Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/src/parametrizer.c')
-rw-r--r--source/blender/src/parametrizer.c4323
1 files changed, 0 insertions, 4323 deletions
diff --git a/source/blender/src/parametrizer.c b/source/blender/src/parametrizer.c
deleted file mode 100644
index feb774b604a..00000000000
--- a/source/blender/src/parametrizer.c
+++ /dev/null
@@ -1,4323 +0,0 @@
-
-#include "MEM_guardedalloc.h"
-
-#include "BLI_memarena.h"
-#include "BLI_arithb.h"
-#include "BLI_rand.h"
-#include "BLI_heap.h"
-#include "BLI_boxpack2d.h"
-
-#include "BKE_utildefines.h"
-
-#include "BIF_editsima.h"
-#include "BIF_toolbox.h"
-
-#include "ONL_opennl.h"
-
-#include "parametrizer.h"
-#include "parametrizer_intern.h"
-
-#include <math.h>
-#include <stdlib.h>
-#include <stdio.h>
-#include <string.h>
-
-#include "BLO_sys_types.h" // for intptr_t support
-
-#if defined(_WIN32)
-#define M_PI 3.14159265358979323846
-#endif
-
-/* PHash
- - special purpose hash that keeps all its elements in a single linked list.
- - after construction, this hash is thrown away, and the list remains.
- - removing elements is not possible efficiently.
-*/
-
-static int PHashSizes[] = {
- 1, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031, 2053, 4099, 8209,
- 16411, 32771, 65537, 131101, 262147, 524309, 1048583, 2097169,
- 4194319, 8388617, 16777259, 33554467, 67108879, 134217757, 268435459
-};
-
-#define PHASH_hash(ph, item) (((uintptr_t) (item))%((unsigned int) (ph)->cursize))
-#define PHASH_edge(v1, v2) ((v1)^(v2))
-
-static PHash *phash_new(PHashLink **list, int sizehint)
-{
- PHash *ph = (PHash*)MEM_callocN(sizeof(PHash), "PHash");
- ph->size = 0;
- ph->cursize_id = 0;
- ph->list = list;
-
- while (PHashSizes[ph->cursize_id] < sizehint)
- ph->cursize_id++;
-
- ph->cursize = PHashSizes[ph->cursize_id];
- ph->buckets = (PHashLink**)MEM_callocN(ph->cursize*sizeof(*ph->buckets), "PHashBuckets");
-
- return ph;
-}
-
-static void phash_delete(PHash *ph)
-{
- MEM_freeN(ph->buckets);
- MEM_freeN(ph);
-}
-
-static int phash_size(PHash *ph)
-{
- return ph->size;
-}
-
-static void phash_insert(PHash *ph, PHashLink *link)
-{
- int size = ph->cursize;
- int hash = PHASH_hash(ph, link->key);
- PHashLink *lookup = ph->buckets[hash];
-
- if (lookup == NULL) {
- /* insert in front of the list */
- ph->buckets[hash] = link;
- link->next = *(ph->list);
- *(ph->list) = link;
- }
- else {
- /* insert after existing element */
- link->next = lookup->next;
- lookup->next = link;
- }
-
- ph->size++;
-
- if (ph->size > (size*3)) {
- PHashLink *next = NULL, *first = *(ph->list);
-
- ph->cursize = PHashSizes[++ph->cursize_id];
- MEM_freeN(ph->buckets);
- ph->buckets = (PHashLink**)MEM_callocN(ph->cursize*sizeof(*ph->buckets), "PHashBuckets");
- ph->size = 0;
- *(ph->list) = NULL;
-
- for (link = first; link; link = next) {
- next = link->next;
- phash_insert(ph, link);
- }
- }
-}
-
-static PHashLink *phash_lookup(PHash *ph, PHashKey key)
-{
- PHashLink *link;
- int hash = PHASH_hash(ph, key);
-
- for (link = ph->buckets[hash]; link; link = link->next)
- if (link->key == key)
- return link;
- else if (PHASH_hash(ph, link->key) != hash)
- return NULL;
-
- return link;
-}
-
-static PHashLink *phash_next(PHash *ph, PHashKey key, PHashLink *link)
-{
- int hash = PHASH_hash(ph, key);
-
- for (link = link->next; link; link = link->next)
- if (link->key == key)
- return link;
- else if (PHASH_hash(ph, link->key) != hash)
- return NULL;
-
- return link;
-}
-
-/* Geometry */
-
-static float p_vec_angle_cos(float *v1, float *v2, float *v3)
-{
- float d1[3], d2[3];
-
- d1[0] = v1[0] - v2[0];
- d1[1] = v1[1] - v2[1];
- d1[2] = v1[2] - v2[2];
-
- d2[0] = v3[0] - v2[0];
- d2[1] = v3[1] - v2[1];
- d2[2] = v3[2] - v2[2];
-
- Normalize(d1);
- Normalize(d2);
-
- return d1[0]*d2[0] + d1[1]*d2[1] + d1[2]*d2[2];
-}
-
-static float p_vec_angle(float *v1, float *v2, float *v3)
-{
- float dot = p_vec_angle_cos(v1, v2, v3);
-
- if (dot <= -1.0f)
- return (float)M_PI;
- else if (dot >= 1.0f)
- return 0.0f;
- else
- return (float)acos(dot);
-}
-
-static float p_vec2_angle(float *v1, float *v2, float *v3)
-{
- float u1[3], u2[3], u3[3];
-
- u1[0] = v1[0]; u1[1] = v1[1]; u1[2] = 0.0f;
- u2[0] = v2[0]; u2[1] = v2[1]; u2[2] = 0.0f;
- u3[0] = v3[0]; u3[1] = v3[1]; u3[2] = 0.0f;
-
- return p_vec_angle(u1, u2, u3);
-}
-
-static void p_triangle_angles(float *v1, float *v2, float *v3, float *a1, float *a2, float *a3)
-{
- *a1 = p_vec_angle(v3, v1, v2);
- *a2 = p_vec_angle(v1, v2, v3);
- *a3 = M_PI - *a2 - *a1;
-}
-
-static void p_face_angles(PFace *f, float *a1, float *a2, float *a3)
-{
- PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
- PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert;
-
- p_triangle_angles(v1->co, v2->co, v3->co, a1, a2, a3);
-}
-
-static float p_face_area(PFace *f)
-{
- PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
- PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert;
-
- return AreaT3Dfl(v1->co, v2->co, v3->co);
-}
-
-static float p_area_signed(float *v1, float *v2, float *v3)
-{
- return 0.5f*(((v2[0] - v1[0])*(v3[1] - v1[1])) -
- ((v3[0] - v1[0])*(v2[1] - v1[1])));
-}
-
-static float p_face_uv_area_signed(PFace *f)
-{
- PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
- PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert;
-
- return 0.5f*(((v2->uv[0] - v1->uv[0])*(v3->uv[1] - v1->uv[1])) -
- ((v3->uv[0] - v1->uv[0])*(v2->uv[1] - v1->uv[1])));
-}
-
-static float p_edge_length(PEdge *e)
-{
- PVert *v1 = e->vert, *v2 = e->next->vert;
- float d[3];
-
- d[0] = v2->co[0] - v1->co[0];
- d[1] = v2->co[1] - v1->co[1];
- d[2] = v2->co[2] - v1->co[2];
-
- return sqrt(d[0]*d[0] + d[1]*d[1] + d[2]*d[2]);
-}
-
-static float p_edge_uv_length(PEdge *e)
-{
- PVert *v1 = e->vert, *v2 = e->next->vert;
- float d[3];
-
- d[0] = v2->uv[0] - v1->uv[0];
- d[1] = v2->uv[1] - v1->uv[1];
-
- return sqrt(d[0]*d[0] + d[1]*d[1]);
-}
-
-static void p_chart_uv_bbox(PChart *chart, float *minv, float *maxv)
-{
- PVert *v;
-
- INIT_MINMAX2(minv, maxv);
-
- for (v=chart->verts; v; v=v->nextlink) {
- DO_MINMAX2(v->uv, minv, maxv);
- }
-}
-
-static void p_chart_uv_scale(PChart *chart, float scale)
-{
- PVert *v;
-
- for (v=chart->verts; v; v=v->nextlink) {
- v->uv[0] *= scale;
- v->uv[1] *= scale;
- }
-}
-
-static void p_chart_uv_scale_xy(PChart *chart, float x, float y)
-{
- PVert *v;
-
- for (v=chart->verts; v; v=v->nextlink) {
- v->uv[0] *= x;
- v->uv[1] *= y;
- }
-}
-
-static void p_chart_uv_translate(PChart *chart, float trans[2])
-{
- PVert *v;
-
- for (v=chart->verts; v; v=v->nextlink) {
- v->uv[0] += trans[0];
- v->uv[1] += trans[1];
- }
-}
-
-static PBool p_intersect_line_2d_dir(float *v1, float *dir1, float *v2, float *dir2, float *isect)
-{
- float lmbda, div;
-
- div= dir2[0]*dir1[1] - dir2[1]*dir1[0];
-
- if (div == 0.0f)
- return P_FALSE;
-
- lmbda= ((v1[1]-v2[1])*dir1[0]-(v1[0]-v2[0])*dir1[1])/div;
- isect[0] = v1[0] + lmbda*dir2[0];
- isect[1] = v1[1] + lmbda*dir2[1];
-
- return P_TRUE;
-}
-
-#if 0
-static PBool p_intersect_line_2d(float *v1, float *v2, float *v3, float *v4, float *isect)
-{
- float dir1[2], dir2[2];
-
- dir1[0] = v4[0] - v3[0];
- dir1[1] = v4[1] - v3[1];
-
- dir2[0] = v2[0] - v1[0];
- dir2[1] = v2[1] - v1[1];
-
- if (!p_intersect_line_2d_dir(v1, dir1, v2, dir2, isect)) {
- /* parallel - should never happen in theory for polygon kernel, but
- let's give a point nearby in case things go wrong */
- isect[0] = (v1[0] + v2[0])*0.5f;
- isect[1] = (v1[1] + v2[1])*0.5f;
- return P_FALSE;
- }
-
- return P_TRUE;
-}
-#endif
-
-/* Topological Utilities */
-
-static PEdge *p_wheel_edge_next(PEdge *e)
-{
- return e->next->next->pair;
-}
-
-static PEdge *p_wheel_edge_prev(PEdge *e)
-{
- return (e->pair)? e->pair->next: NULL;
-}
-
-static PEdge *p_boundary_edge_next(PEdge *e)
-{
- return e->next->vert->edge;
-}
-
-static PEdge *p_boundary_edge_prev(PEdge *e)
-{
- PEdge *we = e, *last;
-
- do {
- last = we;
- we = p_wheel_edge_next(we);
- } while (we && (we != e));
-
- return last->next->next;
-}
-
-static PBool p_vert_interior(PVert *v)
-{
- return (v->edge->pair != NULL);
-}
-
-static void p_face_flip(PFace *f)
-{
- PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
- PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert;
- int f1 = e1->flag, f2 = e2->flag, f3 = e3->flag;
-
- e1->vert = v2;
- e1->next = e3;
- e1->flag = (f1 & ~PEDGE_VERTEX_FLAGS) | (f2 & PEDGE_VERTEX_FLAGS);
-
- e2->vert = v3;
- e2->next = e1;
- e2->flag = (f2 & ~PEDGE_VERTEX_FLAGS) | (f3 & PEDGE_VERTEX_FLAGS);
-
- e3->vert = v1;
- e3->next = e2;
- e3->flag = (f3 & ~PEDGE_VERTEX_FLAGS) | (f1 & PEDGE_VERTEX_FLAGS);
-}
-
-#if 0
-static void p_chart_topological_sanity_check(PChart *chart)
-{
- PVert *v;
- PEdge *e;
-
- for (v=chart->verts; v; v=v->nextlink)
- param_test_equals_ptr("v->edge->vert", v, v->edge->vert);
-
- for (e=chart->edges; e; e=e->nextlink) {
- if (e->pair) {
- param_test_equals_ptr("e->pair->pair", e, e->pair->pair);
- param_test_equals_ptr("pair->vert", e->vert, e->pair->next->vert);
- param_test_equals_ptr("pair->next->vert", e->next->vert, e->pair->vert);
- }
- }
-}
-#endif
-
-/* Loading / Flushing */
-
-static void p_vert_load_pin_select_uvs(PHandle *handle, PVert *v)
-{
- PEdge *e;
- int nedges = 0, npins = 0;
- float pinuv[2];
-
- v->uv[0] = v->uv[1] = 0.0f;
- pinuv[0] = pinuv[1] = 0.0f;
- e = v->edge;
- do {
- if (e->orig_uv) {
- if (e->flag & PEDGE_SELECT)
- v->flag |= PVERT_SELECT;
-
- if (e->flag & PEDGE_PIN) {
- pinuv[0] += e->orig_uv[0]*handle->aspx;
- pinuv[1] += e->orig_uv[1]*handle->aspy;
- npins++;
- }
- else {
- v->uv[0] += e->orig_uv[0]*handle->aspx;
- v->uv[1] += e->orig_uv[1]*handle->aspy;
- }
-
- nedges++;
- }
-
- e = p_wheel_edge_next(e);
- } while (e && e != (v->edge));
-
- if (npins > 0) {
- v->uv[0] = pinuv[0]/npins;
- v->uv[1] = pinuv[1]/npins;
- v->flag |= PVERT_PIN;
- }
- else if (nedges > 0) {
- v->uv[0] /= nedges;
- v->uv[1] /= nedges;
- }
-}
-
-static void p_flush_uvs(PHandle *handle, PChart *chart)
-{
- PEdge *e;
-
- for (e=chart->edges; e; e=e->nextlink) {
- if (e->orig_uv) {
- e->orig_uv[0] = e->vert->uv[0]/handle->aspx;
- e->orig_uv[1] = e->vert->uv[1]/handle->aspy;
- }
- }
-}
-
-static void p_flush_uvs_blend(PHandle *handle, PChart *chart, float blend)
-{
- PEdge *e;
- float invblend = 1.0f - blend;
-
- for (e=chart->edges; e; e=e->nextlink) {
- if (e->orig_uv) {
- e->orig_uv[0] = blend*e->old_uv[0] + invblend*e->vert->uv[0]/handle->aspx;
- e->orig_uv[1] = blend*e->old_uv[1] + invblend*e->vert->uv[1]/handle->aspy;
- }
- }
-}
-
-static void p_face_backup_uvs(PFace *f)
-{
- PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
-
- if (e1->orig_uv && e2->orig_uv && e3->orig_uv) {
- e1->old_uv[0] = e1->orig_uv[0];
- e1->old_uv[1] = e1->orig_uv[1];
- e2->old_uv[0] = e2->orig_uv[0];
- e2->old_uv[1] = e2->orig_uv[1];
- e3->old_uv[0] = e3->orig_uv[0];
- e3->old_uv[1] = e3->orig_uv[1];
- }
-}
-
-static void p_face_restore_uvs(PFace *f)
-{
- PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
-
- if (e1->orig_uv && e2->orig_uv && e3->orig_uv) {
- e1->orig_uv[0] = e1->old_uv[0];
- e1->orig_uv[1] = e1->old_uv[1];
