInput *shi, float emission_col[3], const float co[3])
+{
+ float emission = shi->mat->vol.emission;
+ copy_v3_v3(emission_col, shi->mat->vol.emission_col);
+
+ if (shi->mat->mapto_textured & (MAP_EMISSION + MAP_EMISSION_COL))
+ do_volume_tex(shi, co, MAP_EMISSION + MAP_EMISSION_COL, emission_col, &emission, &R);
+
+ emission_col[0] = emission_col[0] * emission;
+ emission_col[1] = emission_col[1] * emission;
+ emission_col[2] = emission_col[2] * emission;
+}
+
+
+/* A combination of scattering and absorption -> known as sigma T.
+ * This can possibly use a specific scattering color,
+ * and absorption multiplier factor too, but these parameters are left out for simplicity.
+ * It's easy enough to get a good wide range of results with just these two parameters. */
+static void vol_get_sigma_t(ShadeInput *shi, float sigma_t[3], const float co[3])
+{
+ /* technically absorption, but named transmission color
+ * since it describes the effect of the coloring *after* absorption */
+ float transmission_col[3] = {shi->mat->vol.transmission_col[0], shi->mat->vol.transmission_col[1], shi->mat->vol.transmission_col[2]};
+ float scattering = shi->mat->vol.scattering;
+
+ if (shi->mat->mapto_textured & (MAP_SCATTERING + MAP_TRANSMISSION_COL))
+ do_volume_tex(shi, co, MAP_SCATTERING + MAP_TRANSMISSION_COL, transmission_col, &scattering, &R);
+
+ sigma_t[0] = (1.0f - transmission_col[0]) + scattering;
+ sigma_t[1] = (1.0f - transmission_col[1]) + scattering;
+ sigma_t[2] = (1.0f - transmission_col[2]) + scattering;
+}
+
+/* phase function - determines in which directions the light
+ * is scattered in the volume relative to incoming direction
+ * and view direction */
+static float vol_get_phasefunc(ShadeInput *UNUSED(shi), float g, const float w[3], const float wp[3])
+{
+ const float normalize = 0.25f; // = 1.f/4.f = M_PI/(4.f*M_PI)
+
+ /* normalization constant is 1/4 rather than 1/4pi, since
+ * Blender's shading system doesn't normalize for
+ * energy conservation - eg. multiplying by pdf ( 1/pi for a lambert brdf ).
+ * This means that lambert surfaces in Blender are pi times brighter than they 'should be'
+ * and therefore, with correct energy conservation, volumes will darker than other solid objects,
+ * for the same lighting intensity.
+ * To correct this, scale up the phase function values by pi
+ * until Blender's shading system supports this better. --matt
+ */
+
+ if (g == 0.f) { /* isotropic */
+ return normalize * 1.f;
+ }
+ else { /* schlick */
+ const float k = 1.55f * g - 0.55f * g * g * g;
+ const float kcostheta = k * dot_v3v3(w, wp);
+ return normalize * (1.f - k * k) / ((1.f - kcostheta) * (1.f - kcostheta));
+ }
+
+ /* not used, but here for reference: */
+#if 0
+ switch (phasefunc_type) {
+ case MA_VOL_PH_MIEHAZY:
+ return normalize * (0.5f + 4.5f * powf(0.5 * (1.f + costheta), 8.f));
+ case MA_VOL_PH_MIEMURKY:
+ return normalize * (0.5f + 16.5f * powf(0.5 * (1.f + costheta), 32.f));
+ case MA_VOL_PH_RAYLEIGH:
+ return normalize * 3.f / 4.f * (1 + costheta * costheta);
+ case MA_VOL_PH_HG:
+ return normalize * (1.f - g * g) / powf(1.f + g * g - 2.f * g * costheta, 1.5f);
+ case MA_VOL_PH_SCHLICK:
+ {
+ const float k = 1.55f * g - 0.55f * g * g * g;
+ const float kcostheta = k * costheta;
+ return normalize * (1.f - k * k) / ((1.f - kcostheta) * (1.f - kcostheta));
+ }
+ case MA_VOL_PH_ISOTROPIC:
+ default:
+ return normalize * 1.f;
+ }
+#endif
+}
+
+/* Compute transmittance = e^(-attenuation) */
