Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/simulation/intern/implicit_eigen.cpp')
-rw-r--r--source/blender/simulation/intern/implicit_eigen.cpp1509
1 files changed, 1509 insertions, 0 deletions
diff --git a/source/blender/simulation/intern/implicit_eigen.cpp b/source/blender/simulation/intern/implicit_eigen.cpp
new file mode 100644
index 00000000000..15b9e30e32a
--- /dev/null
+++ b/source/blender/simulation/intern/implicit_eigen.cpp
@@ -0,0 +1,1509 @@
+/*
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * The Original Code is Copyright (C) Blender Foundation
+ * All rights reserved.
+ */
+
+/** \file
+ * \ingroup bph
+ */
+
+#include "implicit.h"
+
+#ifdef IMPLICIT_SOLVER_EIGEN
+
+//#define USE_EIGEN_CORE
+# define USE_EIGEN_CONSTRAINED_CG
+
+# ifdef __GNUC__
+# pragma GCC diagnostic push
+/* XXX suppress verbose warnings in eigen */
+//# pragma GCC diagnostic ignored "-Wlogical-op"
+# endif
+
+# ifndef IMPLICIT_ENABLE_EIGEN_DEBUG
+# ifdef NDEBUG
+# define IMPLICIT_NDEBUG
+# endif
+# define NDEBUG
+# endif
+
+# include <Eigen/Sparse>
+# include <Eigen/src/Core/util/DisableStupidWarnings.h>
+
+# ifdef USE_EIGEN_CONSTRAINED_CG
+# include <intern/ConstrainedConjugateGradient.h>
+# endif
+
+# ifndef IMPLICIT_ENABLE_EIGEN_DEBUG
+# ifndef IMPLICIT_NDEBUG
+# undef NDEBUG
+# else
+# undef IMPLICIT_NDEBUG
+# endif
+# endif
+
+# ifdef __GNUC__
+# pragma GCC diagnostic pop
+# endif
+
+# include "MEM_guardedalloc.h"
+
+extern "C" {
+# include "DNA_meshdata_types.h"
+# include "DNA_object_force_types.h"
+# include "DNA_object_types.h"
+# include "DNA_scene_types.h"
+# include "DNA_texture_types.h"
+
+# include "BLI_linklist.h"
+# include "BLI_math.h"
+# include "BLI_utildefines.h"
+
+# include "BKE_cloth.h"
+# include "BKE_collision.h"
+# include "BKE_effect.h"
+# include "BKE_global.h"
+
+# include "SIM_mass_spring.h"
+}
+
+typedef float Scalar;
+
+static float I[3][3] = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}};
+
+/* slightly extended Eigen vector class
+ * with conversion to/from plain C float array
+ */
+class fVector : public Eigen::Vector3f {
+ public:
+ typedef float *ctype;
+
+ fVector()
+ {
+ }
+
+ fVector(const ctype &v)
+ {
+ for (int k = 0; k < 3; k++) {
+ coeffRef(k) = v[k];
+ }
+ }
+
+ fVector &operator=(const ctype &v)
+ {
+ for (int k = 0; k < 3; k++) {
+ coeffRef(k) = v[k];
+ }
+ return *this;
+ }
+
+ operator ctype()
+ {
+ return data();
+ }
+};
+
+/* slightly extended Eigen matrix class
+ * with conversion to/from plain C float array
+ */
+class fMatrix : public Eigen::Matrix3f {
+ public:
+ typedef float (*ctype)[3];
+
+ fMatrix()
+ {
+ }
+
+ fMatrix(const ctype &v)
+ {
+ for (int k = 0; k < 3; k++) {
+ for (int l = 0; l < 3; l++) {
+ coeffRef(l, k) = v[k][l];
+ }
+ }
+ }
+
+ fMatrix &operator=(const ctype &v)
+ {
+ for (int k = 0; k < 3; k++) {
+ for (int l = 0; l < 3; l++) {
+ coeffRef(l, k) = v[k][l];
+ }
+ }
+ return *this;
+ }
+
+ operator ctype()
+ {
+ return (ctype)data();
+ }
+};
+
+/* Extension of dense Eigen vectors,
+ * providing 3-float block access for blenlib math functions
+ */
+class lVector : public Eigen::VectorXf {
+ public:
+ typedef Eigen::VectorXf base_t;
+
+ lVector()
+ {
+ }
+
+ template<typename T> lVector &operator=(T rhs)
+ {
+ base_t::operator=(rhs);
+ return *this;
+ }
+
+ float *v3(int vertex)
+ {
+ return &coeffRef(3 * vertex);
+ }
+
+ const float *v3(int vertex) const
+ {
+ return &coeffRef(3 * vertex);
+ }
+};
+
+typedef Eigen::Triplet<Scalar> Triplet;
+typedef std::vector<Triplet> TripletList;
+
+typedef Eigen::SparseMatrix<Scalar> lMatrix;
+
+/* Constructor type that provides more convenient handling of Eigen triplets
+ * for efficient construction of sparse 3x3 block matrices.
+ * This should be used for building lMatrix instead of writing to such lMatrix directly (which is
+ * very inefficient). After all elements have been defined using the set() method, the actual
+ * matrix can be filled using construct().