- e2->orig_uv[0] = e2->old_uv[0];
- e2->orig_uv[1] = e2->old_uv[1];
- e3->orig_uv[0] = e3->old_uv[0];
- e3->orig_uv[1] = e3->old_uv[1];
- }
-}
-
-/* Construction (use only during construction, relies on u.key being set */
-
-static PVert *p_vert_add(PHandle *handle, PHashKey key, float *co, PEdge *e)
-{
- PVert *v = (PVert*)BLI_memarena_alloc(handle->arena, sizeof *v);
- v->co = co;
- v->u.key = key;
- v->edge = e;
- v->flag = 0;
-
- phash_insert(handle->hash_verts, (PHashLink*)v);
-
- return v;
-}
-
-static PVert *p_vert_lookup(PHandle *handle, PHashKey key, float *co, PEdge *e)
-{
- PVert *v = (PVert*)phash_lookup(handle->hash_verts, key);
-
- if (v)
- return v;
- else
- return p_vert_add(handle, key, co, e);
-}
-
-static PVert *p_vert_copy(PChart *chart, PVert *v)
-{
- PVert *nv = (PVert*)BLI_memarena_alloc(chart->handle->arena, sizeof *nv);
-
- nv->co = v->co;
- nv->uv[0] = v->uv[0];
- nv->uv[1] = v->uv[1];
- nv->u.key = v->u.key;
- nv->edge = v->edge;
- nv->flag = v->flag;
-
- return nv;
-}
-
-static PEdge *p_edge_lookup(PHandle *handle, PHashKey *vkeys)
-{
- PHashKey key = PHASH_edge(vkeys[0], vkeys[1]);
- PEdge *e = (PEdge*)phash_lookup(handle->hash_edges, key);
-
- while (e) {
- if ((e->vert->u.key == vkeys[0]) && (e->next->vert->u.key == vkeys[1]))
- return e;
- else if ((e->vert->u.key == vkeys[1]) && (e->next->vert->u.key == vkeys[0]))
- return e;
-
- e = (PEdge*)phash_next(handle->hash_edges, key, (PHashLink*)e);
- }
-
- return NULL;
-}
-
-static PBool p_face_exists(PHandle *handle, PHashKey *vkeys, int i1, int i2, int i3)
-{
- PHashKey key = PHASH_edge(vkeys[i1], vkeys[i2]);
- PEdge *e = (PEdge*)phash_lookup(handle->hash_edges, key);
-
- while (e) {
- if ((e->vert->u.key == vkeys[i1]) && (e->next->vert->u.key == vkeys[i2])) {
- if (e->next->next->vert->u.key == vkeys[i3])
- return P_TRUE;
- }
- else if ((e->vert->u.key == vkeys[i2]) && (e->next->vert->u.key == vkeys[i1])) {
- if (e->next->next->vert->u.key == vkeys[i3])
- return P_TRUE;
- }
-
- e = (PEdge*)phash_next(handle->hash_edges, key, (PHashLink*)e);
- }
-
- return P_FALSE;
-}
-
-static PChart *p_chart_new(PHandle *handle)
-{
- PChart *chart = (PChart*)MEM_callocN(sizeof*chart, "PChart");
- chart->handle = handle;
-
- return chart;
-}
-
-static void p_chart_delete(PChart *chart)
-{
- /* the actual links are free by memarena */
- MEM_freeN(chart);
-}
-
-static PBool p_edge_implicit_seam(PEdge *e, PEdge *ep)
-{
- float *uv1, *uv2, *uvp1, *uvp2;
- float limit[2];
-
- limit[0] = 0.00001;
- limit[1] = 0.00001;
-
- uv1 = e->orig_uv;
- uv2 = e->next->orig_uv;
-
- if (e->vert->u.key == ep->vert->u.key) {
- uvp1 = ep->orig_uv;
- uvp2 = ep->next->orig_uv;
- }
- else {
- uvp1 = ep->next->orig_uv;
- uvp2 = ep->orig_uv;
- }
-
- if((fabs(uv1[0]-uvp1[0]) > limit[0]) || (fabs(uv1[1]-uvp1[1]) > limit[1])) {
- e->flag |= PEDGE_SEAM;
- ep->flag |= PEDGE_SEAM;
- return P_TRUE;
- }
- if((fabs(uv2[0]-uvp2[0]) > limit[0]) || (fabs(uv2[1]-uvp2[1]) > limit[1])) {
- e->flag |= PEDGE_SEAM;
- ep->flag |= PEDGE_SEAM;
- return P_TRUE;
- }
-
- return P_FALSE;
-}
-
-static PBool p_edge_has_pair(PHandle *handle, PEdge *e, PEdge **pair, PBool impl)
-{
- PHashKey key;
- PEdge *pe;
- PVert *v1, *v2;
- PHashKey key1 = e->vert->u.key;
- PHashKey key2 = e->next->vert->u.key;
-
- if (e->flag & PEDGE_SEAM)
- return P_FALSE;
-
- key = PHASH_edge(key1, key2);
- pe = (PEdge*)phash_lookup(handle->hash_edges, key);
- *pair = NULL;
-
- while (pe) {
- if (pe != e) {
- v1 = pe->vert;
- v2 = pe->next->vert;
-
- if (((v1->u.key == key1) && (v2->u.key == key2)) ||
- ((v1->u.key == key2) && (v2->u.key == key1))) {
-
- /* don't connect seams and t-junctions */
- if ((pe->flag & PEDGE_SEAM) || *pair ||
- (impl && p_edge_implicit_seam(e, pe))) {
- *pair = NULL;
- return P_FALSE;
- }
-
- *pair = pe;
- }
- }
-
- pe = (PEdge*)phash_next(handle->hash_edges, key, (PHashLink*)pe);
- }
-
- if (*pair && (e->vert == (*pair)->vert)) {
- if ((*pair)->next->pair || (*pair)->next->next->pair) {
- /* non unfoldable, maybe mobius ring or klein bottle */
- *pair = NULL;
- return P_FALSE;
- }
- }
-
- return (*pair != NULL);
-}
-
-static PBool p_edge_connect_pair(PHandle *handle, PEdge *e, PEdge ***stack, PBool impl)
-{
- PEdge *pair = NULL;
-
- if(!e->pair && p_edge_has_pair(handle, e, &pair, impl)) {
- if (e->vert == pair->vert)
- p_face_flip(pair->face);
-
- e->pair = pair;
- pair->pair = e;
-
- if (!(pair->face->flag & PFACE_CONNECTED)) {
- **stack = pair;
- (*stack)++;
- }
- }
-
- return (e->pair != NULL);
-}
-
-static int p_connect_pairs(PHandle *handle, PBool impl)
-{
- PEdge **stackbase = MEM_mallocN(sizeof*stackbase*phash_size(handle->hash_faces), "Pstackbase");
- PEdge **stack = stackbase;
- PFace *f, *first;
- PEdge *e, *e1, *e2;
- PChart *chart = handle->construction_chart;
- int ncharts = 0;
-
- /* connect pairs, count edges, set vertex-edge pointer to a pairless edge */
- for (first=chart->faces; first; first=first->nextlink) {
- if (first->flag & PFACE_CONNECTED)
- continue;
-
- *stack = first->edge;
- stack++;
-
- while (stack != stackbase) {
- stack--;
- e = *stack;
- e1 = e->next;
- e2 = e1->next;
-
- f = e->face;
- f->flag |= PFACE_CONNECTED;
-
- /* assign verts to charts so we can sort them later */
- f->u.chart = ncharts;
-
- if (!p_edge_connect_pair(handle, e, &stack, impl))
- e->vert->edge = e;
- if (!p_edge_connect_pair(handle, e1, &stack, impl))
- e1->vert->edge = e1;
- if (!p_edge_connect_pair(handle, e2, &stack, impl))
- e2->vert->edge = e2;
- }
-
- ncharts++;
- }
-
- MEM_freeN(stackbase);
-
- return ncharts;
-}
-
-static void p_split_vert(PChart *chart, PEdge *e)
-{
- PEdge *we, *lastwe = NULL;
- PVert *v = e->vert;
- PBool copy = P_TRUE;
-
- if (e->flag & PEDGE_VERTEX_SPLIT)
- return;
-
- /* rewind to start */
- lastwe = e;
- for (we = p_wheel_edge_prev(e); we && (we != e); we = p_wheel_edge_prev(we))
- lastwe = we;
-
- /* go over all edges in wheel */
- for (we = lastwe; we; we = p_wheel_edge_next(we)) {
- if (we->flag & PEDGE_VERTEX_SPLIT)
- break;
-
- we->flag |= PEDGE_VERTEX_SPLIT;
-
- if (we == v->edge) {
- /* found it, no need to copy */
- copy = P_FALSE;
- v->nextlink = chart->verts;
- chart->verts = v;
- chart->nverts++;
- }
- }
-
- if (copy) {
- /* not found, copying */
- v->flag |= PVERT_SPLIT;
- v = p_vert_copy(chart, v);
- v->flag |= PVERT_SPLIT;
-
- v->nextlink = chart->verts;
- chart->verts = v;
- chart->nverts++;
-
- v->edge = lastwe;
-
- we = lastwe;
- do {
- we->vert = v;
- we = p_wheel_edge_next(we);
- } while (we && (we != lastwe));
- }
-}
-
-static PChart **p_split_charts(PHandle *handle, PChart *chart, int ncharts)
-{
- PChart **charts = MEM_mallocN(sizeof*charts * ncharts, "PCharts"), *nchart;
- PFace *f, *nextf;
- int i;
-
- for (i = 0; i < ncharts; i++)
- charts[i] = p_chart_new(handle);
-
- f = chart->faces;
- while (f) {
- PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
- nextf = f->nextlink;
-
- nchart = charts[f->u.chart];
-
- f->nextlink = nchart->faces;
- nchart->faces = f;
- e1->nextlink = nchart->edges;
- nchart->edges = e1;
- e2->nextlink = nchart->edges;
- nchart->edges = e2;
- e3->nextlink = nchart->edges;
- nchart->edges = e3;
-
- nchart->nfaces++;
- nchart->nedges += 3;
-
- p_split_vert(nchart, e1);
- p_split_vert(nchart, e2);
- p_split_vert(nchart, e3);
-
- f = nextf;
- }
-
- return charts;
-}
-
-static PFace *p_face_add(PHandle *handle)
-{
- PFace *f;
- PEdge *e1, *e2, *e3;
-
- /* allocate */
- f = (PFace*)BLI_memarena_alloc(handle->arena, sizeof *f);
- f->flag=0; // init !
-
- e1 = (PEdge*)BLI_memarena_alloc(handle->arena, sizeof *e1);
- e2 = (PEdge*)BLI_memarena_alloc(handle->arena, sizeof *e2);
- e3 = (PEdge*)BLI_memarena_alloc(handle->arena, sizeof *e3);
-
- /* set up edges */
- f->edge = e1;
- e1->face = e2->face = e3->face = f;
-
- e1->next = e2;
- e2->next = e3;
- e3->next = e1;
-
- e1->pair = NULL;
- e2->pair = NULL;
- e3->pair = NULL;
-
- e1->flag =0;
- e2->flag =0;
- e3->flag =0;
-
- return f;
-}
-
-static PFace *p_face_add_construct(PHandle *handle, ParamKey key, ParamKey *vkeys,
- float *co[3], float *uv[3], int i1, int i2, int i3,
- ParamBool *pin, ParamBool *select)
-{
- PFace *f = p_face_add(handle);
- PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
-
- e1->vert = p_vert_lookup(handle, vkeys[i1], co[i1], e1);
- e2->vert = p_vert_lookup(handle, vkeys[i2], co[i2], e2);
- e3->vert = p_vert_lookup(handle, vkeys[i3], co[i3], e3);
-
- e1->orig_uv = uv[i1];
- e2->orig_uv = uv[i2];
- e3->orig_uv = uv[i3];
-
- if (pin) {
- if (pin[i1]) e1->flag |= PEDGE_PIN;
- if (pin[i2]) e2->flag |= PEDGE_PIN;
- if (pin[i3]) e3->flag |= PEDGE_PIN;
- }
-
- if (select) {
- if (select[i1]) e1->flag |= PEDGE_SELECT;
- if (select[i2]) e2->flag |= PEDGE_SELECT;
- if (select[i3]) e3->flag |= PEDGE_SELECT;
- }
-
- /* insert into hash */
- f->u.key = key;
- phash_insert(handle->hash_faces, (PHashLink*)f);
-
- e1->u.key = PHASH_edge(vkeys[i1], vkeys[i2]);
- e2->u.key = PHASH_edge(vkeys[i2], vkeys[i3]);
- e3->u.key = PHASH_edge(vkeys[i3], vkeys[i1]);
-
- phash_insert(handle->hash_edges, (PHashLink*)e1);
- phash_insert(handle->hash_edges, (PHashLink*)e2);
- phash_insert(handle->hash_edges, (PHashLink*)e3);
-
- return f;
-}
-
-static PFace *p_face_add_fill(PChart *chart, PVert *v1, PVert *v2, PVert *v3)
-{
- PFace *f = p_face_add(chart->handle);
- PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
-
- e1->vert = v1;
- e2->vert = v2;
- e3->vert = v3;
-
- e1->orig_uv = e2->orig_uv = e3->orig_uv = NULL;
-
- f->nextlink = chart->faces;
- chart->faces = f;
- e1->nextlink = chart->edges;
- chart->edges = e1;
- e2->nextlink = chart->edges;
- chart->edges = e2;
- e3->nextlink = chart->edges;
- chart->edges = e3;
-
- chart->nfaces++;
- chart->nedges += 3;
-
- return f;
-}
-
-static PBool p_quad_split_direction(PHandle *handle, float **co, PHashKey *vkeys)
-{
- float fac= VecLenf(co[0], co[2]) - VecLenf(co[1], co[3]);
- PBool dir = (fac <= 0.0f);
-
- /* the face exists check is there because of a special case: when
- two quads share three vertices, they can each be split into two
- triangles, resulting in two identical triangles. for example in
- suzanne's nose. */
- if (dir) {
- if (p_face_exists(handle,vkeys,0,1,2) || p_face_exists(handle,vkeys,0,2,3))
- return !dir;
- }
- else {
- if (p_face_exists(handle,vkeys,0,1,3) || p_face_exists(handle,vkeys,1,2,3))
- return !dir;
- }
-
- return dir;
-}
-
-/* Construction: boundary filling */
-
-static void p_chart_boundaries(PChart *chart, int *nboundaries, PEdge **outer)
-{
- PEdge *e, *be;
- float len, maxlen = -1.0;
-
- if (nboundaries)
- *nboundaries = 0;
- if (outer)
- *outer = NULL;
-
- for (e=chart->edges; e; e=e->nextlink) {
- if (e->pair || (e->flag & PEDGE_DONE))
- continue;
-
- if (nboundaries)
- (*nboundaries)++;
-
- len = 0.0f;
-
- be = e;
- do {
- be->flag |= PEDGE_DONE;
- len += p_edge_length(be);
- be = be->next->vert->edge;
- } while(be != e);
-
- if (outer && (len > maxlen)) {
- *outer = e;
- maxlen = len;
- }
- }
-
- for (e=chart->edges; e; e=e->nextlink)
- e->flag &= ~PEDGE_DONE;
-}
-
-static float p_edge_boundary_angle(PEdge *e)
-{
- PEdge *we;
- PVert *v, *v1, *v2;