+static void vol_get_transmittance_seg(ShadeInput *shi, float tr[3], float stepsize, const float co[3], float density)
+{
+ /* input density = density at co */
+ float tau[3] = {0.f, 0.f, 0.f};
+ const float stepd = density * stepsize;
+ float sigma_t[3];
+
+ vol_get_sigma_t(shi, sigma_t, co);
+
+ /* homogeneous volume within the sampled distance */
+ tau[0] += stepd * sigma_t[0];
+ tau[1] += stepd * sigma_t[1];
+ tau[2] += stepd * sigma_t[2];
+
+ tr[0] *= expf(-tau[0]);
+ tr[1] *= expf(-tau[1]);
+ tr[2] *= expf(-tau[2]);
+}
+
+/* Compute transmittance = e^(-attenuation) */
+static void vol_get_transmittance(ShadeInput *shi, float tr[3], const float co[3], const float endco[3])
+{
+ float p[3] = {co[0], co[1], co[2]};
+ float step_vec[3] = {endco[0] - co[0], endco[1] - co[1], endco[2] - co[2]};
+ float tau[3] = {0.f, 0.f, 0.f};
+
+ float t0 = 0.f;
+ float t1 = normalize_v3(step_vec);
+ float pt0 = t0;
+
+ t0 += shi->mat->vol.stepsize * ((shi->mat->vol.stepsize_type == MA_VOL_STEP_CONSTANT) ? 0.5f : BLI_thread_frand(shi->thread));
+ p[0] += t0 * step_vec[0];
+ p[1] += t0 * step_vec[1];
+ p[2] += t0 * step_vec[2];
+ mul_v3_fl(step_vec, shi->mat->vol.stepsize);
+
+ for (; t0 < t1; pt0 = t0, t0 += shi->mat->vol.stepsize) {
+ const float d = vol_get_density(shi, p);
+ const float stepd = (t0 - pt0) * d;
+ float sigma_t[3];
+
+ vol_get_sigma_t(shi, sigma_t, p);
+
+ tau[0] += stepd * sigma_t[0];
+ tau[1] += stepd * sigma_t[1];
+ tau[2] += stepd * sigma_t[2];
+
+ add_v3_v3(p, step_vec);
+ }
+
+ /* return transmittance */
+ tr[0] = expf(-tau[0]);
+ tr[1] = expf(-tau[1]);
+ tr[2] = expf(-tau[2]);
+}
+
+static void vol_shade_one_lamp(struct ShadeInput *shi, const float co[3], const float view[3], LampRen *lar, float lacol[3])
+{
+ float visifac, lv[3], lampdist;
+ float tr[3] = {1.0, 1.0, 1.0};
+ float hitco[3], *atten_co;
+ float p, ref_col[3];
+
+ if (lar->mode & LA_LAYER) if ((lar->lay & shi->obi->lay) == 0) return;
+ if ((lar->lay & shi->lay) == 0) return;
+ if (lar->energy == 0.0f) return;
+
+ if ((visifac = lamp_get_visibility(lar, co, lv, &lampdist)) == 0.f) return;
+
+ copy_v3_v3(lacol, &lar->r);
+
+ if (lar->mode & LA_TEXTURE) {
+ shi->osatex = 0;
+ do_lamp_tex(lar, lv, shi, lacol, LA_TEXTURE);
+ }
+
+ mul_v3_fl(lacol, visifac);
+
+ if (ELEM(lar->type, LA_SUN, LA_HEMI))
+ copy_v3_v3(lv, lar->vec);
+ negate_v3(lv);
+
+ if (shi->mat->vol.shade_type == MA_VOL_SHADE_SHADOWED) {
+ mul_v3_fl(lacol, vol_get_shadow(shi, lar, co));
+ }
+ else if (ELEM(shi->mat->vol.shade_type, MA_VOL_SHADE_SHADED, MA_VOL_SHADE_MULTIPLE, MA_VOL_SHADE_SHADEDPLUSMULTIPLE)) {
+ Isect is;
+
+ if (shi->mat->vol.shadeflag & MA_VOL_RECV_EXT_SHADOW) {
+ mul_v3_fl(lacol, vol_get_shadow(shi, lar, co));
+ if (IMB_colormanagement_get_luminance(lacol) < 0.001f) return;
+ }
+
+ /* find minimum of volume bounds, or lamp coord */
+ if (vol_get_bounds(shi, co, lv, hitco, &is, VOL_BOUNDS_SS)) {
+ float dist = len_v3v3(co, hitco);
+ VlakRen *vlr = (VlakRen *)is.hit.face;
+
+ /* simple internal shadowing */
+ if (vlr->mat->material_type == MA_TYPE_SURFACE) {
+ lacol[0] = lacol[1] = lacol[2] = 0.0f;
+ return;
+ }
+
+ if (ELEM(lar->type, LA_SUN, LA_HEMI))
+ /* infinite lights, can never be inside volume */
+ atten_co = hitco;
+ else if (lampdist < dist) {
+ atten_co = lar->co;
+ }
+ else
+ atten_co = hitco;
+
+ vol_get_transmittance(shi, tr, co, atten_co);
+
+ mul_v3_v3v3(lacol, lacol, tr);
+ }
+ else {
+ /* Point is on the outside edge of the volume,
+ * therefore no attenuation, full transmission.