+ */
+struct lMatrixCtor {
+ lMatrixCtor()
+ {
+ }
+
+ void reset()
+ {
+ m_trips.clear();
+ }
+
+ void reserve(int numverts)
+ {
+ /* reserve for diagonal entries */
+ m_trips.reserve(numverts * 9);
+ }
+
+ void add(int i, int j, const fMatrix &m)
+ {
+ i *= 3;
+ j *= 3;
+ for (int k = 0; k < 3; k++) {
+ for (int l = 0; l < 3; l++) {
+ m_trips.push_back(Triplet(i + k, j + l, m.coeff(l, k)));
+ }
+ }
+ }
+
+ void sub(int i, int j, const fMatrix &m)
+ {
+ i *= 3;
+ j *= 3;
+ for (int k = 0; k < 3; k++) {
+ for (int l = 0; l < 3; l++) {
+ m_trips.push_back(Triplet(i + k, j + l, -m.coeff(l, k)));
+ }
+ }
+ }
+
+ inline void construct(lMatrix &m)
+ {
+ m.setFromTriplets(m_trips.begin(), m_trips.end());
+ m_trips.clear();
+ }
+
+ private:
+ TripletList m_trips;
+};
+
+# ifdef USE_EIGEN_CORE
+typedef Eigen::ConjugateGradient<lMatrix, Eigen::Lower, Eigen::DiagonalPreconditioner<Scalar>>
+ ConjugateGradient;
+# endif
+# ifdef USE_EIGEN_CONSTRAINED_CG
+typedef Eigen::ConstrainedConjugateGradient<lMatrix,
+ Eigen::Lower,
+ lMatrix,
+ Eigen::DiagonalPreconditioner<Scalar>>
+ ConstraintConjGrad;
+# endif
+using Eigen::ComputationInfo;
+
+static void print_lvector(const lVector &v)
+{
+ for (int i = 0; i < v.rows(); i++) {
+ if (i > 0 && i % 3 == 0) {
+ printf("\n");
+ }
+
+ printf("%f,\n", v[i]);
+ }
+}
+
+static void print_lmatrix(const lMatrix &m)
+{
+ for (int j = 0; j < m.rows(); j++) {
+ if (j > 0 && j % 3 == 0) {
+ printf("\n");
+ }
+
+ for (int i = 0; i < m.cols(); i++) {
+ if (i > 0 && i % 3 == 0) {
+ printf(" ");
+ }
+
+ implicit_print_matrix_elem(m.coeff(j, i));
+ }
+ printf("\n");
+ }
+}
+
+BLI_INLINE void lMatrix_reserve_elems(lMatrix &m, int num)
+{
+ m.reserve(Eigen::VectorXi::Constant(m.cols(), num));
+}
+
+BLI_INLINE float *lVector_v3(lVector &v, int vertex)
+{
+ return v.data() + 3 * vertex;
+}
+
+BLI_INLINE const float *lVector_v3(const lVector &v, int vertex)
+{
+ return v.data() + 3 * vertex;
+}
+
+# if 0
+BLI_INLINE void triplets_m3(TripletList &tlist, float m[3][3], int i, int j)
+{
+ i *= 3;
+ j *= 3;
+ for (int l = 0; l < 3; l++) {
+ for (int k = 0; k < 3; k++) {
+ tlist.push_back(Triplet(i + k, j + l, m[k][l]));
+ }
+ }
+}
+
+BLI_INLINE void triplets_m3fl(TripletList &tlist, float m[3][3], int i, int j, float factor)
+{
+ i *= 3;
+ j *= 3;
+ for (int l = 0; l < 3; l++) {
+ for (int k = 0; k < 3; k++) {
+ tlist.push_back(Triplet(i + k, j + l, m[k][l] * factor));
+ }
+ }
+}
+
+BLI_INLINE void lMatrix_add_triplets(lMatrix &r, const TripletList &tlist)
+{
+ lMatrix t(r.rows(), r.cols());
+ t.setFromTriplets(tlist.begin(), tlist.end());
+ r += t;
+}
+
+BLI_INLINE void lMatrix_madd_triplets(lMatrix &r, const TripletList &tlist, float f)
+{
+ lMatrix t(r.rows(), r.cols());
+ t.setFromTriplets(tlist.begin(), tlist.end());
+ r += f * t;
+}
+
+BLI_INLINE void lMatrix_sub_triplets(lMatrix &r, const TripletList &tlist)
+{
+ lMatrix t(r.rows(), r.cols());
+ t.setFromTriplets(tlist.begin(), tlist.end());
+ r -= t;
+}
+# endif
+
+BLI_INLINE void outerproduct(float r[3][3], const float a[3], const float b[3])
+{
+ mul_v3_v3fl(r[0], a, b[0]);
+ mul_v3_v3fl(r[1], a, b[1]);
+ mul_v3_v3fl(r[2], a, b[2]);
+}
+
+BLI_INLINE void cross_m3_v3m3(float r[3][3], const float v[3], float m[3][3])
+{
+ cross_v3_v3v3(r[0], v, m[0]);
+ cross_v3_v3v3(r[1], v, m[1]);
+ cross_v3_v3v3(r[2], v, m[2]);
+}
+
+BLI_INLINE void cross_v3_identity(float r[3][3], const float v[3])
+{
+ r[0][0] = 0.0f;
+ r[1][0] = v[2];
+ r[2][0] = -v[1];
+ r[0][1] = -v[2];
+ r[1][1] = 0.0f;
+ r[2][1] = v[0];
+ r[0][2] = v[1];
+ r[1][2] = -v[0];
+ r[2][2] = 0.0f;
+}
+
+BLI_INLINE void madd_m3_m3fl(float r[3][3], float m[3][3], float f)
+{
+ r[0][0] += m[0][0] * f;
+ r[0][1] += m[0][1] * f;
+ r[0][2] += m[0][2] * f;
+ r[1][0] += m[1][0] * f;
+ r[1][1] += m[1][1] * f;
+ r[1][2] += m[1][2] * f;
+ r[2][0] += m[2][0] * f;
+ r[2][1] += m[2][1] * f;
+ r[2][2] += m[2][2] * f;
+}
+
+BLI_INLINE void madd_m3_m3m3fl(float r[3][3], float a[3][3], float b[3][3], float f)
+{
+ r[0][0] = a[0][0] + b[0][0] * f;
+ r[0][1] = a[0][1] + b[0][1] * f;
+ r[0][2] = a[0][2] + b[0][2] * f;
+ r[1][0] = a[1][0] + b[1][0] * f;
+ r[1][1] = a[1][1] + b[1][1] * f;
+ r[1][2] = a[1][2] + b[1][2] * f;
+ r[2][0] = a[2][0] + b[2][0] * f;
+ r[2][1] = a[2][1] + b[2][1] * f;
+ r[2][2] = a[2][2] + b[2][2] * f;
+}
+
+struct Implicit_Data {
+ typedef std::vector<fMatrix> fMatrixVector;
+
+ Implicit_Data(int numverts)
+ {
+ resize(numverts);
+ }
+
+ void resize(int numverts)
+ {
+ this->numverts = numverts;
+ int tot = 3 * numverts;
+
+ M.resize(tot, tot);
+ F.resize(tot);
+ dFdX.resize(tot, tot);
+ dFdV.resize(tot, tot);
+
+ tfm.resize(numverts, I);
+
+ X.resize(tot);
+ Xnew.resize(tot);