- float angle;
- int n = 0;
-
- v = e->vert;
-
- /* concave angle check -- could be better */
- angle = M_PI;
-
- we = v->edge;
- do {
- v1 = we->next->vert;
- v2 = we->next->next->vert;
- angle -= p_vec_angle(v1->co, v->co, v2->co);
-
- we = we->next->next->pair;
- n++;
- } while (we && (we != v->edge));
-
- return angle;
-}
-
-static void p_chart_fill_boundary(PChart *chart, PEdge *be, int nedges)
-{
- PEdge *e, *e1, *e2;
-
- PFace *f;
- struct Heap *heap = BLI_heap_new();
- float angle;
-
- e = be;
- do {
- angle = p_edge_boundary_angle(e);
- e->u.heaplink = BLI_heap_insert(heap, angle, e);
-
- e = p_boundary_edge_next(e);
- } while(e != be);
-
- if (nedges == 2) {
- /* no real boundary, but an isolated seam */
- e = be->next->vert->edge;
- e->pair = be;
- be->pair = e;
-
- BLI_heap_remove(heap, e->u.heaplink);
- BLI_heap_remove(heap, be->u.heaplink);
- }
- else {
- while (nedges > 2) {
- PEdge *ne, *ne1, *ne2;
-
- e = (PEdge*)BLI_heap_popmin(heap);
-
- e1 = p_boundary_edge_prev(e);
- e2 = p_boundary_edge_next(e);
-
- BLI_heap_remove(heap, e1->u.heaplink);
- BLI_heap_remove(heap, e2->u.heaplink);
- e->u.heaplink = e1->u.heaplink = e2->u.heaplink = NULL;
-
- e->flag |= PEDGE_FILLED;
- e1->flag |= PEDGE_FILLED;
-
-
-
-
-
- f = p_face_add_fill(chart, e->vert, e1->vert, e2->vert);
- f->flag |= PFACE_FILLED;
-
- ne = f->edge->next->next;
- ne1 = f->edge;
- ne2 = f->edge->next;
-
- ne->flag = ne1->flag = ne2->flag = PEDGE_FILLED;
-
- e->pair = ne;
- ne->pair = e;
- e1->pair = ne1;
- ne1->pair = e1;
-
- ne->vert = e2->vert;
- ne1->vert = e->vert;
- ne2->vert = e1->vert;
-
- if (nedges == 3) {
- e2->pair = ne2;
- ne2->pair = e2;
- }
- else {
- ne2->vert->edge = ne2;
-
- ne2->u.heaplink = BLI_heap_insert(heap, p_edge_boundary_angle(ne2), ne2);
- e2->u.heaplink = BLI_heap_insert(heap, p_edge_boundary_angle(e2), e2);
- }
-
- nedges--;
- }
- }
-
- BLI_heap_free(heap, NULL);
-}
-
-static void p_chart_fill_boundaries(PChart *chart, PEdge *outer)
-{
- PEdge *e, *be; /* *enext - as yet unused */
- int nedges;
-
- for (e=chart->edges; e; e=e->nextlink) {
- /* enext = e->nextlink; - as yet unused */
-
- if (e->pair || (e->flag & PEDGE_FILLED))
- continue;
-
- nedges = 0;
- be = e;
- do {
- be->flag |= PEDGE_FILLED;
- be = be->next->vert->edge;
- nedges++;
- } while(be != e);
-
- if (e != outer)
- p_chart_fill_boundary(chart, e, nedges);
- }
-}
-
-#if 0
-/* Polygon kernel for inserting uv's non overlapping */
-
-static int p_polygon_point_in(float *cp1, float *cp2, float *p)
-{
- if ((cp1[0] == p[0]) && (cp1[1] == p[1]))
- return 2;
- else if ((cp2[0] == p[0]) && (cp2[1] == p[1]))
- return 3;
- else
- return (p_area_signed(cp1, cp2, p) >= 0.0f);
-}
-
-static void p_polygon_kernel_clip(float (*oldpoints)[2], int noldpoints, float (*newpoints)[2], int *nnewpoints, float *cp1, float *cp2)
-{
- float *p2, *p1, isect[2];
- int i, p2in, p1in;
-
- p1 = oldpoints[noldpoints-1];
- p1in = p_polygon_point_in(cp1, cp2, p1);
- *nnewpoints = 0;
-
- for (i = 0; i < noldpoints; i++) {
- p2 = oldpoints[i];
- p2in = p_polygon_point_in(cp1, cp2, p2);
-
- if ((p2in >= 2) || (p1in && p2in)) {
- newpoints[*nnewpoints][0] = p2[0];
- newpoints[*nnewpoints][1] = p2[1];
- (*nnewpoints)++;
- }
- else if (p1in && !p2in) {
- if (p1in != 3) {
- p_intersect_line_2d(p1, p2, cp1, cp2, isect);
- newpoints[*nnewpoints][0] = isect[0];
- newpoints[*nnewpoints][1] = isect[1];
- (*nnewpoints)++;
- }
- }
- else if (!p1in && p2in) {
- p_intersect_line_2d(p1, p2, cp1, cp2, isect);
- newpoints[*nnewpoints][0] = isect[0];
- newpoints[*nnewpoints][1] = isect[1];
- (*nnewpoints)++;
-
- newpoints[*nnewpoints][0] = p2[0];
- newpoints[*nnewpoints][1] = p2[1];
- (*nnewpoints)++;
- }
-
- p1in = p2in;
- p1 = p2;
- }
-}
-
-static void p_polygon_kernel_center(float (*points)[2], int npoints, float *center)
-{
- int i, size, nnewpoints = npoints;
- float (*oldpoints)[2], (*newpoints)[2], *p1, *p2;
-
- size = npoints*3;
- oldpoints = MEM_mallocN(sizeof(float)*2*size, "PPolygonOldPoints");
- newpoints = MEM_mallocN(sizeof(float)*2*size, "PPolygonNewPoints");
-
- memcpy(oldpoints, points, sizeof(float)*2*npoints);
-
- for (i = 0; i < npoints; i++) {
- p1 = points[i];
- p2 = points[(i+1)%npoints];
- p_polygon_kernel_clip(oldpoints, nnewpoints, newpoints, &nnewpoints, p1, p2);
-
- if (nnewpoints == 0) {
- /* degenerate case, use center of original polygon */
- memcpy(oldpoints, points, sizeof(float)*2*npoints);
- nnewpoints = npoints;
- break;
- }
- else if (nnewpoints == 1) {
- /* degenerate case, use remaining point */
- center[0] = newpoints[0][0];
- center[1] = newpoints[0][1];
-
- MEM_freeN(oldpoints);
- MEM_freeN(newpoints);
-
- return;
- }
-
- if (nnewpoints*2 > size) {
- size *= 2;
- free(oldpoints);
- oldpoints = malloc(sizeof(float)*2*size);
- memcpy(oldpoints, newpoints, sizeof(float)*2*nnewpoints);
- free(newpoints);
- newpoints = malloc(sizeof(float)*2*size);
- }
- else {
- float (*sw_points)[2] = oldpoints;
- oldpoints = newpoints;
- newpoints = sw_points;
- }
- }
-
- center[0] = center[1] = 0.0f;
-
- for (i = 0; i < nnewpoints; i++) {
- center[0] += oldpoints[i][0];
- center[1] += oldpoints[i][1];
- }
-
- center[0] /= nnewpoints;
- center[1] /= nnewpoints;
-
- MEM_freeN(oldpoints);
- MEM_freeN(newpoints);
-}
-#endif
-
-#if 0
-/* Edge Collapser */
-
-int NCOLLAPSE = 1;
-int NCOLLAPSEX = 0;
-
-static float p_vert_cotan(float *v1, float *v2, float *v3)
-{
- float a[3], b[3], c[3], clen;
-
- VecSubf(a, v2, v1);
- VecSubf(b, v3, v1);
- Crossf(c, a, b);
-
- clen = VecLength(c);
-
- if (clen == 0.0f)
- return 0.0f;
-
- return Inpf(a, b)/clen;
-}
-
-static PBool p_vert_flipped_wheel_triangle(PVert *v)
-{
- PEdge *e = v->edge;
-
- do {
- if (p_face_uv_area_signed(e->face) < 0.0f)
- return P_TRUE;
-
- e = p_wheel_edge_next(e);
- } while (e && (e != v->edge));
-
- return P_FALSE;
-}
-
-static PBool p_vert_map_harmonic_weights(PVert *v)
-{
- float weightsum, positionsum[2], olduv[2];
-
- weightsum = 0.0f;
- positionsum[0] = positionsum[1] = 0.0f;
-
- if (p_vert_interior(v)) {
- PEdge *e = v->edge;
-
- do {
- float t1, t2, weight;
- PVert *v1, *v2;
-
- v1 = e->next->vert;
- v2 = e->next->next->vert;
- t1 = p_vert_cotan(v2->co, e->vert->co, v1->co);
-
- v1 = e->pair->next->vert;
- v2 = e->pair->next->next->vert;
- t2 = p_vert_cotan(v2->co, e->pair->vert->co, v1->co);
-
- weight = 0.5f*(t1 + t2);
- weightsum += weight;
- positionsum[0] += weight*e->pair->vert->uv[0];
- positionsum[1] += weight*e->pair->vert->uv[1];
-
- e = p_wheel_edge_next(e);
- } while (e && (e != v->edge));
- }
- else {
- PEdge *e = v->edge;
-
- do {
- float t1, t2;
- PVert *v1, *v2;
-
- v2 = e->next->vert;
- v1 = e->next->next->vert;
-
- t1 = p_vert_cotan(v1->co, v->co, v2->co);
- t2 = p_vert_cotan(v2->co, v->co, v1->co);
-
- weightsum += t1 + t2;
- positionsum[0] += (v2->uv[1] - v1->uv[1]) + (t1*v2->uv[0] + t2*v1->uv[0]);
- positionsum[1] += (v1->uv[0] - v2->uv[0]) + (t1*v2->uv[1] + t2*v1->uv[1]);
-
- e = p_wheel_edge_next(e);
- } while (e && (e != v->edge));
- }
-
- if (weightsum != 0.0f) {
- weightsum = 1.0f/weightsum;
- positionsum[0] *= weightsum;
- positionsum[1] *= weightsum;
- }
-
- olduv[0] = v->uv[0];
- olduv[1] = v->uv[1];
- v->uv[0] = positionsum[0];
- v->uv[1] = positionsum[1];
-
- if (p_vert_flipped_wheel_triangle(v)) {
- v->uv[0] = olduv[0];
- v->uv[1] = olduv[1];
-
- return P_FALSE;
- }
-
- return P_TRUE;
-}
-
-static void p_vert_harmonic_insert(PVert *v)
-{
- PEdge *e;
-
- if (!p_vert_map_harmonic_weights(v)) {
- /* do polygon kernel center insertion: this is quite slow, but should
- only be needed for 0.01 % of verts or so, when insert with harmonic
- weights fails */
-
- int npoints = 0, i;
- float (*points)[2];
-
- e = v->edge;
- do {
- npoints++;
- e = p_wheel_edge_next(e);
- } while (e && (e != v->edge));
-
- if (e == NULL)
- npoints++;
-
- points = MEM_mallocN(sizeof(float)*2*npoints, "PHarmonicPoints");
-
- e = v->edge;
- i = 0;
- do {
- PEdge *nexte = p_wheel_edge_next(e);
-
- points[i][0] = e->next->vert->uv[0];
- points[i][1] = e->next->vert->uv[1];
-
- if (nexte == NULL) {
- i++;
- points[i][0] = e->next->next->vert->uv[0];
- points[i][1] = e->next->next->vert->uv[1];
- break;
- }
-
- e = nexte;
- i++;
- } while (e != v->edge);
-
- p_polygon_kernel_center(points, npoints, v->uv);
-
- MEM_freeN(points);
- }
-
- e = v->edge;
- do {
- if (!(e->next->vert->flag & PVERT_PIN))
- p_vert_map_harmonic_weights(e->next->vert);
- e = p_wheel_edge_next(e);
- } while (e && (e != v->edge));
-
- p_vert_map_harmonic_weights(v);
-}
-
-static void p_vert_fix_edge_pointer(PVert *v)
-{
- PEdge *start = v->edge;
-
- /* set v->edge pointer to the edge with no pair, if there is one */
- while (v->edge->pair) {
- v->edge = p_wheel_edge_prev(v->edge);
-
- if (v->edge == start)
- break;
- }
-}
-
-static void p_collapsing_verts(PEdge *edge, PEdge *pair, PVert **newv, PVert **keepv)
-{
- /* the two vertices that are involved in the collapse */
- if (edge) {
- *newv = edge->vert;
- *keepv = edge->next->vert;
- }
- else {
- *newv = pair->next->vert;
- *keepv = pair->vert;
- }
-}
-
-static void p_collapse_edge(PEdge *edge, PEdge *pair)
-{
- PVert *oldv, *keepv;
- PEdge *e;
-
- p_collapsing_verts(edge, pair, &oldv, &keepv);
-
- /* change e->vert pointers from old vertex to the target vertex */
- e = oldv->edge;
- do {
- if ((e != edge) && !(pair && pair->next == e))
- e->vert = keepv;
-
- e = p_wheel_edge_next(e);
- } while (e && (e != oldv->edge));
-
- /* set keepv->edge pointer */
- if ((edge && (keepv->edge == edge->next)) || (keepv->edge == pair)) {
- if (edge && edge->next->pair)
- keepv->edge = edge->next->pair->next;
- else if (pair && pair->next->next->pair)
- keepv->edge = pair->next->next->pair;
- else if (edge && edge->next->next->pair)
- keepv->edge = edge->next->next->pair;
- else
- keepv->edge = pair->next->pair->next;
- }
-
- /* update pairs and v->edge pointers */
- if (edge) {
- PEdge *e1 = edge->next, *e2 = e1->next;
-
- if (e1->pair)
- e1->pair->pair = e2->pair;
-
- if (e2->pair) {
- e2->pair->pair = e1->pair;
- e2->vert->edge = p_wheel_edge_prev(e2);
- }
- else
- e2->vert->edge = p_wheel_edge_next(e2);
-
- p_vert_fix_edge_pointer(e2->vert);
- }
-
- if (pair) {
- PEdge *e1 = pair->next, *e2 = e1->next;
-
- if (e1->pair)
- e1->pair->pair = e2->pair;
-
- if (e2->pair) {
- e2->pair->pair = e1->pair;
- e2->vert->edge = p_wheel_edge_prev(e2);
- }
- else
- e2->vert->edge = p_wheel_edge_next(e2);
-
- p_vert_fix_edge_pointer(e2->vert);
- }
-
- p_vert_fix_edge_pointer(keepv);
-
- /* mark for move to collapsed list later */
- oldv->flag |= PVERT_COLLAPSE;
-
- if (edge) {
- PFace *f = edge->face;
- PEdge *e1 = edge->next, *e2 = e1->next;
-
- f->flag |= PFACE_COLLAPSE;
- edge->flag |= PEDGE_COLLAPSE;
- e1->flag |= PEDGE_COLLAPSE;
- e2->flag |= PEDGE_COLLAPSE;
- }
-
- if (pair) {
- PFace *f = pair->face;
- PEdge *e1 = pair->next, *e2 = e1->next;
-
- f->flag |= PFACE_COLLAPSE;
- pair->flag |= PEDGE_COLLAPSE;
- e1->flag |= PEDGE_COLLAPSE;
- e2->flag |= PEDGE_COLLAPSE;
- }
-}
-
-static void p_split_vertex(PEdge *edge, PEdge *pair)
-{
- PVert *newv, *keepv;
- PEdge *e;
-