+ * Radiance from lamp remains unchanged */
+ }
+ }
+
+ if (IMB_colormanagement_get_luminance(lacol) < 0.001f) return;
+
+ normalize_v3(lv);
+ p = vol_get_phasefunc(shi, shi->mat->vol.asymmetry, view, lv);
+
+ /* physically based scattering with non-physically based RGB gain */
+ vol_get_reflection_color(shi, ref_col, co);
+
+ lacol[0] *= p * ref_col[0];
+ lacol[1] *= p * ref_col[1];
+ lacol[2] *= p * ref_col[2];
+}
+
+/* single scattering only for now */
+void vol_get_scattering(ShadeInput *shi, float scatter_col[3], const float co[3], const float view[3])
+{
+ ListBase *lights;
+ GroupObject *go;
+ LampRen *lar;
+
+ zero_v3(scatter_col);
+
+ lights = get_lights(shi);
+ for (go = lights->first; go; go = go->next) {
+ float lacol[3] = {0.f, 0.f, 0.f};
+ lar = go->lampren;
+
+ if (lar) {
+ vol_shade_one_lamp(shi, co, view, lar, lacol);
+ add_v3_v3(scatter_col, lacol);
+ }
+ }
+}
+
+
+/*
+ * The main volumetric integrator, using an emission/absorption/scattering model.
+ *
+ * Incoming radiance =
+ *
+ * outgoing radiance from behind surface * beam transmittance/attenuation
+ * + added radiance from all points along the ray due to participating media
+ * --> radiance for each segment =
+ * (radiance added by scattering + radiance added by emission) * beam transmittance/attenuation
+ */
+
+/* For ease of use, I've also introduced a 'reflection' and 'reflection color' parameter, which isn't
+ * physically correct. This works as an RGB tint/gain on out-scattered light, but doesn't affect the light
+ * that is transmitted through the volume. While having wavelength dependent absorption/scattering is more correct,
+ * it also makes it harder to control the overall look of the volume since coloring the outscattered light results
+ * in the inverse color being transmitted through the rest of the volume.