+ V.resize(tot);
+ Vnew.resize(tot);
+
+ A.resize(tot, tot);
+ B.resize(tot);
+
+ dV.resize(tot);
+ z.resize(tot);
+ S.resize(tot, tot);
+
+ iM.reserve(numverts);
+ idFdX.reserve(numverts);
+ idFdV.reserve(numverts);
+ iS.reserve(numverts);
+ }
+
+ int numverts;
+
+ /* inputs */
+ lMatrix M; /* masses */
+ lVector F; /* forces */
+ lMatrix dFdX, dFdV; /* force jacobians */
+
+ fMatrixVector tfm; /* local coordinate transform */
+
+ /* motion state data */
+ lVector X, Xnew; /* positions */
+ lVector V, Vnew; /* velocities */
+
+ /* internal solver data */
+ lVector B; /* B for A*dV = B */
+ lMatrix A; /* A for A*dV = B */
+
+ lVector dV; /* velocity change (solution of A*dV = B) */
+ lVector z; /* target velocity in constrained directions */
+ lMatrix S; /* filtering matrix for constraints */
+
+ /* temporary constructors */
+ lMatrixCtor iM; /* masses */
+ lMatrixCtor idFdX, idFdV; /* force jacobians */
+ lMatrixCtor iS; /* filtering matrix for constraints */
+};
+
+Implicit_Data *SIM_mass_spring_solver_create(int numverts, int numsprings)
+{
+ Implicit_Data *id = new Implicit_Data(numverts);
+ return id;
+}
+
+void SIM_mass_spring_solver_free(Implicit_Data *id)
+{
+ if (id) {
+ delete id;
+ }
+}
+
+int SIM_mass_spring_solver_numvert(Implicit_Data *id)
+{
+ if (id) {
+ return id->numverts;
+ }
+ else {
+ return 0;
+ }
+}
+
+/* ==== Transformation from/to root reference frames ==== */
+
+BLI_INLINE void world_to_root_v3(Implicit_Data *data, int index, float r[3], const float v[3])
+{
+ copy_v3_v3(r, v);
+ mul_transposed_m3_v3(data->tfm[index], r);
+}
+
+BLI_INLINE void root_to_world_v3(Implicit_Data *data, int index, float r[3], const float v[3])
+{
+ mul_v3_m3v3(r, data->tfm[index], v);
+}
+
+BLI_INLINE void world_to_root_m3(Implicit_Data *data, int index, float r[3][3], float m[3][3])
+{
+ float trot[3][3];
+ copy_m3_m3(trot, data->tfm[index]);
+ transpose_m3(trot);
+ mul_m3_m3m3(r, trot, m);
+}
+
+BLI_INLINE void root_to_world_m3(Implicit_Data *data, int index, float r[3][3], float m[3][3])
+{
+ mul_m3_m3m3(r, data->tfm[index], m);
+}
+
+/* ================================ */
+
+bool SIM_mass_spring_solve_velocities(Implicit_Data *data, float dt, ImplicitSolverResult *result)
+{
+# ifdef USE_EIGEN_CORE
+ typedef ConjugateGradient solver_t;
+# endif
+# ifdef USE_EIGEN_CONSTRAINED_CG
+ typedef ConstraintConjGrad solver_t;
+# endif
+
+ data->iM.construct(data->M);
+ data->idFdX.construct(data->dFdX);
+ data->idFdV.construct(data->dFdV);
+ data->iS.construct(data->S);
+
+ solver_t cg;
+ cg.setMaxIterations(100);
+ cg.setTolerance(0.01f);
+
+# ifdef USE_EIGEN_CONSTRAINED_CG
+ cg.filter() = data->S;
+# endif
+
+ data->A = data->M - dt * data->dFdV - dt * dt * data->dFdX;
+ cg.compute(data->A);
+
+ data->B = dt * data->F + dt * dt * data->dFdX * data->V;
+
+# ifdef IMPLICIT_PRINT_SOLVER_INPUT_OUTPUT
+ printf("==== A ====\n");
+ print_lmatrix(id->A);
+ printf("==== z ====\n");
+ print_lvector(id->z);
+ printf("==== B ====\n");
+ print_lvector(id->B);
+ printf("==== S ====\n");
+ print_lmatrix(id->S);
+# endif
+
+# ifdef USE_EIGEN_CORE
+ data->dV = cg.solve(data->B);
+# endif
+# ifdef USE_EIGEN_CONSTRAINED_CG
+ data->dV = cg.solveWithGuess(data->B, data->z);
+# endif
+
+# ifdef IMPLICIT_PRINT_SOLVER_INPUT_OUTPUT
+ printf("==== dV ====\n");
+ print_lvector(id->dV);
+ printf("========\n");
+# endif
+
+ data->Vnew = data->V + data->dV;
+
+ switch (cg.info()) {
+ case Eigen::Success:
+ result->status = SIM_SOLVER_SUCCESS;
+ break;
+ case Eigen::NoConvergence:
+ result->status = SIM_SOLVER_NO_CONVERGENCE;
+ break;
+ case Eigen::InvalidInput:
+ result->status = SIM_SOLVER_INVALID_INPUT;
+ break;
+ case Eigen::NumericalIssue:
+ result->status = SIM_SOLVER_NUMERICAL_ISSUE;
+ break;
+ }
+
+ result->iterations = cg.iterations();
+ result->error = cg.error();
+
+ return cg.info() == Eigen::Success;
+}
+
+bool SIM_mass_spring_solve_positions(Implicit_Data *data, float dt)
+{
+ data->Xnew = data->X + data->Vnew * dt;
+ return true;
+}
+
+/* ================================ */
+
+void SIM_mass_spring_apply_result(Implicit_Data *data)
+{
+ data->X = data->Xnew;
+ data->V = data->Vnew;
+}
+
+void SIM_mass_spring_set_vertex_mass(Implicit_Data *data, int index, float mass)
+{
+ float m[3][3];
+ copy_m3_m3(m, I);
+ mul_m3_fl(m, mass);
+ data->iM.add(index, index, m);
+}
+
+void SIM_mass_spring_set_rest_transform(Implicit_Data *data, int index, float tfm[3][3])
+{
+# ifdef CLOTH_ROOT_FRAME
+ copy_m3_m3(data->tfm[index], tfm);
+# else
+ unit_m3(data->tfm[index]);
+ (void)tfm;
+# endif
+}
+
+void SIM_mass_spring_set_motion_state(Implicit_Data *data,
+ int index,
+ const float x[3],
+ const float v[3])
+{