- p_collapsing_verts(edge, pair, &newv, &keepv);
-
- /* update edge pairs */
- if (edge) {
- PEdge *e1 = edge->next, *e2 = e1->next;
-
- if (e1->pair)
- e1->pair->pair = e1;
- if (e2->pair)
- e2->pair->pair = e2;
-
- e2->vert->edge = e2;
- p_vert_fix_edge_pointer(e2->vert);
- keepv->edge = e1;
- }
-
- if (pair) {
- PEdge *e1 = pair->next, *e2 = e1->next;
-
- if (e1->pair)
- e1->pair->pair = e1;
- if (e2->pair)
- e2->pair->pair = e2;
-
- e2->vert->edge = e2;
- p_vert_fix_edge_pointer(e2->vert);
- keepv->edge = pair;
- }
-
- p_vert_fix_edge_pointer(keepv);
-
- /* set e->vert pointers to restored vertex */
- e = newv->edge;
- do {
- e->vert = newv;
- e = p_wheel_edge_next(e);
- } while (e && (e != newv->edge));
-}
-
-static PBool p_collapse_allowed_topologic(PEdge *edge, PEdge *pair)
-{
- PVert *oldv, *keepv;
-
- p_collapsing_verts(edge, pair, &oldv, &keepv);
-
- /* boundary edges */
- if (!edge || !pair) {
- /* avoid collapsing chart into an edge */
- if (edge && !edge->next->pair && !edge->next->next->pair)
- return P_FALSE;
- else if (pair && !pair->next->pair && !pair->next->next->pair)
- return P_FALSE;
- }
- /* avoid merging two boundaries (oldv and keepv are on the 'other side' of
- the chart) */
- else if (!p_vert_interior(oldv) && !p_vert_interior(keepv))
- return P_FALSE;
-
- return P_TRUE;
-}
-
-static PBool p_collapse_normal_flipped(float *v1, float *v2, float *vold, float *vnew)
-{
- float nold[3], nnew[3], sub1[3], sub2[3];
-
- VecSubf(sub1, vold, v1);
- VecSubf(sub2, vold, v2);
- Crossf(nold, sub1, sub2);
-
- VecSubf(sub1, vnew, v1);
- VecSubf(sub2, vnew, v2);
- Crossf(nnew, sub1, sub2);
-
- return (Inpf(nold, nnew) <= 0.0f);
-}
-
-static PBool p_collapse_allowed_geometric(PEdge *edge, PEdge *pair)
-{
- PVert *oldv, *keepv;
- PEdge *e;
- float angulardefect, angle;
-
- p_collapsing_verts(edge, pair, &oldv, &keepv);
-
- angulardefect = 2*M_PI;
-
- e = oldv->edge;
- do {
- float a[3], b[3], minangle, maxangle;
- PEdge *e1 = e->next, *e2 = e1->next;
- PVert *v1 = e1->vert, *v2 = e2->vert;
- int i;
-
- angle = p_vec_angle(v1->co, oldv->co, v2->co);
- angulardefect -= angle;
-
- /* skip collapsing faces */
- if (v1 == keepv || v2 == keepv) {
- e = p_wheel_edge_next(e);
- continue;
- }
-
- if (p_collapse_normal_flipped(v1->co, v2->co, oldv->co, keepv->co))
- return P_FALSE;
-
- a[0] = angle;
- a[1] = p_vec_angle(v2->co, v1->co, oldv->co);
- a[2] = M_PI - a[0] - a[1];
-
- b[0] = p_vec_angle(v1->co, keepv->co, v2->co);
- b[1] = p_vec_angle(v2->co, v1->co, keepv->co);
- b[2] = M_PI - b[0] - b[1];
-
- /* abf criterion 1: avoid sharp and obtuse angles */
- minangle = 15.0f*M_PI/180.0f;
- maxangle = M_PI - minangle;
-
- for (i = 0; i < 3; i++) {
- if ((b[i] < a[i]) && (b[i] < minangle))
- return P_FALSE;
- else if ((b[i] > a[i]) && (b[i] > maxangle))
- return P_FALSE;
- }
-
- e = p_wheel_edge_next(e);
- } while (e && (e != oldv->edge));
-
- if (p_vert_interior(oldv)) {
- /* hlscm criterion: angular defect smaller than threshold */
- if (fabs(angulardefect) > (M_PI*30.0/180.0))
- return P_FALSE;
- }
- else {
- PVert *v1 = p_boundary_edge_next(oldv->edge)->vert;
- PVert *v2 = p_boundary_edge_prev(oldv->edge)->vert;
-
- /* abf++ criterion 2: avoid collapsing verts inwards */
- if (p_vert_interior(keepv))
- return P_FALSE;
-
- /* don't collapse significant boundary changes */
- angle = p_vec_angle(v1->co, oldv->co, v2->co);
- if (angle < (M_PI*160.0/180.0))
- return P_FALSE;
- }
-
- return P_TRUE;
-}
-
-static PBool p_collapse_allowed(PEdge *edge, PEdge *pair)
-{
- PVert *oldv, *keepv;
-
- p_collapsing_verts(edge, pair, &oldv, &keepv);
-
- if (oldv->flag & PVERT_PIN)
- return P_FALSE;
-
- return (p_collapse_allowed_topologic(edge, pair) &&
- p_collapse_allowed_geometric(edge, pair));
-}
-
-static float p_collapse_cost(PEdge *edge, PEdge *pair)
-{
- /* based on volume and boundary optimization from:
- "Fast and Memory Efficient Polygonal Simplification" P. Lindstrom, G. Turk */
-
- PVert *oldv, *keepv;
- PEdge *e;
- PFace *oldf1, *oldf2;
- float volumecost = 0.0f, areacost = 0.0f, edgevec[3], cost, weight, elen;
- float shapecost = 0.0f;
- float shapeold = 0.0f, shapenew = 0.0f;
- int nshapeold = 0, nshapenew = 0;
-
- p_collapsing_verts(edge, pair, &oldv, &keepv);
- oldf1 = (edge)? edge->face: NULL;
- oldf2 = (pair)? pair->face: NULL;
-
- VecSubf(edgevec, keepv->co, oldv->co);
-
- e = oldv->edge;
- do {
- float a1, a2, a3;
- float *co1 = e->next->vert->co;
- float *co2 = e->next->next->vert->co;
-
- if ((e->face != oldf1) && (e->face != oldf2)) {
- float tetrav2[3], tetrav3[3], c[3];
-
- /* tetrahedron volume = (1/3!)*|a.(b x c)| */
- VecSubf(tetrav2, co1, oldv->co);
- VecSubf(tetrav3, co2, oldv->co);
- Crossf(c, tetrav2, tetrav3);
-
- volumecost += fabs(Inpf(edgevec, c)/6.0f);
-#if 0
- shapecost += Inpf(co1, keepv->co);
-
- if (p_wheel_edge_next(e) == NULL)
- shapecost += Inpf(co2, keepv->co);
-#endif
-
- p_triangle_angles(oldv->co, co1, co2, &a1, &a2, &a3);
- a1 = a1 - M_PI/3.0;
- a2 = a2 - M_PI/3.0;
- a3 = a3 - M_PI/3.0;
- shapeold = (a1*a1 + a2*a2 + a3*a3)/((M_PI/2)*(M_PI/2));
-
- nshapeold++;
- }
- else {
- p_triangle_angles(keepv->co, co1, co2, &a1, &a2, &a3);
- a1 = a1 - M_PI/3.0;
- a2 = a2 - M_PI/3.0;
- a3 = a3 - M_PI/3.0;
- shapenew = (a1*a1 + a2*a2 + a3*a3)/((M_PI/2)*(M_PI/2));
-
- nshapenew++;
- }
-
- e = p_wheel_edge_next(e);
- } while (e && (e != oldv->edge));
-
- if (!p_vert_interior(oldv)) {
- PVert *v1 = p_boundary_edge_prev(oldv->edge)->vert;
- PVert *v2 = p_boundary_edge_next(oldv->edge)->vert;
-
- areacost = AreaT3Dfl(oldv->co, v1->co, v2->co);
- }
-
- elen = VecLength(edgevec);
- weight = 1.0f; /* 0.2f */
- cost = weight*volumecost*volumecost + elen*elen*areacost*areacost;
-#if 0
- cost += shapecost;
-#else
- shapeold /= nshapeold;
- shapenew /= nshapenew;
- shapecost = (shapeold + 0.00001)/(shapenew + 0.00001);
-
- cost *= shapecost;
-#endif
-
- return cost;
-}
-
-static void p_collapse_cost_vertex(PVert *vert, float *mincost, PEdge **mine)
-{
- PEdge *e, *enext, *pair;
-
- *mine = NULL;
- *mincost = 0.0f;
- e = vert->edge;
- do {
- if (p_collapse_allowed(e, e->pair)) {
- float cost = p_collapse_cost(e, e->pair);
-
- if ((*mine == NULL) || (cost < *mincost)) {
- *mincost = cost;
- *mine = e;
- }
- }
-
- enext = p_wheel_edge_next(e);
-
- if (enext == NULL) {
- /* the other boundary edge, where we only have the pair halfedge */
- pair = e->next->next;
-
- if (p_collapse_allowed(NULL, pair)) {
- float cost = p_collapse_cost(NULL, pair);
-
- if ((*mine == NULL) || (cost < *mincost)) {
- *mincost = cost;
- *mine = pair;
- }
- }
-
- break;
- }
-
- e = enext;
- } while (e != vert->edge);
-}
-
-static void p_chart_post_collapse_flush(PChart *chart, PEdge *collapsed)
-{
- /* move to collapsed_ */
-
- PVert *v, *nextv = NULL, *verts = chart->verts;
- PEdge *e, *nexte = NULL, *edges = chart->edges, *laste = NULL;
- PFace *f, *nextf = NULL, *faces = chart->faces;
-
- chart->verts = chart->collapsed_verts = NULL;
- chart->edges = chart->collapsed_edges = NULL;
- chart->faces = chart->collapsed_faces = NULL;
-
- chart->nverts = chart->nedges = chart->nfaces = 0;
-
- for (v=verts; v; v=nextv) {
- nextv = v->nextlink;
-
- if (v->flag & PVERT_COLLAPSE) {
- v->nextlink = chart->collapsed_verts;
- chart->collapsed_verts = v;
- }
- else {
- v->nextlink = chart->verts;
- chart->verts = v;
- chart->nverts++;
- }
- }
-
- for (e=edges; e; e=nexte) {
- nexte = e->nextlink;
-
- if (!collapsed || !(e->flag & PEDGE_COLLAPSE_EDGE)) {
- if (e->flag & PEDGE_COLLAPSE) {
- e->nextlink = chart->collapsed_edges;
- chart->collapsed_edges = e;
- }
- else {
- e->nextlink = chart->edges;
- chart->edges = e;
- chart->nedges++;
- }
- }
- }
-
- /* these are added last so they can be popped of in the right order
- for splitting */
- for (e=collapsed; e; e=e->nextlink) {
- e->nextlink = e->u.nextcollapse;
- laste = e;
- }
- if (laste) {
- laste->nextlink = chart->collapsed_edges;
- chart->collapsed_edges = collapsed;
- }
-
- for (f=faces; f; f=nextf) {
- nextf = f->nextlink;
-
- if (f->flag & PFACE_COLLAPSE) {
- f->nextlink = chart->collapsed_faces;
- chart->collapsed_faces = f;
- }
- else {
- f->nextlink = chart->faces;
- chart->faces = f;
- chart->nfaces++;
- }
- }
-}
-
-static void p_chart_post_split_flush(PChart *chart)
-{
- /* move from collapsed_ */
-
- PVert *v, *nextv = NULL;
- PEdge *e, *nexte = NULL;
- PFace *f, *nextf = NULL;
-
- for (v=chart->collapsed_verts; v; v=nextv) {
- nextv = v->nextlink;
- v->nextlink = chart->verts;
- chart->verts = v;
- chart->nverts++;
- }
-
- for (e=chart->collapsed_edges; e; e=nexte) {
- nexte = e->nextlink;
- e->nextlink = chart->edges;
- chart->edges = e;
- chart->nedges++;
- }
-
- for (f=chart->collapsed_faces; f; f=nextf) {
- nextf = f->nextlink;
- f->nextlink = chart->faces;
- chart->faces = f;
- chart->nfaces++;
- }
-
- chart->collapsed_verts = NULL;
- chart->collapsed_edges = NULL;
- chart->collapsed_faces = NULL;
-}
-
-static void p_chart_simplify_compute(PChart *chart)
-{
- /* Computes a list of edge collapses / vertex splits. The collapsed
- simplices go in the chart->collapsed_* lists, The original and
- collapsed may then be view as stacks, where the next collapse/split
- is at the top of the respective lists. */
-
- Heap *heap = BLI_heap_new();
- PVert *v, **wheelverts;
- PEdge *collapsededges = NULL, *e;
- int nwheelverts, i, ncollapsed = 0;
-
- wheelverts = MEM_mallocN(sizeof(PVert*)*chart->nverts, "PChartWheelVerts");
-
- /* insert all potential collapses into heap */
- for (v=chart->verts; v; v=v->nextlink) {
- float cost;
- PEdge *e = NULL;
-
- p_collapse_cost_vertex(v, &cost, &e);
-
- if (e)
- v->u.heaplink = BLI_heap_insert(heap, cost, e);
- else
- v->u.heaplink = NULL;
- }
-
- for (e=chart->edges; e; e=e->nextlink)
- e->u.nextcollapse = NULL;
-
- /* pop edge collapse out of heap one by one */
- while (!BLI_heap_empty(heap)) {
- if (ncollapsed == NCOLLAPSE)
- break;
-
- HeapNode *link = BLI_heap_top(heap);
- PEdge *edge = (PEdge*)BLI_heap_popmin(heap), *pair = edge->pair;
- PVert *oldv, *keepv;
- PEdge *wheele, *nexte;
-
- /* remember the edges we collapsed */
- edge->u.nextcollapse = collapsededges;
- collapsededges = edge;
-
- if (edge->vert->u.heaplink != link) {
- edge->flag |= (PEDGE_COLLAPSE_EDGE|PEDGE_COLLAPSE_PAIR);
- edge->next->vert->u.heaplink = NULL;
- SWAP(PEdge*, edge, pair);
- }
- else {
- edge->flag |= PEDGE_COLLAPSE_EDGE;
- edge->vert->u.heaplink = NULL;
- }
-
- p_collapsing_verts(edge, pair, &oldv, &keepv);
-
- /* gather all wheel verts and remember them before collapse */
- nwheelverts = 0;
- wheele = oldv->edge;
-
- do {
- wheelverts[nwheelverts++] = wheele->next->vert;
- nexte = p_wheel_edge_next(wheele);
-
- if (nexte == NULL)
- wheelverts[nwheelverts++] = wheele->next->next->vert;
-
- wheele = nexte;
- } while (wheele && (wheele != oldv->edge));
-
- /* collapse */
- p_collapse_edge(edge, pair);
-
- for (i = 0; i < nwheelverts; i++) {
- float cost;
- PEdge *collapse = NULL;
-
- v = wheelverts[i];
-
- if (v->u.heaplink) {
- BLI_heap_remove(heap, v->u.heaplink);
- v->u.heaplink = NULL;
- }
-
- p_collapse_cost_vertex(v, &cost, &collapse);
-
- if (collapse)