+ */
+static void volumeintegrate(struct ShadeInput *shi, float col[4], const float co[3], const float endco[3])
+{
+ float radiance[3] = {0.f, 0.f, 0.f};
+ float tr[3] = {1.f, 1.f, 1.f};
+ float p[3] = {co[0], co[1], co[2]};
+ float step_vec[3] = {endco[0] - co[0], endco[1] - co[1], endco[2] - co[2]};
+ const float stepsize = shi->mat->vol.stepsize;
+
+ float t0 = 0.f;
+ float pt0 = t0;
+ float t1 = normalize_v3(step_vec); /* returns vector length */
+
+ t0 += stepsize * ((shi->mat->vol.stepsize_type == MA_VOL_STEP_CONSTANT) ? 0.5f : BLI_thread_frand(shi->thread));
+ p[0] += t0 * step_vec[0];
+ p[1] += t0 * step_vec[1];
+ p[2] += t0 * step_vec[2];
+ mul_v3_fl(step_vec, stepsize);
+
+ for (; t0 < t1; pt0 = t0, t0 += stepsize) {
+ const float density = vol_get_density(shi, p);
+
+ if (density > 0.00001f) {
+ float scatter_col[3] = {0.f, 0.f, 0.f}, emit_col[3];
+ const float stepd = (t0 - pt0) * density;
+
+ /* transmittance component (alpha) */
+ vol_get_transmittance_seg(shi, tr, stepsize, co, density);
+
+ if (t0 > t1 * 0.25f) {
+ /* only use depth cutoff after we've traced a little way into the volume */
+ if (IMB_colormanagement_get_luminance(tr) < shi->mat->vol.depth_cutoff) break;
+ }
+
+ vol_get_emission(shi, emit_col, p);
+
+ if (shi->obi->volume_precache) {
+ float p2[3];
+
+ p2[0] = p[0] + (step_vec[0] * 0.5f);
+ p2[1] = p[1] + (step_vec[1] * 0.5f);
+ p2[2] = p[2] + (step_vec[2] * 0.5f);
+
+ vol_get_precached_scattering(&R, shi, scatter_col, p2);
+ }
+ else
+ vol_get_scattering(shi, scatter_col, p, shi->view);
+
+ radiance[0] += stepd * tr[0] * (emit_col[0] + scatter_col[0]);
+ radiance[1] += stepd * tr[1] * (emit_col[1] + scatter_col[1]);
+ radiance[2] += stepd * tr[2] * (emit_col[2] + scatter_col[2]);
+ }
+ add_v3_v3(p, step_vec);
+ }
+
+ /* multiply original color (from behind volume) with transmittance over entire distance */
+ mul_v3_v3v3(col, tr, col);
+ add_v3_v3(col, radiance);
+
+ /* alpha <-- transmission luminance */
+ col[3] = 1.0f - IMB_colormanagement_get_luminance(tr);
+}
+
+/* the main entry point for volume shading */
+static void volume_trace(struct ShadeInput *shi, struct ShadeResult *shr, int inside_volume)
+{
+ float hitco[3], col[4] = {0.f, 0.f, 0.f, 0.f};
+ const float *startco, *endco;
+ int trace_behind = 1;
+ const int ztransp = ((shi->depth == 0) && (shi->mat->mode & MA_TRANSP) && (shi->mat->mode & MA_ZTRANSP));
+ Isect is;
+
+ /* check for shading an internal face a volume object directly */
+ if (inside_volume == VOL_SHADE_INSIDE)
+ trace_behind = 0;
+ else if (inside_volume == VOL_SHADE_OUTSIDE) {
+ if (shi->flippednor)
+ inside_volume = VOL_SHADE_INSIDE;
+ }
+
+ if (ztransp && inside_volume == VOL_SHADE_INSIDE) {
+ MatInside *mi;
+ int render_this = 0;
+
+ /* don't render the backfaces of ztransp volume materials.
+ *
+ * volume shading renders the internal volume from between the
+ * ' view intersection of the solid volume to the
+ * intersection on the other side, as part of the shading of
+ * the front face.