+ world_to_root_v3(data, index, data->X.v3(index), x);
+ world_to_root_v3(data, index, data->V.v3(index), v);
+}
+
+void SIM_mass_spring_set_position(Implicit_Data *data, int index, const float x[3])
+{
+ world_to_root_v3(data, index, data->X.v3(index), x);
+}
+
+void SIM_mass_spring_set_velocity(Implicit_Data *data, int index, const float v[3])
+{
+ world_to_root_v3(data, index, data->V.v3(index), v);
+}
+
+void SIM_mass_spring_get_motion_state(struct Implicit_Data *data,
+ int index,
+ float x[3],
+ float v[3])
+{
+ if (x) {
+ root_to_world_v3(data, index, x, data->X.v3(index));
+ }
+ if (v) {
+ root_to_world_v3(data, index, v, data->V.v3(index));
+ }
+}
+
+void SIM_mass_spring_get_position(struct Implicit_Data *data, int index, float x[3])
+{
+ root_to_world_v3(data, index, x, data->X.v3(index));
+}
+
+void SIM_mass_spring_get_new_velocity(Implicit_Data *data, int index, float v[3])
+{
+ root_to_world_v3(data, index, v, data->V.v3(index));
+}
+
+void SIM_mass_spring_set_new_velocity(Implicit_Data *data, int index, const float v[3])
+{
+ world_to_root_v3(data, index, data->V.v3(index), v);
+}
+
+void SIM_mass_spring_clear_constraints(Implicit_Data *data)
+{
+ int numverts = data->numverts;
+ for (int i = 0; i < numverts; i++) {
+ data->iS.add(i, i, I);
+ zero_v3(data->z.v3(i));
+ }
+}
+
+void SIM_mass_spring_add_constraint_ndof0(Implicit_Data *data, int index, const float dV[3])
+{
+ data->iS.sub(index, index, I);
+
+ world_to_root_v3(data, index, data->z.v3(index), dV);
+}
+
+void SIM_mass_spring_add_constraint_ndof1(
+ Implicit_Data *data, int index, const float c1[3], const float c2[3], const float dV[3])
+{
+ float m[3][3], p[3], q[3], u[3], cmat[3][3];
+
+ world_to_root_v3(data, index, p, c1);
+ outerproduct(cmat, p, p);
+ copy_m3_m3(m, cmat);
+
+ world_to_root_v3(data, index, q, c2);
+ outerproduct(cmat, q, q);
+ add_m3_m3m3(m, m, cmat);
+
+ /* XXX not sure but multiplication should work here */
+ data->iS.sub(index, index, m);
+ // mul_m3_m3m3(data->S[index].m, data->S[index].m, m);
+
+ world_to_root_v3(data, index, u, dV);
+ add_v3_v3(data->z.v3(index), u);
+}
+
+void SIM_mass_spring_add_constraint_ndof2(Implicit_Data *data,
+ int index,
+ const float c1[3],
+ const float dV[3])
+{
+ float m[3][3], p[3], u[3], cmat[3][3];
+
+ world_to_root_v3(data, index, p, c1);
+ outerproduct(cmat, p, p);
+ copy_m3_m3(m, cmat);
+
+ data->iS.sub(index, index, m);
+ // mul_m3_m3m3(data->S[index].m, data->S[index].m, m);
+
+ world_to_root_v3(data, index, u, dV);
+ add_v3_v3(data->z.v3(index), u);
+}
+
+void SIM_mass_spring_clear_forces(Implicit_Data *data)
+{
+ data->F.setZero();
+ data->dFdX.setZero();
+ data->dFdV.setZero();
+}
+
+void SIM_mass_spring_force_reference_frame(Implicit_Data *data,
+ int index,
+ const float acceleration[3],
+ const float omega[3],
+ const float domega_dt[3],
+ float mass)
+{
+# ifdef CLOTH_ROOT_FRAME
+ float acc[3], w[3], dwdt[3];
+ float f[3], dfdx[3][3], dfdv[3][3];
+ float euler[3], coriolis[3], centrifugal[3], rotvel[3];
+ float deuler[3][3], dcoriolis[3][3], dcentrifugal[3][3], drotvel[3][3];
+
+ world_to_root_v3(data, index, acc, acceleration);
+ world_to_root_v3(data, index, w, omega);
+ world_to_root_v3(data, index, dwdt, domega_dt);
+
+ cross_v3_v3v3(euler, dwdt, data->X.v3(index));
+ cross_v3_v3v3(coriolis, w, data->V.v3(index));
+ mul_v3_fl(coriolis, 2.0f);
+ cross_v3_v3v3(rotvel, w, data->X.v3(index));
+ cross_v3_v3v3(centrifugal, w, rotvel);
+
+ sub_v3_v3v3(f, acc, euler);
+ sub_v3_v3(f, coriolis);
+ sub_v3_v3(f, centrifugal);
+
+ mul_v3_fl(f, mass); /* F = m * a */
+
+ cross_v3_identity(deuler, dwdt);
+ cross_v3_identity(dcoriolis, w);
+ mul_m3_fl(dcoriolis, 2.0f);
+ cross_v3_identity(drotvel, w);
+ cross_m3_v3m3(dcentrifugal, w, drotvel);
+
+ add_m3_m3m3(dfdx, deuler, dcentrifugal);
+ negate_m3(dfdx);
+ mul_m3_fl(dfdx, mass);
+
+ copy_m3_m3(dfdv, dcoriolis);
+ negate_m3(dfdv);
+ mul_m3_fl(dfdv, mass);
+
+ add_v3_v3(data->F.v3(index), f);
+ data->idFdX.add(index, index, dfdx);
+ data->idFdV.add(index, index, dfdv);
+# else
+ (void)data;
+ (void)index;
+ (void)acceleration;
+ (void)omega;
+ (void)domega_dt;
+# endif
+}
+
+void SIM_mass_spring_force_gravity(Implicit_Data *data, int index, float mass, const float g[3])
+{
+ /* force = mass * acceleration (in this case: gravity) */
+ float f[3];
+ world_to_root_v3(data, index, f, g);
+ mul_v3_fl(f, mass);
+
+ add_v3_v3(data->F.v3(index), f);
+}
+
+void SIM_mass_spring_force_drag(Implicit_Data *data, float drag)
+{
+ int numverts = data->numverts;
+ for (int i = 0; i < numverts; i++) {
+ float tmp[3][3];
+
+ /* NB: uses root space velocity, no need to transform */
+ madd_v3_v3fl(data->F.v3(i), data->V.v3(i), -drag);
+