- v->u.heaplink = BLI_heap_insert(heap, cost, collapse);
- }
-
- ncollapsed++;
- }
-
- MEM_freeN(wheelverts);
- BLI_heap_free(heap, NULL);
-
- p_chart_post_collapse_flush(chart, collapsededges);
-}
-
-static void p_chart_complexify(PChart *chart)
-{
- PEdge *e, *pair, *edge;
- PVert *newv, *keepv;
- int x = 0;
-
- for (e=chart->collapsed_edges; e; e=e->nextlink) {
- if (!(e->flag & PEDGE_COLLAPSE_EDGE))
- break;
-
- edge = e;
- pair = e->pair;
-
- if (edge->flag & PEDGE_COLLAPSE_PAIR) {
- SWAP(PEdge*, edge, pair);
- }
-
- p_split_vertex(edge, pair);
- p_collapsing_verts(edge, pair, &newv, &keepv);
-
- if (x >= NCOLLAPSEX) {
- newv->uv[0] = keepv->uv[0];
- newv->uv[1] = keepv->uv[1];
- }
- else {
- p_vert_harmonic_insert(newv);
- x++;
- }
- }
-
- p_chart_post_split_flush(chart);
-}
-
-#if 0
-static void p_chart_simplify(PChart *chart)
-{
- /* Not implemented, needs proper reordering in split_flush. */
-}
-#endif
-#endif
-
-/* ABF */
-
-#define ABF_MAX_ITER 20
-
-typedef struct PAbfSystem {
- int ninterior, nfaces, nangles;
- float *alpha, *beta, *sine, *cosine, *weight;
- float *bAlpha, *bTriangle, *bInterior;
- float *lambdaTriangle, *lambdaPlanar, *lambdaLength;
- float (*J2dt)[3], *bstar, *dstar;
- float minangle, maxangle;
-} PAbfSystem;
-
-static void p_abf_setup_system(PAbfSystem *sys)
-{
- int i;
-
- sys->alpha = (float*)MEM_mallocN(sizeof(float)*sys->nangles, "ABFalpha");
- sys->beta = (float*)MEM_mallocN(sizeof(float)*sys->nangles, "ABFbeta");
- sys->sine = (float*)MEM_mallocN(sizeof(float)*sys->nangles, "ABFsine");
- sys->cosine = (float*)MEM_mallocN(sizeof(float)*sys->nangles, "ABFcosine");
- sys->weight = (float*)MEM_mallocN(sizeof(float)*sys->nangles, "ABFweight");
-
- sys->bAlpha = (float*)MEM_mallocN(sizeof(float)*sys->nangles, "ABFbalpha");
- sys->bTriangle = (float*)MEM_mallocN(sizeof(float)*sys->nfaces, "ABFbtriangle");
- sys->bInterior = (float*)MEM_mallocN(sizeof(float)*2*sys->ninterior, "ABFbinterior");
-
- sys->lambdaTriangle = (float*)MEM_callocN(sizeof(float)*sys->nfaces, "ABFlambdatri");
- sys->lambdaPlanar = (float*)MEM_callocN(sizeof(float)*sys->ninterior, "ABFlamdaplane");
- sys->lambdaLength = (float*)MEM_mallocN(sizeof(float)*sys->ninterior, "ABFlambdalen");
-
- sys->J2dt = MEM_mallocN(sizeof(float)*sys->nangles*3, "ABFj2dt");
- sys->bstar = (float*)MEM_mallocN(sizeof(float)*sys->nfaces, "ABFbstar");
- sys->dstar = (float*)MEM_mallocN(sizeof(float)*sys->nfaces, "ABFdstar");
-
- for (i = 0; i < sys->ninterior; i++)
- sys->lambdaLength[i] = 1.0;
-
- sys->minangle = 7.5f*M_PI/180.0f;
- sys->maxangle = M_PI - sys->minangle;
-}
-
-static void p_abf_free_system(PAbfSystem *sys)
-{
- MEM_freeN(sys->alpha);
- MEM_freeN(sys->beta);
- MEM_freeN(sys->sine);
- MEM_freeN(sys->cosine);
- MEM_freeN(sys->weight);
- MEM_freeN(sys->bAlpha);
- MEM_freeN(sys->bTriangle);
- MEM_freeN(sys->bInterior);
- MEM_freeN(sys->lambdaTriangle);
- MEM_freeN(sys->lambdaPlanar);
- MEM_freeN(sys->lambdaLength);
- MEM_freeN(sys->J2dt);
- MEM_freeN(sys->bstar);
- MEM_freeN(sys->dstar);
-}
-
-static void p_abf_compute_sines(PAbfSystem *sys)
-{
- int i;
- float *sine = sys->sine, *cosine = sys->cosine, *alpha = sys->alpha;
-
- for (i = 0; i < sys->nangles; i++, sine++, cosine++, alpha++) {
- *sine = sin(*alpha);
- *cosine = cos(*alpha);
- }
-}
-
-static float p_abf_compute_sin_product(PAbfSystem *sys, PVert *v, int aid)
-{
- PEdge *e, *e1, *e2;
- float sin1, sin2;
-
- sin1 = sin2 = 1.0;
-
- e = v->edge;
- do {
- e1 = e->next;
- e2 = e->next->next;
-
- if (aid == e1->u.id) {
- /* we are computing a derivative for this angle,
- so we use cos and drop the other part */
- sin1 *= sys->cosine[e1->u.id];
- sin2 = 0.0;
- }
- else
- sin1 *= sys->sine[e1->u.id];
-
- if (aid == e2->u.id) {
- /* see above */
- sin1 = 0.0;
- sin2 *= sys->cosine[e2->u.id];
- }
- else
- sin2 *= sys->sine[e2->u.id];
-
- e = e->next->next->pair;
- } while (e && (e != v->edge));
-
- return (sin1 - sin2);
-}
-
-static float p_abf_compute_grad_alpha(PAbfSystem *sys, PFace *f, PEdge *e)
-{
- PVert *v = e->vert, *v1 = e->next->vert, *v2 = e->next->next->vert;
- float deriv;
-
- deriv = (sys->alpha[e->u.id] - sys->beta[e->u.id])*sys->weight[e->u.id];
- deriv += sys->lambdaTriangle[f->u.id];
-
- if (v->flag & PVERT_INTERIOR) {
- deriv += sys->lambdaPlanar[v->u.id];
- }
-
- if (v1->flag & PVERT_INTERIOR) {
- float product = p_abf_compute_sin_product(sys, v1, e->u.id);
- deriv += sys->lambdaLength[v1->u.id]*product;
- }
-
- if (v2->flag & PVERT_INTERIOR) {
- float product = p_abf_compute_sin_product(sys, v2, e->u.id);
- deriv += sys->lambdaLength[v2->u.id]*product;
- }
-
- return deriv;
-}
-
-static float p_abf_compute_gradient(PAbfSystem *sys, PChart *chart)
-{
- PFace *f;
- PEdge *e;
- PVert *v;
- float norm = 0.0;
-
- for (f=chart->faces; f; f=f->nextlink) {
- PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
- float gtriangle, galpha1, galpha2, galpha3;
-
- galpha1 = p_abf_compute_grad_alpha(sys, f, e1);
- galpha2 = p_abf_compute_grad_alpha(sys, f, e2);
- galpha3 = p_abf_compute_grad_alpha(sys, f, e3);
-
- sys->bAlpha[e1->u.id] = -galpha1;
- sys->bAlpha[e2->u.id] = -galpha2;
- sys->bAlpha[e3->u.id] = -galpha3;
-
- norm += galpha1*galpha1 + galpha2*galpha2 + galpha3*galpha3;
-
- gtriangle = sys->alpha[e1->u.id] + sys->alpha[e2->u.id] + sys->alpha[e3->u.id] - M_PI;
- sys->bTriangle[f->u.id] = -gtriangle;
- norm += gtriangle*gtriangle;
- }
-
- for (v=chart->verts; v; v=v->nextlink) {
- if (v->flag & PVERT_INTERIOR) {
- float gplanar = -2*M_PI, glength;
-
- e = v->edge;
- do {
- gplanar += sys->alpha[e->u.id];
- e = e->next->next->pair;
- } while (e && (e != v->edge));
-
- sys->bInterior[v->u.id] = -gplanar;
- norm += gplanar*gplanar;
-
- glength = p_abf_compute_sin_product(sys, v, -1);
- sys->bInterior[sys->ninterior + v->u.id] = -glength;
- norm += glength*glength;
- }
- }
-
- return norm;
-}
-
-static PBool p_abf_matrix_invert(PAbfSystem *sys, PChart *chart)
-{
- PFace *f;
- PEdge *e;
- int i, j, ninterior = sys->ninterior, nvar = 2*sys->ninterior;
- PBool success;
-
- nlNewContext();
- nlSolverParameteri(NL_NB_VARIABLES, nvar);
-
- nlBegin(NL_SYSTEM);
-
- nlBegin(NL_MATRIX);
-
- for (i = 0; i < nvar; i++)
- nlRightHandSideAdd(0, i, sys->bInterior[i]);
-
- for (f=chart->faces; f; f=f->nextlink) {
- float wi1, wi2, wi3, b, si, beta[3], j2[3][3], W[3][3];
- float row1[6], row2[6], row3[6];
- int vid[6];
- PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
- PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert;
-
- wi1 = 1.0/sys->weight[e1->u.id];
- wi2 = 1.0/sys->weight[e2->u.id];
- wi3 = 1.0/sys->weight[e3->u.id];
-
- /* bstar1 = (J1*dInv*bAlpha - bTriangle) */
- b = sys->bAlpha[e1->u.id]*wi1;
- b += sys->bAlpha[e2->u.id]*wi2;
- b += sys->bAlpha[e3->u.id]*wi3;
- b -= sys->bTriangle[f->u.id];
-
- /* si = J1*d*J1t */
- si = 1.0/(wi1 + wi2 + wi3);
-
- /* J1t*si*bstar1 - bAlpha */
- beta[0] = b*si - sys->bAlpha[e1->u.id];
- beta[1] = b*si - sys->bAlpha[e2->u.id];
- beta[2] = b*si - sys->bAlpha[e3->u.id];
-
- /* use this later for computing other lambda's */
- sys->bstar[f->u.id] = b;
- sys->dstar[f->u.id] = si;
-
- /* set matrix */
- W[0][0] = si - sys->weight[e1->u.id]; W[0][1] = si; W[0][2] = si;
- W[1][0] = si; W[1][1] = si - sys->weight[e2->u.id]; W[1][2] = si;
- W[2][0] = si; W[2][1] = si; W[2][2] = si - sys->weight[e3->u.id];
-
- vid[0] = vid[1] = vid[2] = vid[3] = vid[4] = vid[5] = -1;
-
- if (v1->flag & PVERT_INTERIOR) {
- vid[0] = v1->u.id;
- vid[3] = ninterior + v1->u.id;
-
- sys->J2dt[e1->u.id][0] = j2[0][0] = 1.0*wi1;
- sys->J2dt[e2->u.id][0] = j2[1][0] = p_abf_compute_sin_product(sys, v1, e2->u.id)*wi2;
- sys->J2dt[e3->u.id][0] = j2[2][0] = p_abf_compute_sin_product(sys, v1, e3->u.id)*wi3;
-
- nlRightHandSideAdd(0, v1->u.id, j2[0][0]*beta[0]);
- nlRightHandSideAdd(0, ninterior + v1->u.id, j2[1][0]*beta[1] + j2[2][0]*beta[2]);
-
- row1[0] = j2[0][0]*W[0][0];
- row2[0] = j2[0][0]*W[1][0];
- row3[0] = j2[0][0]*W[2][0];
-
- row1[3] = j2[1][0]*W[0][1] + j2[2][0]*W[0][2];
- row2[3] = j2[1][0]*W[1][1] + j2[2][0]*W[1][2];
- row3[3] = j2[1][0]*W[2][1] + j2[2][0]*W[2][2];
- }
-
- if (v2->flag & PVERT_INTERIOR) {
- vid[1] = v2->u.id;
- vid[4] = ninterior + v2->u.id;
-
- sys->J2dt[e1->u.id][1] = j2[0][1] = p_abf_compute_sin_product(sys, v2, e1->u.id)*wi1;
- sys->J2dt[e2->u.id][1] = j2[1][1] = 1.0*wi2;
- sys->J2dt[e3->u.id][1] = j2[2][1] = p_abf_compute_sin_product(sys, v2, e3->u.id)*wi3;
-
- nlRightHandSideAdd(0, v2->u.id, j2[1][1]*beta[1]);
- nlRightHandSideAdd(0, ninterior + v2->u.id, j2[0][1]*beta[0] + j2[2][1]*beta[2]);
-
- row1[1] = j2[1][1]*W[0][1];
- row2[1] = j2[1][1]*W[1][1];
- row3[1] = j2[1][1]*W[2][1];
-
- row1[4] = j2[0][1]*W[0][0] + j2[2][1]*W[0][2];
- row2[4] = j2[0][1]*W[1][0] + j2[2][1]*W[1][2];
- row3[4] = j2[0][1]*W[2][0] + j2[2][1]*W[2][2];
- }
-
- if (v3->flag & PVERT_INTERIOR) {
- vid[2] = v3->u.id;
- vid[5] = ninterior + v3->u.id;
-
- sys->J2dt[e1->u.id][2] = j2[0][2] = p_abf_compute_sin_product(sys, v3, e1->u.id)*wi1;
- sys->J2dt[e2->u.id][2] = j2[1][2] = p_abf_compute_sin_product(sys, v3, e2->u.id)*wi2;
- sys->J2dt[e3->u.id][2] = j2[2][2] = 1.0*wi3;
-
- nlRightHandSideAdd(0, v3->u.id, j2[2][2]*beta[2]);
- nlRightHandSideAdd(0, ninterior + v3->u.id, j2[0][2]*beta[0] + j2[1][2]*beta[1]);
-
- row1[2] = j2[2][2]*W[0][2];
- row2[2] = j2[2][2]*W[1][2];
- row3[2] = j2[2][2]*W[2][2];
-
- row1[5] = j2[0][2]*W[0][0] + j2[1][2]*W[0][1];
- row2[5] = j2[0][2]*W[1][0] + j2[1][2]*W[1][1];
- row3[5] = j2[0][2]*W[2][0] + j2[1][2]*W[2][1];
- }
-
- for (i = 0; i < 3; i++) {
- int r = vid[i];
-
- if (r == -1)
- continue;
-
- for (j = 0; j < 6; j++) {
- int c = vid[j];
-
- if (c == -1)
- continue;
-
- if (i == 0)
- nlMatrixAdd(r, c, j2[0][i]*row1[j]);
- else
- nlMatrixAdd(r + ninterior, c, j2[0][i]*row1[j]);
-
- if (i == 1)
- nlMatrixAdd(r, c, j2[1][i]*row2[j]);
- else
- nlMatrixAdd(r + ninterior, c, j2[1][i]*row2[j]);
-
-
- if (i == 2)
- nlMatrixAdd(r, c, j2[2][i]*row3[j]);
- else
- nlMatrixAdd(r + ninterior, c, j2[2][i]*row3[j]);
- }
- }
- }
-
- nlEnd(NL_MATRIX);
-
- nlEnd(NL_SYSTEM);
-
- success = nlSolve();
-
- if (success) {
- for (f=chart->faces; f; f=f->nextlink) {
- float dlambda1, pre[3], dalpha;
- PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
- PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert;
-
- pre[0] = pre[1] = pre[2] = 0.0;
-
- if (v1->flag & PVERT_INTERIOR) {
- float x = nlGetVariable(0, v1->u.id);
- float x2 = nlGetVariable(0, ninterior + v1->u.id);
- pre[0] += sys->J2dt[e1->u.id][0]*x;
- pre[1] += sys->J2dt[e2->u.id][0]*x2;
- pre[2] += sys->J2dt[e3->u.id][0]*x2;
- }
-
- if (v2->flag & PVERT_INTERIOR) {
- float x = nlGetVariable(0, v2->u.id);
- float x2 = nlGetVariable(0, ninterior + v2->u.id);
- pre[0] += sys->J2dt[e1->u.id][1]*x2;
- pre[1] += sys->J2dt[e2->u.id][1]*x;
- pre[2] += sys->J2dt[e3->u.id][1]*x2;
- }
-
- if (v3->flag & PVERT_INTERIOR) {
- float x = nlGetVariable(0, v3->u.id);
- float x2 = nlGetVariable(0, ninterior + v3->u.id);
- pre[0] += sys->J2dt[e1->u.id][2]*x2;
- pre[1] += sys->J2dt[e2->u.id][2]*x2;
- pre[2] += sys->J2dt[e3->u.id][2]*x;
- }
-
- dlambda1 = pre[0] + pre[1] + pre[2];