+ *
+ * Because ztransp renders both front and back faces independently
+ * this will double up, so here we prevent rendering the backface as well,
+ * which would otherwise render the volume in between the camera and the backface
+ * --matt */
+
+ for (mi = R.render_volumes_inside.first; mi; mi = mi->next) {
+ /* weak... */
+ if (mi->ma == shi->mat) render_this = 1;
+ }
+ if (!render_this) return;
+ }
+
+
+ if (inside_volume == VOL_SHADE_INSIDE) {
+ startco = shi->camera_co;
+ endco = shi->co;
+
+ if (trace_behind) {
+ if (!ztransp)
+ /* trace behind the volume object */
+ vol_trace_behind(shi, shi->vlr, endco, col);
+ }
+ else {
+ /* we're tracing through the volume between the camera
+ * and a solid surface, so use that pre-shaded radiance */
+ copy_v4_v4(col, shr->combined);
+ }
+
+ /* shade volume from 'camera' to 1st hit point */
+ volumeintegrate(shi, col, startco, endco);
+ }
+ /* trace to find a backface, the other side bounds of the volume */
+ /* (ray intersect ignores front faces here) */
+ else if (vol_get_bounds(shi, shi->co, shi->view, hitco, &is, VOL_BOUNDS_DEPTH)) {
+ VlakRen *vlr = (VlakRen *)is.hit.face;
+
+ startco = shi->co;
+ endco = hitco;
+
+ if (!ztransp) {
+ /* if it's another face in the same material */
+ if (vlr->mat == shi->mat) {
+ /* trace behind the 2nd (raytrace) hit point */
+ vol_trace_behind(shi, (VlakRen *)is.hit.face, endco, col);
+ }
+ else {
+ shade_intersection(shi, col, &is);
+ }
+ }
+
+ /* shade volume from 1st hit point to 2nd hit point */
+ volumeintegrate(shi, col, startco, endco);
+ }
+
+ if (ztransp)
+ col[3] = col[3] > 1.f ? 1.f : col[3];
+ else
+ col[3] = 1.f;
+
+ copy_v3_v3(shr->combined, col);
+ shr->alpha = col[3];
+
+ copy_v3_v3(shr->diff, shr->combined);
+ copy_v3_v3(shr->diffshad, shr->diff);
+}
+
+/* Traces a shadow through the object,
+ * pretty much gets the transmission over a ray path */
+void shade_volume_shadow(struct ShadeInput *shi, struct ShadeResult *shr, struct Isect *last_is)
+{
+ float hitco[3];
+ float tr[3] = {1.0, 1.0, 1.0};
+ Isect is = {{0}};
+ const float *startco, *endco;
+
+ memset(shr, 0, sizeof(ShadeResult));
+
+ /* if 1st hit normal is facing away from the camera,
+ * then we're inside the volume already. */
+ if (shi->flippednor) {
+ startco = last_is->start;
+ endco = shi->co;
+ }
+
+ /* trace to find a backface, the other side bounds of the volume */
+ /* (ray intersect ignores front faces here) */
+ else if (vol_get_bounds(shi, shi->co, shi->view, hitco, &is, VOL_BOUNDS_DEPTH)) {
+ startco = shi->co;
+ endco = hitco;
+ }
+ else {
+ shr->combined[0] = shr->combined[1] = shr->combined[2] = 0.f;
+ shr->alpha = shr->combined[3] = 1.f;
+ return;
+ }
+
+ vol_get_transmittance(shi, tr, startco, endco);
+
+
+ /* if we hit another face in the same volume bounds */
+ /* shift raytrace coordinates to the hit point, to avoid shading volume twice */
+ /* due to idiosyncracy in ray_trace_shadow_tra() */
+ if (is.hit.ob == shi->obi) {
+ copy_v3_v3(shi->co, hitco);
+ last_is->dist += is.dist;
+ shi->vlr = (VlakRen *)is.hit.face;
+ }
+
+
+ copy_v3_v3(shr->combined, tr);
+ shr->combined[3] = 1.0f - IMB_colormanagement_get_luminance(tr);
+ shr->alpha = shr->combined[3];
+}
+
+
+/* delivers a fully filled in ShadeResult, for all passes */
+void shade_volume_outside(ShadeInput *shi, ShadeResult *shr)
+{
+ memset(shr, 0, sizeof(ShadeResult));
+ volume_trace(shi, shr, VOL_SHADE_OUTSIDE);
+}
+
+
+void shade_volume_inside(ShadeInput *shi, ShadeResult *shr)
+{
+ MatInside *m;
+ Material *mat_backup;
+ ObjectInstanceRen *obi_backup;
+ float prev_alpha = shr->alpha;
+
+ /* XXX: extend to multiple volumes perhaps later */
+ mat_backup = shi->mat;
+ obi_backup = shi->obi;
+
+ m = R.render_volumes_inside.first;
+ shi->mat = m->ma;
+ shi->obi = m->obi;
+ shi->obr = m->obi->obr;
+
+ volume_trace(shi, shr, VOL_SHADE_INSIDE);
+
+ shr->alpha = shr->alpha + prev_alpha;
+ CLAMP(shr->alpha, 0.0f, 1.0f);
+
+ shi->mat = mat_backup;
+ shi->obi = obi_backup;
+ shi->obr = obi_backup->obr;
+}