+ copy_m3_m3(tmp, I);
+ mul_m3_fl(tmp, -drag);
+ data->idFdV.add(i, i, tmp);
+ }
+}
+
+void SIM_mass_spring_force_extern(
+ struct Implicit_Data *data, int i, const float f[3], float dfdx[3][3], float dfdv[3][3])
+{
+ float tf[3], tdfdx[3][3], tdfdv[3][3];
+ world_to_root_v3(data, i, tf, f);
+ world_to_root_m3(data, i, tdfdx, dfdx);
+ world_to_root_m3(data, i, tdfdv, dfdv);
+
+ add_v3_v3(data->F.v3(i), tf);
+ data->idFdX.add(i, i, tdfdx);
+ data->idFdV.add(i, i, tdfdv);
+}
+
+static float calc_nor_area_tri(float nor[3],
+ const float v1[3],
+ const float v2[3],
+ const float v3[3])
+{
+ float n1[3], n2[3];
+
+ sub_v3_v3v3(n1, v1, v2);
+ sub_v3_v3v3(n2, v2, v3);
+
+ cross_v3_v3v3(nor, n1, n2);
+ return normalize_v3(nor) / 2.0f;
+}
+
+/* XXX does not support force jacobians yet,
+ * since the effector system does not provide them either. */
+void SIM_mass_spring_force_face_wind(
+ Implicit_Data *data, int v1, int v2, int v3, const float (*winvec)[3])
+{
+ const float effector_scale = 0.02f;
+ float win[3], nor[3], area;
+ float factor;
+
+ // calculate face normal and area
+ area = calc_nor_area_tri(nor, data->X.v3(v1), data->X.v3(v2), data->X.v3(v3));
+ factor = effector_scale * area / 3.0f;
+
+ world_to_root_v3(data, v1, win, winvec[v1]);
+ madd_v3_v3fl(data->F.v3(v1), nor, factor * dot_v3v3(win, nor));
+
+ world_to_root_v3(data, v2, win, winvec[v2]);
+ madd_v3_v3fl(data->F.v3(v2), nor, factor * dot_v3v3(win, nor));
+
+ world_to_root_v3(data, v3, win, winvec[v3]);
+ madd_v3_v3fl(data->F.v3(v3), nor, factor * dot_v3v3(win, nor));
+}
+
+void SIM_mass_spring_force_edge_wind(Implicit_Data *data, int v1, int v2, const float (*winvec)[3])
+{
+ const float effector_scale = 0.01;
+ float win[3], dir[3], nor[3], length;
+
+ sub_v3_v3v3(dir, data->X.v3(v1), data->X.v3(v2));
+ length = normalize_v3(dir);
+
+ world_to_root_v3(data, v1, win, winvec[v1]);
+ madd_v3_v3v3fl(nor, win, dir, -dot_v3v3(win, dir));
+ madd_v3_v3fl(data->F.v3(v1), nor, effector_scale * length);
+
+ world_to_root_v3(data, v2, win, winvec[v2]);
+ madd_v3_v3v3fl(nor, win, dir, -dot_v3v3(win, dir));
+ madd_v3_v3fl(data->F.v3(v2), nor, effector_scale * length);
+}
+
+BLI_INLINE void dfdx_spring(float to[3][3], const float dir[3], float length, float L, float k)
+{
+ /* dir is unit length direction, rest is spring's restlength, k is spring constant. */
+ // return ((I - outerprod(dir, dir)) * Min(1.0f, rest / length) - I) * -k;
+ outerproduct(to, dir, dir);
+ sub_m3_m3m3(to, I, to);
+
+ mul_m3_fl(to, (L / length));
+ sub_m3_m3m3(to, to, I);
+ mul_m3_fl(to, k);
+}
+
+/* unused */
+# if 0
+BLI_INLINE void dfdx_damp(float to[3][3],
+ const float dir[3],
+ float length,
+ const float vel[3],
+ float rest,
+ float damping)
+{
+ // inner spring damping vel is the relative velocity of the endpoints.
+ // return (I-outerprod(dir, dir)) * (-damping * -(dot(dir, vel)/Max(length, rest)));
+ mul_fvectorT_fvector(to, dir, dir);
+ sub_fmatrix_fmatrix(to, I, to);
+ mul_fmatrix_S(to, (-damping * -(dot_v3v3(dir, vel) / MAX2(length, rest))));
+}
+# endif
+
+BLI_INLINE void dfdv_damp(float to[3][3], const float dir[3], float damping)
+{
+ // derivative of force wrt velocity
+ outerproduct(to, dir, dir);
+ mul_m3_fl(to, -damping);
+}
+
+BLI_INLINE float fb(float length, float L)
+{
+ float x = length / L;
+ return (-11.541f * powf(x, 4) + 34.193f * powf(x, 3) - 39.083f * powf(x, 2) + 23.116f * x -
+ 9.713f);
+}
+
+BLI_INLINE float fbderiv(float length, float L)
+{
+ float x = length / L;
+
+ return (-46.164f * powf(x, 3) + 102.579f * powf(x, 2) - 78.166f * x + 23.116f);
+}
+
+BLI_INLINE float fbstar(float length, float L, float kb, float cb)
+{
+ float tempfb_fl = kb * fb(length, L);
+ float fbstar_fl = cb * (length - L);
+
+ if (tempfb_fl < fbstar_fl) {
+ return fbstar_fl;
+ }
+ else {
+ return tempfb_fl;
+ }
+}
+
+// function to calculae bending spring force (taken from Choi & Co)
+BLI_INLINE float fbstar_jacobi(float length, float L, float kb, float cb)
+{
+ float tempfb_fl = kb * fb(length, L);
+ float fbstar_fl = cb * (length - L);
+
+ if (tempfb_fl < fbstar_fl) {
+ return -cb;
+ }
+ else {
+ return -kb * fbderiv(length, L);
+ }
+}
+
+/* calculate elonglation */
+BLI_INLINE bool spring_length(Implicit_Data *data,
+ int i,
+ int j,
+ float r_extent[3],
+ float r_dir[3],
+ float *r_length,
+ float r_vel[3])
+{
+ sub_v3_v3v3(r_extent, data->X.v3(j), data->X.v3(i));
+ sub_v3_v3v3(r_vel, data->V.v3(j), data->V.v3(i));
+ *r_length = len_v3(r_extent);
+
+ if (*r_length > ALMOST_ZERO) {
+# if 0
+ if (length > L) {
+ if ((clmd->sim_parms->flags & CSIMSETT_FLAG_TEARING_ENABLED) &&
+ (((length - L) * 100.0f / L) > clmd->sim_parms->maxspringlen)) {
+ // cut spring!