- dlambda1 = sys->dstar[f->u.id]*(sys->bstar[f->u.id] - dlambda1);
-
- sys->lambdaTriangle[f->u.id] += dlambda1;
-
- dalpha = (sys->bAlpha[e1->u.id] - dlambda1);
- sys->alpha[e1->u.id] += dalpha/sys->weight[e1->u.id] - pre[0];
-
- dalpha = (sys->bAlpha[e2->u.id] - dlambda1);
- sys->alpha[e2->u.id] += dalpha/sys->weight[e2->u.id] - pre[1];
-
- dalpha = (sys->bAlpha[e3->u.id] - dlambda1);
- sys->alpha[e3->u.id] += dalpha/sys->weight[e3->u.id] - pre[2];
-
- /* clamp */
- e = f->edge;
- do {
- if (sys->alpha[e->u.id] > M_PI)
- sys->alpha[e->u.id] = M_PI;
- else if (sys->alpha[e->u.id] < 0.0f)
- sys->alpha[e->u.id] = 0.0f;
- } while (e != f->edge);
- }
-
- for (i = 0; i < ninterior; i++) {
- sys->lambdaPlanar[i] += nlGetVariable(0, i);
- sys->lambdaLength[i] += nlGetVariable(0, ninterior + i);
- }
- }
-
- nlDeleteContext(nlGetCurrent());
-
- return success;
-}
-
-static PBool p_chart_abf_solve(PChart *chart)
-{
- PVert *v;
- PFace *f;
- PEdge *e, *e1, *e2, *e3;
- PAbfSystem sys;
- int i;
- float lastnorm, limit = (chart->nfaces > 100)? 1.0f: 0.001f;
-
- /* setup id's */
- sys.ninterior = sys.nfaces = sys.nangles = 0;
-
- for (v=chart->verts; v; v=v->nextlink) {
- if (p_vert_interior(v)) {
- v->flag |= PVERT_INTERIOR;
- v->u.id = sys.ninterior++;
- }
- else
- v->flag &= ~PVERT_INTERIOR;
- }
-
- for (f=chart->faces; f; f=f->nextlink) {
- e1 = f->edge; e2 = e1->next; e3 = e2->next;
- f->u.id = sys.nfaces++;
-
- /* angle id's are conveniently stored in half edges */
- e1->u.id = sys.nangles++;
- e2->u.id = sys.nangles++;
- e3->u.id = sys.nangles++;
- }
-
- p_abf_setup_system(&sys);
-
- /* compute initial angles */
- for (f=chart->faces; f; f=f->nextlink) {
- float a1, a2, a3;
-
- e1 = f->edge; e2 = e1->next; e3 = e2->next;
- p_face_angles(f, &a1, &a2, &a3);
-
- if (a1 < sys.minangle)
- a1 = sys.minangle;
- else if (a1 > sys.maxangle)
- a1 = sys.maxangle;
- if (a2 < sys.minangle)
- a2 = sys.minangle;
- else if (a2 > sys.maxangle)
- a2 = sys.maxangle;
- if (a3 < sys.minangle)
- a3 = sys.minangle;
- else if (a3 > sys.maxangle)
- a3 = sys.maxangle;
-
- sys.alpha[e1->u.id] = sys.beta[e1->u.id] = a1;
- sys.alpha[e2->u.id] = sys.beta[e2->u.id] = a2;
- sys.alpha[e3->u.id] = sys.beta[e3->u.id] = a3;
-
- sys.weight[e1->u.id] = 2.0/(a1*a1);
- sys.weight[e2->u.id] = 2.0/(a2*a2);
- sys.weight[e3->u.id] = 2.0/(a3*a3);
- }
-
- for (v=chart->verts; v; v=v->nextlink) {
- if (v->flag & PVERT_INTERIOR) {
- float anglesum = 0.0, scale;
-
- e = v->edge;
- do {
- anglesum += sys.beta[e->u.id];
- e = e->next->next->pair;
- } while (e && (e != v->edge));
-
- scale = (anglesum == 0.0f)? 0.0f: 2*M_PI/anglesum;
-
- e = v->edge;
- do {
- sys.beta[e->u.id] = sys.alpha[e->u.id] = sys.beta[e->u.id]*scale;
- e = e->next->next->pair;
- } while (e && (e != v->edge));
- }
- }
-
- if (sys.ninterior > 0) {
- p_abf_compute_sines(&sys);
-
- /* iteration */
- lastnorm = 1e10;
-
- for (i = 0; i < ABF_MAX_ITER; i++) {
- float norm = p_abf_compute_gradient(&sys, chart);
-
- lastnorm = norm;
-
- if (norm < limit)
- break;
-
- if (!p_abf_matrix_invert(&sys, chart)) {
- param_warning("ABF failed to invert matrix.");
- p_abf_free_system(&sys);
- return P_FALSE;
- }
-
- p_abf_compute_sines(&sys);
- }
-
- if (i == ABF_MAX_ITER) {
- param_warning("ABF maximum iterations reached.");
- p_abf_free_system(&sys);
- return P_FALSE;
- }
- }
-
- chart->u.lscm.abf_alpha = MEM_dupallocN(sys.alpha);
- p_abf_free_system(&sys);
-
- return P_TRUE;
-}
-
-/* Least Squares Conformal Maps */
-
-static void p_chart_pin_positions(PChart *chart, PVert **pin1, PVert **pin2)
-{
- if (pin1 == pin2) {
- /* degenerate case */
- PFace *f = chart->faces;
- *pin1 = f->edge->vert;
- *pin2 = f->edge->next->vert;
-
- (*pin1)->uv[0] = 0.0f;
- (*pin1)->uv[1] = 0.5f;
- (*pin2)->uv[0] = 1.0f;
- (*pin2)->uv[1] = 0.5f;
- }
- else {
- int diru, dirv, dirx, diry;
- float sub[3];
-
- VecSubf(sub, (*pin1)->co, (*pin2)->co);
- sub[0] = fabs(sub[0]);
- sub[1] = fabs(sub[1]);
- sub[2] = fabs(sub[2]);
-
- if ((sub[0] > sub[1]) && (sub[0] > sub[2])) {
- dirx = 0;
- diry = (sub[1] > sub[2])? 1: 2;
- }
- else if ((sub[1] > sub[0]) && (sub[1] > sub[2])) {
- dirx = 1;
- diry = (sub[0] > sub[2])? 0: 2;
- }
- else {
- dirx = 2;
- diry = (sub[0] > sub[1])? 0: 1;
- }
-
- if (dirx == 2) {
- diru = 1;
- dirv = 0;
- }
- else {
- diru = 0;
- dirv = 1;
- }
-
- (*pin1)->uv[diru] = (*pin1)->co[dirx];
- (*pin1)->uv[dirv] = (*pin1)->co[diry];
- (*pin2)->uv[diru] = (*pin2)->co[dirx];
- (*pin2)->uv[dirv] = (*pin2)->co[diry];
- }
-}
-
-static PBool p_chart_symmetry_pins(PChart *chart, PEdge *outer, PVert **pin1, PVert **pin2)
-{
- PEdge *be, *lastbe = NULL, *maxe1 = NULL, *maxe2 = NULL, *be1, *be2;
- PEdge *cure = NULL, *firste1 = NULL, *firste2 = NULL, *nextbe;
- float maxlen = 0.0f, curlen = 0.0f, totlen = 0.0f, firstlen = 0.0f;
- float len1, len2;
-
- /* find longest series of verts split in the chart itself, these are
- marked during construction */
- be = outer;
- lastbe = p_boundary_edge_prev(be);
- do {
- float len = p_edge_length(be);
- totlen += len;
-
- nextbe = p_boundary_edge_next(be);
-
- if ((be->vert->flag & PVERT_SPLIT) ||
- (lastbe->vert->flag & nextbe->vert->flag & PVERT_SPLIT)) {
- if (!cure) {
- if (be == outer)
- firste1 = be;
- cure = be;
- }
- else
- curlen += p_edge_length(lastbe);
- }
- else if (cure) {
- if (curlen > maxlen) {
- maxlen = curlen;
- maxe1 = cure;
- maxe2 = lastbe;
- }
-
- if (firste1 == cure) {
- firstlen = curlen;
- firste2 = lastbe;
- }
-
- curlen = 0.0f;
- cure = NULL;
- }
-
- lastbe = be;
- be = nextbe;
- } while(be != outer);
-
- /* make sure we also count a series of splits over the starting point */
- if (cure && (cure != outer)) {
- firstlen += curlen + p_edge_length(be);
-
- if (firstlen > maxlen) {
- maxlen = firstlen;
- maxe1 = cure;
- maxe2 = firste2;
- }
- }
-
- if (!maxe1 || !maxe2 || (maxlen < 0.5f*totlen))
- return P_FALSE;
-
- /* find pin1 in the split vertices */
- be1 = maxe1;
- be2 = maxe2;
- len1 = 0.0f;
- len2 = 0.0f;
-
- do {
- if (len1 < len2) {
- len1 += p_edge_length(be1);
- be1 = p_boundary_edge_next(be1);
- }
- else {
- be2 = p_boundary_edge_prev(be2);
- len2 += p_edge_length(be2);
- }
- } while (be1 != be2);
-
- *pin1 = be1->vert;
-
- /* find pin2 outside the split vertices */
- be1 = maxe1;
- be2 = maxe2;
- len1 = 0.0f;
- len2 = 0.0f;
-
- do {
- if (len1 < len2) {
- be1 = p_boundary_edge_prev(be1);
- len1 += p_edge_length(be1);
- }
- else {
- len2 += p_edge_length(be2);
- be2 = p_boundary_edge_next(be2);
- }
- } while (be1 != be2);
-
- *pin2 = be1->vert;
-
- p_chart_pin_positions(chart, pin1, pin2);
-
- return P_TRUE;
-}
-
-static void p_chart_extrema_verts(PChart *chart, PVert **pin1, PVert **pin2)
-{
- float minv[3], maxv[3], dirlen;
- PVert *v, *minvert[3], *maxvert[3];
- int i, dir;
-
- /* find minimum and maximum verts over x/y/z axes */
- minv[0] = minv[1] = minv[2] = 1e20;
- maxv[0] = maxv[1] = maxv[2] = -1e20;
-
- minvert[0] = minvert[1] = minvert[2] = NULL;
- maxvert[0] = maxvert[1] = maxvert[2] = NULL;
-
- for (v = chart->verts; v; v=v->nextlink) {
- for (i = 0; i < 3; i++) {
- if (v->co[i] < minv[i]) {
- minv[i] = v->co[i];
- minvert[i] = v;
- }
- if (v->co[i] > maxv[i]) {
- maxv[i] = v->co[i];
- maxvert[i] = v;
- }
- }
- }
-
- /* find axes with longest distance */
- dir = 0;
- dirlen = -1.0;
-
- for (i = 0; i < 3; i++) {
- if (maxv[i] - minv[i] > dirlen) {
- dir = i;
- dirlen = maxv[i] - minv[i];
- }
- }
-
- *pin1 = minvert[dir];
- *pin2 = maxvert[dir];
-
- p_chart_pin_positions(chart, pin1, pin2);
-}
-
-static void p_chart_lscm_load_solution(PChart *chart)
-{
- PVert *v;
-
- for (v=chart->verts; v; v=v->nextlink) {
- v->uv[0] = nlGetVariable(0, 2*v->u.id);
- v->uv[1] = nlGetVariable(0, 2*v->u.id + 1);
- }
-}
-
-static void p_chart_lscm_begin(PChart *chart, PBool live, PBool abf)
-{
- PVert *v, *pin1, *pin2;
- PBool select = P_FALSE, deselect = P_FALSE;
- int npins = 0, id = 0;
-
- /* give vertices matrix indices and count pins */
- for (v=chart->verts; v; v=v->nextlink) {
- if (v->flag & PVERT_PIN) {
- npins++;
- if (v->flag & PVERT_SELECT)
- select = P_TRUE;
- }
-
- if (!(v->flag & PVERT_SELECT))
- deselect = P_TRUE;
- }
-
- if ((live && (!select || !deselect)) || (npins == 1)) {
- chart->u.lscm.context = NULL;
- }
- else {
-#if 0
- p_chart_simplify_compute(chart);
- p_chart_topological_sanity_check(chart);
-#endif
-
- if (abf) {
- if (!p_chart_abf_solve(chart))
- param_warning("ABF solving failed: falling back to LSCM.\n");
- }
-
- if (npins <= 1) {
- /* not enough pins, lets find some ourself */
- PEdge *outer;
-
- p_chart_boundaries(chart, NULL, &outer);
-
- if (!p_chart_symmetry_pins(chart, outer, &pin1, &pin2))
- p_chart_extrema_verts(chart, &pin1, &pin2);
-
- chart->u.lscm.pin1 = pin1;
- chart->u.lscm.pin2 = pin2;
- }
- else {
- chart->flag |= PCHART_NOPACK;
- }
-
- for (v=chart->verts; v; v=v->nextlink)
- v->u.id = id++;
-
- nlNewContext();
- nlSolverParameteri(NL_NB_VARIABLES, 2*chart->nverts);
- nlSolverParameteri(NL_NB_ROWS, 2*chart->nfaces);
- nlSolverParameteri(NL_LEAST_SQUARES, NL_TRUE);
-
- chart->u.lscm.context = nlGetCurrent();
- }
-}
-
-static PBool p_chart_lscm_solve(PHandle *handle, PChart *chart)
-{
- PVert *v, *pin1 = chart->u.lscm.pin1, *pin2 = chart->u.lscm.pin2;
- PFace *f;
- float *alpha = chart->u.lscm.abf_alpha;
- int row;
-
- nlMakeCurrent(chart->u.lscm.context);
-
- nlBegin(NL_SYSTEM);
-
-#if 0
- /* TODO: make loading pins work for simplify/complexify. */
-#endif
-
- for (v=chart->verts; v; v=v->nextlink)
- if (v->flag & PVERT_PIN)
- p_vert_load_pin_select_uvs(handle, v); /* reload for live */
-
- if (chart->u.lscm.pin1) {
- nlLockVariable(2*pin1->u.id);
- nlLockVariable(2*pin1->u.id + 1);
- nlLockVariable(2*pin2->u.id);
- nlLockVariable(2*pin2->u.id + 1);
-
- nlSetVariable(0, 2*pin1->u.id, pin1->uv[0]);
- nlSetVariable(0, 2*pin1->u.id + 1, pin1->uv[1]);
- nlSetVariable(0, 2*pin2->u.id, pin2->uv[0]);
- nlSetVariable(0, 2*pin2->u.id + 1, pin2->uv[1]);
- }
- else {
- /* set and lock the pins */
- for (v=chart->verts; v; v=v->nextlink) {
- if (v->flag & PVERT_PIN) {
- nlLockVariable(2*v->u.id);
- nlLockVariable(2*v->u.id + 1);
-
- nlSetVariable(0, 2*v->u.id, v->uv[0]);
- nlSetVariable(0, 2*v->u.id + 1, v->uv[1]);
- }
- }
- }
-
- /* construct matrix */
-
- nlBegin(NL_MATRIX);
-
- row = 0;
- for (f=chart->faces; f; f=f->nextlink) {
- PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
- PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert;
- float a1, a2, a3, ratio, cosine, sine;
- float sina1, sina2, sina3, sinmax;
-
- if (alpha) {
- /* use abf angles if passed on */
- a1 = *(alpha++);
- a2 = *(alpha++);
- a3 = *(alpha++);
- }
- else
- p_face_angles(f, &a1, &a2, &a3);
-
- sina1 = sin(a1);
- sina2 = sin(a2);
- sina3 = sin(a3);
-
- sinmax = MAX3(sina1, sina2, sina3);
-
- /* shift vertices to find most stable order */
- if (sina3 != sinmax) {
- SHIFT3(PVert*, v1, v2, v3);
- SHIFT3(float, a1, a2, a3);
- SHIFT3(float, sina1, sina2, sina3);
-
- if (sina2 == sinmax) {
- SHIFT3(PVert*, v1, v2, v3);
- SHIFT3(float, a1, a2, a3);
- SHIFT3(float, sina1, sina2, sina3);
- }
- }
-
- /* angle based lscm formulation */
- ratio = (sina3 == 0.0f)? 1.0f: sina2/sina3;
- cosine = cos(a1)*ratio;
- sine = sina1*ratio;
-
-#if 0
- nlBegin(NL_ROW);
- nlCoefficient(2*v1->u.id, cosine - 1.0);
- nlCoefficient(2*v1->u.id+1, -sine);
- nlCoefficient(2*v2->u.id, -cosine);
- nlCoefficient(2*v2->u.id+1, sine);
- nlCoefficient(2*v3->u.id, 1.0);
- nlEnd(NL_ROW);
-
- nlBegin(NL_ROW);
- nlCoefficient(2*v1->u.id, sine);
- nlCoefficient(2*v1->u.id+1, cosine - 1.0);
- nlCoefficient(2*v2->u.id, -sine);
- nlCoefficient(2*v2->u.id+1, -cosine);
- nlCoefficient(2*v3->u.id+1, 1.0);
- nlEnd(NL_ROW);
-#else
- nlMatrixAdd(row, 2*v1->u.id, cosine - 1.0);
- nlMatrixAdd(row, 2*v1->u.id+1, -sine);
- nlMatrixAdd(row, 2*v2->u.id, -cosine);
- nlMatrixAdd(row, 2*v2->u.id+1, sine);
- nlMatrixAdd(row, 2*v3->u.id, 1.0);
- row++;
-
- nlMatrixAdd(row, 2*v1->u.id, sine);
- nlMatrixAdd(row, 2*v1->u.id+1, cosine - 1.0);
- nlMatrixAdd(row, 2*v2->u.id, -sine);
- nlMatrixAdd(row, 2*v2->u.id+1, -cosine);
- nlMatrixAdd(row, 2*v3->u.id+1, 1.0);
- row++;
-#endif
- }
-
- nlEnd(NL_MATRIX);
-
- nlEnd(NL_SYSTEM);
-
- if (nlSolveAdvanced(NULL, NL_TRUE)) {
- p_chart_lscm_load_solution(chart);
- return P_TRUE;
- }
- else {
- for (v=chart->verts; v; v=v->nextlink) {
- v->uv[0] = 0.0f;
- v->uv[1] = 0.0f;
- }
- }
-
- return P_FALSE;
-}
-
-static void p_chart_lscm_end(PChart *chart)
-{
- if (chart->u.lscm.context)
- nlDeleteContext(chart->u.lscm.context);
-
- if (chart->u.lscm.abf_alpha) {
- MEM_freeN(chart->u.lscm.abf_alpha);
- chart->u.lscm.abf_alpha = NULL;
- }
-
- chart->u.lscm.context = NULL;
- chart->u.lscm.pin1 = NULL;
- chart->u.lscm.pin2 = NULL;
-}
-
-/* Stretch */
-
-#define P_STRETCH_ITER 20
-
-static void p_stretch_pin_boundary(PChart *chart)
-{
- PVert *v;
-
- for(v=chart->verts; v; v=v->nextlink)
- if (v->edge->pair == NULL)
- v->flag |= PVERT_PIN;
- else
- v->flag &= ~PVERT_PIN;
-}
-
-static float p_face_stretch(PFace *f)
-{
- float T, w, tmp[3];
- float Ps[3], Pt[3];
- float a, c, area;
- PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
- PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert;
-
- area = p_face_uv_area_signed(f);
-
- if (area <= 0.0f) /* flipped face -> infinite stretch */
- return 1e10f;
-
- w= 1.0f/(2.0f*area);
-
- /* compute derivatives */
- VecCopyf(Ps, v1->co);
- VecMulf(Ps, (v2->uv[1] - v3->uv[1]));
-
- VecCopyf(tmp, v2->co);
- VecMulf(tmp, (v3->uv[1] - v1->uv[1]));
- VecAddf(Ps, Ps, tmp);
-
- VecCopyf(tmp, v3->co);
- VecMulf(tmp, (v1->uv[1] - v2->uv[1]));
- VecAddf(Ps, Ps, tmp);
-
- VecMulf(Ps, w);
-
- VecCopyf(Pt, v1->co);
- VecMulf(Pt, (v3->uv[0] - v2->uv[0]));
-
- VecCopyf(tmp, v2->co);
- VecMulf(tmp, (v1->uv[0] - v3->uv[0]));
- VecAddf(Pt, Pt, tmp);
-
- VecCopyf(tmp, v3->co);
- VecMulf(tmp, (v2->uv[0] - v1->uv[0]));
- VecAddf(Pt, Pt, tmp);
-
- VecMulf(Pt, w);
-
- /* Sander Tensor */
- a= Inpf(Ps, Ps);
- c= Inpf(Pt, Pt);
-
- T = sqrt(0.5f*(a + c));
- if (f->flag & PFACE_FILLED)
- T *= 0.2;
-
- return T;
-}
-
-static float p_stretch_compute_vertex(PVert *v)
-{
- PEdge *e = v->edge;
- float sum = 0.0f;
-
- do {
- sum += p_face_stretch(e->face);
- e = p_wheel_edge_next(e);
- } while (e && e != (v->edge));
-
- return sum;
-}
-
-static void p_chart_stretch_minimize(PChart *chart, RNG *rng)
-{
- PVert *v;
- PEdge *e;
- int j, nedges;
- float orig_stretch, low, stretch_low, high, stretch_high, mid, stretch;
- float orig_uv[2], dir[2], random_angle, trusted_radius;
-
- for(v=chart->verts; v; v=v->nextlink) {
- if((v->flag & PVERT_PIN) || !(v->flag & PVERT_SELECT))
- continue;
-
- orig_stretch = p_stretch_compute_vertex(v);
- orig_uv[0] = v->uv[0];
- orig_uv[1] = v->uv[1];
-
- /* move vertex in a random direction */
- trusted_radius = 0.0f;
- nedges = 0;
- e = v->edge;
-
- do {
- trusted_radius += p_edge_uv_length(e);
- nedges++;
-
- e = p_wheel_edge_next(e);
- } while (e && e != (v->edge));
-
- trusted_radius /= 2 * nedges;
-
- random_angle = rng_getFloat(rng) * 2.0 * M_PI;
- dir[0] = trusted_radius * cos(random_angle);
- dir[1] = trusted_radius * sin(random_angle);
-
- /* calculate old and new stretch */
- low = 0;
- stretch_low = orig_stretch;
-
- Vec2Addf(v->uv, orig_uv, dir);
- high = 1;
- stretch = stretch_high = p_stretch_compute_vertex(v);
-
- /* binary search for lowest stretch position */
- for (j = 0; j < P_STRETCH_ITER; j++) {
- mid = 0.5 * (low + high);
- v->uv[0]= orig_uv[0] + mid*dir[0];
- v->uv[1]= orig_uv[1] + mid*dir[1];
- stretch = p_stretch_compute_vertex(v);
-
- if (stretch_low < stretch_high) {
- high = mid;
- stretch_high = stretch;
- }
- else {
- low = mid;
- stretch_low = stretch;
- }
- }
-
- /* no luck, stretch has increased, reset to old values */
- if(stretch >= orig_stretch)
- Vec2Copyf(v->uv, orig_uv);
- }
-}
-
-/* Minimum area enclosing rectangle for packing */
-
-static int p_compare_geometric_uv(const void *a, const void *b)
-{
- PVert *v1 = *(PVert**)a;
- PVert *v2 = *(PVert**)b;
-
- if (v1->uv[0] < v2->uv[0])
- return -1;
- else if (v1->uv[0] == v2->uv[0]) {
- if (v1->uv[1] < v2->uv[1])
- return -1;
- else if (v1->uv[1] == v2->uv[1])
- return 0;
- else
- return 1;
- }
- else
- return 1;
-}
-
-static PBool p_chart_convex_hull(PChart *chart, PVert ***verts, int *nverts, int *right)
-{
- /* Graham algorithm, taken from:
- * http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/117225 */
-
- PEdge *be, *e;
- int npoints = 0, i, ulen, llen;
- PVert **U, **L, **points, **p;
-
- p_chart_boundaries(chart, NULL, &be);
-
- if (!be)
- return P_FALSE;
-
- e = be;
- do {
- npoints++;
- e = p_boundary_edge_next(e);
- } while(e != be);
-
- p = points = (PVert**)MEM_mallocN(sizeof(PVert*)*npoints*2, "PCHullpoints");
- U = (PVert**)MEM_mallocN(sizeof(PVert*)*npoints, "PCHullU");
- L = (PVert**)MEM_mallocN(sizeof(PVert*)*npoints, "PCHullL");
-
- e = be;
- do {
- *p = e->vert;
- p++;
- e = p_boundary_edge_next(e);
- } while(e != be);
-
- qsort(points, npoints, sizeof(PVert*), p_compare_geometric_uv);
-
- ulen = llen = 0;
- for (p=points, i = 0; i < npoints; i++, p++) {
- while ((ulen > 1) && (p_area_signed(U[ulen-2]->uv, (*p)->uv, U[ulen-1]->uv) <= 0))
- ulen--;
- while ((llen > 1) && (p_area_signed(L[llen-2]->uv, (*p)->uv, L[llen-1]->uv) >= 0))
- llen--;
-
- U[ulen] = *p;
- ulen++;
- L[llen] = *p;
- llen++;
- }
-
- npoints = 0;
- for (p=points, i = 0; i < ulen; i++, p++, npoints++)
- *p = U[i];
-
- /* the first and last point in L are left out, since they are also in U */
- for (i = llen-2; i > 0; i--, p++, npoints++)
- *p = L[i];
-
- *verts = points;
- *nverts = npoints;
- *right = ulen - 1;
-
- MEM_freeN(U);
- MEM_freeN(L);
-
- return P_TRUE;
-}
-
-static float p_rectangle_area(float *p1, float *dir, float *p2, float *p3, float *p4)
-{
- /* given 4 points on the rectangle edges and the direction of on edge,
- compute the area of the rectangle */
-
- float orthodir[2], corner1[2], corner2[2], corner3[2];
-
- orthodir[0] = dir[1];
- orthodir[1] = -dir[0];
-
- if (!p_intersect_line_2d_dir(p1, dir, p2, orthodir, corner1))
- return 1e10;
-
- if (!p_intersect_line_2d_dir(p1, dir, p4, orthodir, corner2))
- return 1e10;
-
- if (!p_intersect_line_2d_dir(p3, dir, p4, orthodir, corner3))
- return 1e10;
-
- return Vec2Lenf(corner1, corner2)*Vec2Lenf(corner2, corner3);
-}
-
-static float p_chart_minimum_area_angle(PChart *chart)
-{
- /* minimum area enclosing rectangle with rotating calipers, info:
- * http://cgm.cs.mcgill.ca/~orm/maer.html */
-
- float rotated, minarea, minangle, area, len;
- float *angles, miny, maxy, v[2], a[4], mina;
- int npoints, right, mini, maxi, i, idx[4], nextidx;
- PVert **points, *p1, *p2, *p3, *p4, *p1n;
-
- /* compute convex hull */
- if (!p_chart_convex_hull(chart, &points, &npoints, &right))
- return 0.0;
-
- /* find left/top/right/bottom points, and compute angle for each point */
- angles = MEM_mallocN(sizeof(float)*npoints, "PMinAreaAngles");
-
- mini = maxi = 0;
- miny = 1e10;
- maxy = -1e10;
-
- for (i = 0; i < npoints; i++) {
- p1 = (i == 0)? points[npoints-1]: points[i-1];
- p2 = points[i];
- p3 = (i == npoints-1)? points[0]: points[i+1];
-
- angles[i] = M_PI - p_vec2_angle(p1->uv, p2->uv, p3->uv);
-
- if (points[i]->uv[1] < miny) {
- miny = points[i]->uv[1];
- mini = i;
- }
- if (points[i]->uv[1] > maxy) {
- maxy = points[i]->uv[1];
- maxi = i;
- }
- }
-
- /* left, top, right, bottom */
- idx[0] = 0;
- idx[1] = maxi;
- idx[2] = right;
- idx[3] = mini;
-
- v[0] = points[idx[0]]->uv[0];
- v[1] = points[idx[0]]->uv[1] + 1.0f;
- a[0] = p_vec2_angle(points[(idx[0]+1)%npoints]->uv, points[idx[0]]->uv, v);
-
- v[0] = points[idx[1]]->uv[0] + 1.0f;
- v[1] = points[idx[1]]->uv[1];
- a[1] = p_vec2_angle(points[(idx[1]+1)%npoints]->uv, points[idx[1]]->uv, v);
-
- v[0] = points[idx[2]]->uv[0];
- v[1] = points[idx[2]]->uv[1] - 1.0f;
- a[2] = p_vec2_angle(points[(idx[2]+1)%npoints]->uv, points[idx[2]]->uv, v);
-
- v[0] = points[idx[3]]->uv[0] - 1.0f;
- v[1] = points[idx[3]]->uv[1];
- a[3] = p_vec2_angle(points[(idx[3]+1)%npoints]->uv, points[idx[3]]->uv, v);
-
- /* 4 rotating calipers */
-
- rotated = 0.0;
- minarea = 1e10;
- minangle = 0.0;
-
- while (rotated <= M_PI/2) { /* INVESTIGATE: how far to rotate? */
- /* rotate with the smallest angle */
- mini = 0;
- mina = 1e10;
-
- for (i = 0; i < 4; i++)
- if (a[i] < mina) {
- mina = a[i];
- mini = i;
- }
-
- rotated += mina;
- nextidx = (idx[mini]+1)%npoints;
-
- a[mini] = angles[nextidx];
- a[(mini+1)%4] = a[(mini+1)%4] - mina;
- a[(mini+2)%4] = a[(mini+2)%4] - mina;
- a[(mini+3)%4] = a[(mini+3)%4] - mina;
-
- /* compute area */
- p1 = points[idx[mini]];
- p1n = points[nextidx];
- p2 = points[idx[(mini+1)%4]];
- p3 = points[idx[(mini+2)%4]];
- p4 = points[idx[(mini+3)%4]];
-
- len = Vec2Lenf(p1->uv, p1n->uv);
-
- if (len > 0.0f) {
- len = 1.0/len;
- v[0] = (p1n->uv[0] - p1->uv[0])*len;
- v[1] = (p1n->uv[1] - p1->uv[1])*len;
-
- area = p_rectangle_area(p1->uv, v, p2->uv, p3->uv, p4->uv);
-
- /* remember smallest area */
- if (area < minarea) {
- minarea = area;
- minangle = rotated;
- }
- }
-
- idx[mini] = nextidx;
- }
-
- /* try keeping rotation as small as possible */
- if (minangle > M_PI/4)
- minangle -= M_PI/2;
-
- MEM_freeN(angles);
- MEM_freeN(points);
-
- return minangle;
-}
-
-static void p_chart_rotate_minimum_area(PChart *chart)
-{
- float angle = p_chart_minimum_area_angle(chart);
- float sine = sin(angle);
- float cosine = cos(angle);
- PVert *v;
-
- for (v = chart->verts; v; v=v->nextlink) {
- float oldu = v->uv[0], oldv = v->uv[1];
- v->uv[0] = cosine*oldu - sine*oldv;
- v->uv[1] = sine*oldu + cosine*oldv;
- }
-}
-
-/* Area Smoothing */
-
-/* 2d bsp tree for inverse mapping - that's a bit silly */
-
-typedef struct SmoothTriangle {
- float co1[2], co2[2], co3[2];
- float oco1[2], oco2[2], oco3[2];
-} SmoothTriangle;
-
-typedef struct SmoothNode {
- struct SmoothNode *c1, *c2;
- SmoothTriangle **tri;
- float split;
- int axis, ntri;
-} SmoothNode;
-
-static void p_barycentric_2d(float *v1, float *v2, float *v3, float *p, float *b)
-{
- float a[2], c[2], h[2], div;
-
- a[0] = v2[0] - v1[0];
- a[1] = v2[1] - v1[1];
- c[0] = v3[0] - v1[0];
- c[1] = v3[1] - v1[1];
-
- div = a[0]*c[1] - a[1]*c[0];
-
- if (div == 0.0f) {