+ s->flags |= CSPRING_FLAG_DEACTIVATE;
+ return false;
+ }
+ }
+# endif
+ mul_v3_v3fl(r_dir, r_extent, 1.0f / (*r_length));
+ }
+ else {
+ zero_v3(r_dir);
+ }
+
+ return true;
+}
+
+BLI_INLINE void apply_spring(
+ Implicit_Data *data, int i, int j, const float f[3], float dfdx[3][3], float dfdv[3][3])
+{
+ add_v3_v3(data->F.v3(i), f);
+ sub_v3_v3(data->F.v3(j), f);
+
+ data->idFdX.add(i, i, dfdx);
+ data->idFdX.add(j, j, dfdx);
+ data->idFdX.sub(i, j, dfdx);
+ data->idFdX.sub(j, i, dfdx);
+
+ data->idFdV.add(i, i, dfdv);
+ data->idFdV.add(j, j, dfdv);
+ data->idFdV.sub(i, j, dfdv);
+ data->idFdV.sub(j, i, dfdv);
+}
+
+bool SIM_mass_spring_force_spring_linear(Implicit_Data *data,
+ int i,
+ int j,
+ float restlen,
+ float stiffness,
+ float damping,
+ bool no_compress,
+ float clamp_force,
+ float r_f[3],
+ float r_dfdx[3][3],
+ float r_dfdv[3][3])
+{
+ float extent[3], length, dir[3], vel[3];
+
+ // calculate elonglation
+ spring_length(data, i, j, extent, dir, &length, vel);
+
+ if (length > restlen || no_compress) {
+ float stretch_force, f[3], dfdx[3][3], dfdv[3][3];
+
+ stretch_force = stiffness * (length - restlen);
+ if (clamp_force > 0.0f && stretch_force > clamp_force) {
+ stretch_force = clamp_force;
+ }
+ mul_v3_v3fl(f, dir, stretch_force);
+
+ // Ascher & Boxman, p.21: Damping only during elonglation
+ // something wrong with it...
+ madd_v3_v3fl(f, dir, damping * dot_v3v3(vel, dir));
+
+ dfdx_spring(dfdx, dir, length, restlen, stiffness);
+ dfdv_damp(dfdv, dir, damping);
+
+ apply_spring(data, i, j, f, dfdx, dfdv);
+
+ if (r_f) {
+ copy_v3_v3(r_f, f);
+ }
+ if (r_dfdx) {
+ copy_m3_m3(r_dfdx, dfdx);
+ }
+ if (r_dfdv) {
+ copy_m3_m3(r_dfdv, dfdv);
+ }
+
+ return true;
+ }
+ else {
+ if (r_f) {
+ zero_v3(r_f);
+ }
+ if (r_dfdx) {
+ zero_m3(r_dfdx);
+ }
+ if (r_dfdv) {
+ zero_m3(r_dfdv);
+ }
+
+ return false;
+ }
+}
+
+/* See "Stable but Responsive Cloth" (Choi, Ko 2005) */
+bool SIM_mass_spring_force_spring_bending(Implicit_Data *data,
+ int i,
+ int j,
+ float restlen,
+ float kb,
+ float cb,
+ float r_f[3],
+ float r_dfdx[3][3],
+ float r_dfdv[3][3])
+{
+ float extent[3], length, dir[3], vel[3];
+
+ // calculate elonglation
+ spring_length(data, i, j, extent, dir, &length, vel);
+
+ if (length < restlen) {
+ float f[3], dfdx[3][3], dfdv[3][3];
+
+ mul_v3_v3fl(f, dir, fbstar(length, restlen, kb, cb));
+
+ outerproduct(dfdx, dir, dir);
+ mul_m3_fl(dfdx, fbstar_jacobi(length, restlen, kb, cb));
+
+ /* XXX damping not supported */
+ zero_m3(dfdv);
+
+ apply_spring(data, i, j, f, dfdx, dfdv);
+
+ if (r_f) {
+ copy_v3_v3(r_f, f);
+ }
+ if (r_dfdx) {
+ copy_m3_m3(r_dfdx, dfdx);
+ }
+ if (r_dfdv) {
+ copy_m3_m3(r_dfdv, dfdv);
+ }
+
+ return true;
+ }
+ else {
+ if (r_f) {
+ zero_v3(r_f);
+ }
+ if (r_dfdx) {
+ zero_m3(r_dfdx);
+ }
+ if (r_dfdv) {
+ zero_m3(r_dfdv);
+ }
+
+ return false;
+ }
+}
+
+/* Jacobian of a direction vector.
+ * Basically the part of the differential orthogonal to the direction,
+ * inversely proportional to the length of the edge.
+ *
+ * dD_ij/dx_i = -dD_ij/dx_j = (D_ij * D_ij^T - I) / len_ij
+ */
+BLI_INLINE void spring_grad_dir(
+ Implicit_Data *data, int i, int j, float edge[3], float dir[3], float grad_dir[3][3])
+{
+ float length;
+
+ sub_v3_v3v3(edge, data->X.v3(j), data->X.v3(i));
+ length = normalize_v3_v3(dir, edge);
+
+ if (length > ALMOST_ZERO) {
+ outerproduct(grad_dir, dir, dir);
+ sub_m3_m3m3(grad_dir, I, grad_dir);
+ mul_m3_fl(grad_dir, 1.0f / length);
+ }
+ else {
+ zero_m3(grad_dir);
+ }
+}
+
+BLI_INLINE void spring_angbend_forces(Implicit_Data *data,
+ int i,
+ int j,
+ int k,
+ const float goal[3],
+ float stiffness,
+ float damping,
+ int q,
+ const float dx[3],
+ const float dv[3],
+ float r_f[3])
+{
+ float edge_ij[3], dir_ij[3];
+ float edge_jk[3], dir_jk[3];
+ float vel_ij[3], vel_jk[3], vel_ortho[3];
+ float f_bend[3], f_damp[3];
+ float fk[3];
+ float dist[3];
+
+ zero_v3(fk);
+
+ sub_v3_v3v3(edge_ij, data->X.v3(j), data->X.v3(i));
+ if (q == i) {
+ sub_v3_v3(edge_ij, dx);
+ }
+ if (q == j) {
+ add_v3_v3(edge_ij, dx);
+ }
+ normalize_v3_v3(dir_ij, edge_ij);
+
+ sub_v3_v3v3(edge_jk, data->X.v3(k), data->X.v3(j));
+ if (q == j) {
+ sub_v3_v3(edge_jk, dx);
+ }
+ if (q == k) {
+ add_v3_v3(edge_jk, dx);
+ }
+ normalize_v3_v3(dir_jk, edge_jk);
+
+ sub_v3_v3v3(vel_ij, data->V.v3(j), data->V.v3(i));
+ if (q == i) {
+ sub_v3_v3(vel_ij, dv);
+ }
+ if (q == j) {
+ add_v3_v3(vel_ij, dv);
+ }
+
+ sub_v3_v3v3(vel_jk, data->V.v3(k), data->V.v3(j));
+ if (q == j) {
+ sub_v3_v3(vel_jk, dv);
+ }
+ if (q == k) {
+ add_v3_v3(vel_jk, dv);
+ }
+
+ /* bending force */
+ sub_v3_v3v3(dist, goal, edge_jk);
+ mul_v3_v3fl(f_bend, dist, stiffness);
+
+ add_v3_v3(fk, f_bend);
+
+ /* damping force */
+ madd_v3_v3v3fl(vel_ortho, vel_jk, dir_jk, -dot_v3v3(vel_jk, dir_jk));
+ mul_v3_v3fl(f_damp, vel_ortho, damping);
+
+ sub_v3_v3(fk, f_damp);
+
+ copy_v3_v3(r_f, fk);
+}
+
+/* Finite Differences method for estimating the jacobian of the force */
+BLI_INLINE void spring_angbend_estimate_dfdx(Implicit_Data *data,
+ int i,
+ int j,
+ int k,
+ const float goal[3],
+ float stiffness,
+ float damping,
+ int q,
+ float dfdx[3][3])
+{
+ const float delta = 0.00001f; // TODO find a good heuristic for this
+ float dvec_null[3][3], dvec_pos[3][3], dvec_neg[3][3];
+ float f[3];
+ int a, b;
+
+ zero_m3(dvec_null);
+ unit_m3(dvec_pos);
+ mul_m3_fl(dvec_pos, delta * 0.5f);
+ copy_m3_m3(dvec_neg, dvec_pos);
+ negate_m3(dvec_neg);
+
+ /* XXX TODO offset targets to account for position dependency */
+
+ for (a = 0; a < 3; a++) {
+ spring_angbend_forces(
+ data, i, j, k, goal, stiffness, damping, q, dvec_pos[a], dvec_null[a], f);
+ copy_v3_v3(dfdx[a], f);
+
+ spring_angbend_forces(
+ data, i, j, k, goal, stiffness, damping, q, dvec_neg[a], dvec_null[a], f);
+ sub_v3_v3(dfdx[a], f);
+
+ for (b = 0; b < 3; b++) {
+ dfdx[a][b] /= delta;
+ }
+ }
+}
+
+/* Finite Differences method for estimating the jacobian of the force */
+BLI_INLINE void spring_angbend_estimate_dfdv(Implicit_Data *data,
+ int i,
+ int j,
+ int k,
+ const float goal[3],
+ float stiffness,
+ float damping,
+ int q,
+ float dfdv[3][3])
+{
+ const float delta = 0.00001f; // TODO find a good heuristic for this
+ float dvec_null[3][3], dvec_pos[3][3], dvec_neg[3][3];
+ float f[3];
+ int a, b;
+
+ zero_m3(dvec_null);
+ unit_m3(dvec_pos);
+ mul_m3_fl(dvec_pos, delta * 0.5f);
+ copy_m3_m3(dvec_neg, dvec_pos);
+ negate_m3(dvec_neg);
+
+ /* XXX TODO offset targets to account for position dependency */
+
+ for (a = 0; a < 3; a++) {
+ spring_angbend_forces(
+ data, i, j, k, goal, stiffness, damping, q, dvec_null[a], dvec_pos[a], f);
+ copy_v3_v3(dfdv[a], f);
+
+ spring_angbend_forces(
+ data, i, j, k, goal, stiffness, damping, q, dvec_null[a], dvec_neg[a], f);
+ sub_v3_v3(dfdv[a], f);
+
+ for (b = 0; b < 3; b++) {
+ dfdv[a][b] /= delta;
+ }
+ }
+}
+
+/* Angular spring that pulls the vertex toward the local target
+ * See "Artistic Simulation of Curly Hair" (Pixar technical memo #12-03a)
+ */
+bool SIM_mass_spring_force_spring_bending_angular(Implicit_Data *data,
+ int i,
+ int j,
+ int k,
+ const float target[3],
+ float stiffness,
+ float damping)
+{
+ float goal[3];
+ float fj[3], fk[3];
+ float dfj_dxi[3][3], dfj_dxj[3][3], dfk_dxi[3][3], dfk_dxj[3][3], dfk_dxk[3][3];
+ float dfj_dvi[3][3], dfj_dvj[3][3], dfk_dvi[3][3], dfk_dvj[3][3], dfk_dvk[3][3];
+
+ const float vecnull[3] = {0.0f, 0.0f, 0.0f};
+
+ world_to_root_v3(data, j, goal, target);
+
+ spring_angbend_forces(data, i, j, k, goal, stiffness, damping, k, vecnull, vecnull, fk);
+ negate_v3_v3(fj, fk); /* counterforce */
+
+ spring_angbend_estimate_dfdx(data, i, j, k, goal, stiffness, damping, i, dfk_dxi);
+ spring_angbend_estimate_dfdx(data, i, j, k, goal, stiffness, damping, j, dfk_dxj);
+ spring_angbend_estimate_dfdx(data, i, j, k, goal, stiffness, damping, k, dfk_dxk);
+ copy_m3_m3(dfj_dxi, dfk_dxi);
+ negate_m3(dfj_dxi);
+ copy_m3_m3(dfj_dxj, dfk_dxj);
+ negate_m3(dfj_dxj);
+
+ spring_angbend_estimate_dfdv(data, i, j, k, goal, stiffness, damping, i, dfk_dvi);
+ spring_angbend_estimate_dfdv(data, i, j, k, goal, stiffness, damping, j, dfk_dvj);
+ spring_angbend_estimate_dfdv(data, i, j, k, goal, stiffness, damping, k, dfk_dvk);
+ copy_m3_m3(dfj_dvi, dfk_dvi);
+ negate_m3(dfj_dvi);
+ copy_m3_m3(dfj_dvj, dfk_dvj);
+ negate_m3(dfj_dvj);
+
+ /* add forces and jacobians to the solver data */
+
+ add_v3_v3(data->F.v3(j), fj);
+ add_v3_v3(data->F.v3(k), fk);
+
+ data->idFdX.add(j, j, dfj_dxj);
+ data->idFdX.add(k, k, dfk_dxk);
+
+ data->idFdX.add(i, j, dfj_dxi);
+ data->idFdX.add(j, i, dfj_dxi);
+ data->idFdX.add(j, k, dfk_dxj);
+ data->idFdX.add(k, j, dfk_dxj);
+ data->idFdX.add(i, k, dfk_dxi);
+ data->idFdX.add(k, i, dfk_dxi);
+
+ data->idFdV.add(j, j, dfj_dvj);
+ data->idFdV.add(k, k, dfk_dvk);
+
+ data->idFdV.add(i, j, dfj_dvi);
+ data->idFdV.add(j, i, dfj_dvi);
+ data->idFdV.add(j, k, dfk_dvj);
+ data->idFdV.add(k, j, dfk_dvj);
+ data->idFdV.add(i, k, dfk_dvi);
+ data->idFdV.add(k, i, dfk_dvi);
+
+ /* XXX analytical calculation of derivatives below is incorrect.
+ * This proved to be difficult, but for now just using the finite difference method for
+ * estimating the jacobians should be sufficient.
+ */
+# if 0
+ float edge_ij[3], dir_ij[3], grad_dir_ij[3][3];
+ float edge_jk[3], dir_jk[3], grad_dir_jk[3][3];
+ float dist[3], vel_jk[3], vel_jk_ortho[3], projvel[3];
+ float target[3];
+ float tmp[3][3];
+ float fi[3], fj[3], fk[3];
+ float dfi_dxi[3][3], dfj_dxi[3][3], dfj_dxj[3][3], dfk_dxi[3][3], dfk_dxj[3][3], dfk_dxk[3][3];
+ float dfdvi[3][3];
+
+ // TESTING
+ damping = 0.0f;
+
+ zero_v3(fi);
+ zero_v3(fj);
+ zero_v3(fk);
+ zero_m3(dfi_dxi);
+ zero_m3(dfj_dxi);
+ zero_m3(dfk_dxi);
+ zero_m3(dfk_dxj);
+ zero_m3(dfk_dxk);
+
+ /* jacobian of direction vectors */
+ spring_grad_dir(data, i, j, edge_ij, dir_ij, grad_dir_ij);
+ spring_grad_dir(data, j, k, edge_jk, dir_jk, grad_dir_jk);
+
+ sub_v3_v3v3(vel_jk, data->V[k], data->V[j]);
+
+ /* bending force */
+ mul_v3_v3fl(target, dir_ij, restlen);
+ sub_v3_v3v3(dist, target, edge_jk);
+ mul_v3_v3fl(fk, dist, stiffness);
+
+ /* damping force */
+ madd_v3_v3v3fl(vel_jk_ortho, vel_jk, dir_jk, -dot_v3v3(vel_jk, dir_jk));
+ madd_v3_v3fl(fk, vel_jk_ortho, damping);
+
+ /* XXX this only holds true as long as we assume straight rest shape!
+ * eventually will become a bit more involved since the opposite segment
+ * gets its own target, under condition of having equal torque on both sides.
+ */
+ copy_v3_v3(fi, fk);
+
+ /* counterforce on the middle point */
+ sub_v3_v3(fj, fi);
+ sub_v3_v3(fj, fk);
+
+ /* === derivatives === */
+
+ madd_m3_m3fl(dfk_dxi, grad_dir_ij, stiffness * restlen);
+
+ madd_m3_m3fl(dfk_dxj, grad_dir_ij, -stiffness * restlen);
+ madd_m3_m3fl(dfk_dxj, I, stiffness);
+
+ madd_m3_m3fl(dfk_dxk, I, -stiffness);
+
+ copy_m3_m3(dfi_dxi, dfk_dxk);
+ negate_m3(dfi_dxi);
+
+ /* dfj_dfi == dfi_dfj due to symmetry,
+ * dfi_dfj == dfk_dfj due to fi == fk
+ * XXX see comment above on future bent rest shapes
+ */
+ copy_m3_m3(dfj_dxi, dfk_dxj);
+
+ /* dfj_dxj == -(dfi_dxj + dfk_dxj) due to fj == -(fi + fk) */
+ sub_m3_m3m3(dfj_dxj, dfj_dxj, dfj_dxi);
+ sub_m3_m3m3(dfj_dxj, dfj_dxj, dfk_dxj);
+
+ /* add forces and jacobians to the solver data */
+ add_v3_v3(data->F[i], fi);
+ add_v3_v3(data->F[j], fj);
+ add_v3_v3(data->F[k], fk);
+
+ add_m3_m3m3(data->dFdX[i].m, data->dFdX[i].m, dfi_dxi);
+ add_m3_m3m3(data->dFdX[j].m, data->dFdX[j].m, dfj_dxj);
+ add_m3_m3m3(data->dFdX[k].m, data->dFdX[k].m, dfk_dxk);
+
+ add_m3_m3m3(data->dFdX[block_ij].m, data->dFdX[block_ij].m, dfj_dxi);
+ add_m3_m3m3(data->dFdX[block_jk].m, data->dFdX[block_jk].m, dfk_dxj);
+ add_m3_m3m3(data->dFdX[block_ik].m, data->dFdX[block_ik].m, dfk_dxi);
+# endif
+
+ return true;
+}
+
+bool SIM_mass_spring_force_spring_goal(Implicit_Data *data,
+ int i,
+ const float goal_x[3],
+ const float goal_v[3],
+ float stiffness,
+ float damping,
+ float r_f[3],
+ float r_dfdx[3][3],
+ float r_dfdv[3][3])
+{
+ float root_goal_x[3], root_goal_v[3], extent[3], length, dir[3], vel[3];
+ float f[3], dfdx[3][3], dfdv[3][3];
+
+ /* goal is in world space */
+ world_to_root_v3(data, i, root_goal_x, goal_x);
+ world_to_root_v3(data, i, root_goal_v, goal_v);
+
+ sub_v3_v3v3(extent, root_goal_x, data->X.v3(i));
+ sub_v3_v3v3(vel, root_goal_v, data->V.v3(i));
+ length = normalize_v3_v3(dir, extent);
+
+ if (length > ALMOST_ZERO) {
+ mul_v3_v3fl(f, dir, stiffness * length);
+
+ // Ascher & Boxman, p.21: Damping only during elonglation
+ // something wrong with it...
+ madd_v3_v3fl(f, dir, damping * dot_v3v3(vel, dir));
+
+ dfdx_spring(dfdx, dir, length, 0.0f, stiffness);
+ dfdv_damp(dfdv, dir, damping);
+
+ add_v3_v3(data->F.v3(i), f);
+ data->idFdX.add(i, i, dfdx);
+ data->idFdV.add(i, i, dfdv);
+
+ if (r_f) {
+ copy_v3_v3(r_f, f);
+ }
+ if (r_dfdx) {
+ copy_m3_m3(r_dfdx, dfdx);
+ }
+ if (r_dfdv) {
+ copy_m3_m3(r_dfdv, dfdv);
+ }
+
+ return true;
+ }
+ else {
+ if (r_f) {
+ zero_v3(r_f);
+ }
+ if (r_dfdx) {
+ zero_m3(r_dfdx);
+ }
+ if (r_dfdv) {
+ zero_m3(r_dfdv);
+ }
+
+ return false;
+ }
+}
+
+#endif /* IMPLICIT_SOLVER_EIGEN */