- b[0] = 1.0f/3.0f;
- b[1] = 1.0f/3.0f;
- b[2] = 1.0f/3.0f;
- }
- else {
- h[0] = p[0] - v1[0];
- h[1] = p[1] - v1[1];
-
- div = 1.0f/div;
-
- b[1] = (h[0]*c[1] - h[1]*c[0])*div;
- b[2] = (a[0]*h[1] - a[1]*h[0])*div;
- b[0] = 1.0 - b[1] - b[2];
- }
-}
-
-static PBool p_triangle_inside(SmoothTriangle *t, float *co)
-{
- float b[3];
-
- p_barycentric_2d(t->co1, t->co2, t->co3, co, b);
-
- if ((b[0] >= 0.0) && (b[1] >= 0.0) && (b[2] >= 0.0f)) {
- co[0] = t->oco1[0]*b[0] + t->oco2[0]*b[1] + t->oco3[0]*b[2];
- co[1] = t->oco1[1]*b[0] + t->oco2[1]*b[1] + t->oco3[1]*b[2];
- return P_TRUE;
- }
-
- return P_FALSE;
-}
-
-static SmoothNode *p_node_new(MemArena *arena, SmoothTriangle **tri, int ntri, float *bmin, float *bmax, int depth)
-{
- SmoothNode *node = BLI_memarena_alloc(arena, sizeof *node);
- int axis, i, t1size = 0, t2size = 0;
- float split, mi, mx;
- SmoothTriangle **t1, **t2, *t;
-
- node->tri = tri;
- node->ntri = ntri;
-
- if (ntri <= 10 || depth >= 15)
- return node;
-
- t1 = MEM_mallocN(sizeof(SmoothTriangle)*ntri, "PNodeTri1");
- t2 = MEM_mallocN(sizeof(SmoothTriangle)*ntri, "PNodeTri1");
-
- axis = (bmax[0] - bmin[0] > bmax[1] - bmin[1])? 0: 1;
- split = 0.5f*(bmin[axis] + bmax[axis]);
-
- for (i = 0; i < ntri; i++) {
- t = tri[i];
-
- if ((t->co1[axis] <= split) || (t->co2[axis] <= split) || (t->co3[axis] <= split)) {
- t1[t1size] = t;
- t1size++;
- }
- if ((t->co1[axis] >= split) || (t->co2[axis] >= split) || (t->co3[axis] >= split)) {
- t2[t2size] = t;
- t2size++;
- }
- }
-
- if ((t1size == t2size) && (t1size == ntri)) {
- MEM_freeN(t1);
- MEM_freeN(t2);
- return node;
- }
-
- node->tri = NULL;
- node->ntri = 0;
- MEM_freeN(tri);
-
- node->axis = axis;
- node->split = split;
-
- mi = bmin[axis];
- mx = bmax[axis];
- bmax[axis] = split;
- node->c1 = p_node_new(arena, t1, t1size, bmin, bmax, depth+1);
-
- bmin[axis] = bmax[axis];
- bmax[axis] = mx;
- node->c2 = p_node_new(arena, t2, t2size, bmin, bmax, depth+1);
-
- return node;
-}
-
-static void p_node_delete(SmoothNode *node)
-{
- if (node->c1)
- p_node_delete(node->c1);
- if (node->c2)
- p_node_delete(node->c2);
- if (node->tri)
- MEM_freeN(node->tri);
-}
-
-static PBool p_node_intersect(SmoothNode *node, float *co)
-{
- int i;
-
- if (node->tri) {
- for (i = 0; i < node->ntri; i++)
- if (p_triangle_inside(node->tri[i], co))
- return P_TRUE;
-
- return P_FALSE;
- }
- else {
- if (co[node->axis] < node->split)
- return p_node_intersect(node->c1, co);
- else
- return p_node_intersect(node->c2, co);
- }
-
-}
-
-/* smooothing */
-
-static int p_compare_float(const void *a, const void *b)
-{
- if (*((float*)a) < *((float*)b))
- return -1;
- else if (*((float*)a) == *((float*)b))
- return 0;
- else
- return 1;
-}
-
-static float p_smooth_median_edge_length(PChart *chart)
-{
- PEdge *e;
- float *lengths = MEM_mallocN(sizeof(chart->edges)*chart->nedges, "PMedianLength");
- float median;
- int i;
-
- /* ok, so i'm lazy */
- for (i=0, e=chart->edges; e; e=e->nextlink, i++)
- lengths[i] = p_edge_length(e);
-
- qsort(lengths, i, sizeof(float), p_compare_float);
-
- median = lengths[i/2];
- MEM_freeN(lengths);
-
- return median;
-}
-
-static float p_smooth_distortion(PEdge *e, float avg2d, float avg3d)
-{
- float len2d = p_edge_uv_length(e)*avg3d;
- float len3d = p_edge_length(e)*avg2d;
-
- return (len3d == 0.0f)? 0.0f: len2d/len3d;
-}
-
-static void p_smooth(PChart *chart)
-{
- PEdge *e;
- PVert *v;
- PFace *f;
- int j, it2, maxiter2, it;
- int nedges = chart->nedges, nwheel, gridx, gridy;
- int edgesx, edgesy, nsize, esize, i, x, y, maxiter, totiter;
- float minv[2], maxv[2], median, invmedian, distortion, avglen2d, avglen3d;
- float center[2], dx, dy, *nodes, dlimit, d, *oldnodesx, *oldnodesy;
- float *nodesx, *nodesy, *hedges, *vedges, climit, moved, padding;
- SmoothTriangle *triangles, *t, *t2, **tri, **trip;
- SmoothNode *root;
- MemArena *arena;
-
- if (nedges == 0)
- return;
-
- p_chart_uv_bbox(chart, minv, maxv);
- median = p_smooth_median_edge_length(chart)*0.10f;
-
- if (median == 0.0)
- return;
-
- invmedian = 1.0/median;
-
- /* compute edge distortion */
- distortion = 0.0;
- avglen2d = avglen3d = 0.0;
-
- for (e=chart->edges; e; e=e->nextlink) {
- avglen2d += p_edge_uv_length(e);
- avglen3d += p_edge_length(e);
- }
-
- avglen2d /= nedges;
- avglen3d /= nedges;
-
- for (v=chart->verts; v; v=v->nextlink) {
- v->u.distortion = 0.0;
- nwheel = 0;
-
- e = v->edge;
- do {
- v->u.distortion += p_smooth_distortion(e, avglen2d, avglen3d);
- nwheel++;
-
- e = e->next->next->pair;
- } while(e && (e != v->edge));
-
- v->u.distortion /= nwheel;
- }
-
- /* need to do excessive grid size checking still */
- center[0] = 0.5f*(minv[0] + maxv[0]);
- center[1] = 0.5f*(minv[1] + maxv[1]);
-
- dx = 0.5f*(maxv[0] - minv[0]);
- dy = 0.5f*(maxv[1] - minv[1]);
-
- padding = 0.15f;
- dx += padding*dx + 2.0f*median;
- dy += padding*dy + 2.0f*median;
-
- gridx = (int)(dx*invmedian);
- gridy = (int)(dy*invmedian);
-
- minv[0] = center[0] - median*gridx;
- minv[1] = center[1] - median*gridy;
- maxv[0] = center[0] + median*gridx;
- maxv[1] = center[1] + median*gridy;
-
- /* create grid */
- gridx = gridx*2 + 1;
- gridy = gridy*2 + 1;
-
- if ((gridx <= 2) || (gridy <= 2))
- return;
-
- edgesx = gridx-1;
- edgesy = gridy-1;
- nsize = gridx*gridy;
- esize = edgesx*edgesy;
-
- nodes = MEM_mallocN(sizeof(float)*nsize, "PSmoothNodes");
- nodesx = MEM_mallocN(sizeof(float)*nsize, "PSmoothNodesX");
- nodesy = MEM_mallocN(sizeof(float)*nsize, "PSmoothNodesY");
- oldnodesx = MEM_mallocN(sizeof(float)*nsize, "PSmoothOldNodesX");
- oldnodesy = MEM_mallocN(sizeof(float)*nsize, "PSmoothOldNodesY");
- hedges = MEM_mallocN(sizeof(float)*esize, "PSmoothHEdges");
- vedges = MEM_mallocN(sizeof(float)*esize, "PSmoothVEdges");
-
- if (!nodes || !nodesx || !nodesy || !oldnodesx || !oldnodesy || !hedges || !vedges) {
- if (nodes) MEM_freeN(nodes);
- if (nodesx) MEM_freeN(nodesx);
- if (nodesy) MEM_freeN(nodesy);
- if (oldnodesx) MEM_freeN(oldnodesx);
- if (oldnodesy) MEM_freeN(oldnodesy);
- if (hedges) MEM_freeN(hedges);
- if (vedges) MEM_freeN(vedges);
-
- error("Not enough memory for area smoothing grid.");
- return;
- }
-
- for (x = 0; x < gridx; x++) {
- for (y = 0; y < gridy; y++) {
- i = x + y*gridx;
-
- nodesx[i] = minv[0] + median*x;
- nodesy[i] = minv[1] + median*y;
-
- nodes[i] = 1.0f;
- }
- }
-
- /* embed in grid */
- for (f=chart->faces; f; f=f->nextlink) {
- PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
- float fmin[2], fmax[2];
- int bx1, by1, bx2, by2;
-
- INIT_MINMAX2(fmin, fmax);
-
- DO_MINMAX2(e1->vert->uv, fmin, fmax);
- DO_MINMAX2(e2->vert->uv, fmin, fmax);
- DO_MINMAX2(e3->vert->uv, fmin, fmax);
-
- bx1 = (int)((fmin[0] - minv[0])*invmedian);
- by1 = (int)((fmin[1] - minv[1])*invmedian);
- bx2 = (int)((fmax[0] - minv[0])*invmedian + 2);
- by2 = (int)((fmax[1] - minv[1])*invmedian + 2);
-
- for (x = bx1; x < bx2; x++) {
- for (y = by1; y < by2; y++) {
- float p[2], b[3];
-
- i = x + y*gridx;
-
- p[0] = nodesx[i];
- p[1] = nodesy[i];
-
- p_barycentric_2d(e1->vert->uv, e2->vert->uv, e3->vert->uv, p, b);
-
- if ((b[0] > 0.0) && (b[1] > 0.0) && (b[2] > 0.0)) {
- nodes[i] = e1->vert->u.distortion*b[0];
- nodes[i] += e2->vert->u.distortion*b[1];
- nodes[i] += e3->vert->u.distortion*b[2];
- }
- }
- }
- }
-
- /* smooth the grid */
- maxiter = 10;
- totiter = 0;
- climit = 0.00001f*nsize;
-
- for (it = 0; it < maxiter; it++) {
- moved = 0.0f;
-
- for (x = 0; x < edgesx; x++) {
- for (y = 0; y < edgesy; y++) {
- i = x + y*gridx;
- j = x + y*edgesx;
-
- hedges[j] = (nodes[i] + nodes[i+1])*0.5f;
- vedges[j] = (nodes[i] + nodes[i+gridx])*0.5f;
-
- /* we do *inverse* mapping */
- hedges[j] = 1.0f/hedges[j];
- vedges[j] = 1.0f/vedges[j];
- }
- }
-
- maxiter2 = 50;
- dlimit = 0.0001f;
-
- for (it2 = 0; it2 < maxiter2; it2++) {
- d = 0.0f;
- totiter += 1;
-
- memcpy(oldnodesx, nodesx, sizeof(float)*nsize);
- memcpy(oldnodesy, nodesy, sizeof(float)*nsize);
-
- for (x=1; x < gridx-1; x++) {
- for (y=1; y < gridy-1; y++) {
- float p[2], oldp[2], sum1, sum2, diff[2], length;
-
- i = x + gridx*y;
- j = x + edgesx*y;
-
- oldp[0] = oldnodesx[i];
- oldp[1] = oldnodesy[i];
-
- sum1 = hedges[j-1]*oldnodesx[i-1];
- sum1 += hedges[j]*oldnodesx[i+1];
- sum1 += vedges[j-edgesx]*oldnodesx[i-gridx];
- sum1 += vedges[j]*oldnodesx[i+gridx];
-
- sum2 = hedges[j-1];
- sum2 += hedges[j];
- sum2 += vedges[j-edgesx];
- sum2 += vedges[j];
-
- nodesx[i] = sum1/sum2;
-
- sum1 = hedges[j-1]*oldnodesy[i-1];
- sum1 += hedges[j]*oldnodesy[i+1];
- sum1 += vedges[j-edgesx]*oldnodesy[i-gridx];
- sum1 += vedges[j]*oldnodesy[i+gridx];
-
- nodesy[i] = sum1/sum2;
-
- p[0] = nodesx[i];
- p[1] = nodesy[i];
-
- diff[0] = p[0] - oldp[0];
- diff[1] = p[1] - oldp[1];
-
- length = sqrt(diff[0]*diff[0] + diff[1]*diff[1]);
- d = MAX2(d, length);
- moved += length;
- }
- }
-
- if (d < dlimit)
- break;
- }
-
- if (moved < climit)
- break;
- }
-
- MEM_freeN(oldnodesx);
- MEM_freeN(oldnodesy);
- MEM_freeN(hedges);
- MEM_freeN(vedges);
-
- /* create bsp */
- t = triangles = MEM_mallocN(sizeof(SmoothTriangle)*esize*2, "PSmoothTris");
- trip = tri = MEM_mallocN(sizeof(SmoothTriangle*)*esize*2, "PSmoothTriP");
-
- if (!triangles || !tri) {
- MEM_freeN(nodes);
- MEM_freeN(nodesx);
- MEM_freeN(nodesy);
-
- if (triangles) MEM_freeN(triangles);
- if (tri) MEM_freeN(tri);
-
- error("Not enough memory for area smoothing grid.");
- return;
- }
-
- for (x = 0; x < edgesx; x++) {
- for (y = 0; y < edgesy; y++) {
- i = x + y*gridx;
-
- t->co1[0] = nodesx[i];
- t->co1[1] = nodesy[i];
-
- t->co2[0] = nodesx[i+1];
- t->co2[1] = nodesy[i+1];
-
- t->co3[0] = nodesx[i+gridx];
- t->co3[1] = nodesy[i+gridx];
-
- t->oco1[0] = minv[0] + x*median;
- t->oco1[1] = minv[1] + y*median;
-
- t->oco2[0] = minv[0] + (x+1)*median;
- t->oco2[1] = minv[1] + y*median;
-
- t->oco3[0] = minv[0] + x*median;
- t->oco3[1] = minv[1] + (y+1)*median;
-
- t2 = t+1;
-
- t2->co1[0] = nodesx[i+gridx+1];
- t2->co1[1] = nodesy[i+gridx+1];
-
- t2->oco1[0] = minv[0] + (x+1)*median;
- t2->oco1[1] = minv[1] + (y+1)*median;
-
- t2->co2[0] = t->co2[0]; t2->co2[1] = t->co2[1];
- t2->oco2[0] = t->oco2[0]; t2->oco2[1] = t->oco2[1];
-
- t2->co3[0] = t->co3[0]; t2->co3[1] = t->co3[1];
- t2->oco3[0] = t->oco3[0]; t2->oco3[1] = t->oco3[1];
-
- *trip = t; trip++; t++;
- *trip = t; trip++; t++;
- }
- }
-
- MEM_freeN(nodes);
- MEM_freeN(nodesx);
- MEM_freeN(nodesy);
-
- arena = BLI_memarena_new(1<<16);
- root = p_node_new(arena, tri, esize*2, minv, maxv, 0);
-
- for (v=chart->verts; v; v=v->nextlink)
- if (!p_node_intersect(root, v->uv))
- param_warning("area smoothing error: couldn't find mapping triangle\n");
-
- p_node_delete(root);
- BLI_memarena_free(arena);
-
- MEM_freeN(triangles);
-}
-
-/* Exported */
-
-ParamHandle *param_construct_begin()
-{
- PHandle *handle = MEM_callocN(sizeof*handle, "PHandle");
- handle->construction_chart = p_chart_new(handle);
- handle->state = PHANDLE_STATE_ALLOCATED;
- handle->arena = BLI_memarena_new((1<<16));
- handle->aspx = 1.0f;
- handle->aspy = 1.0f;
-
- handle->hash_verts = phash_new((PHashLink**)&handle->construction_chart->verts, 1);
- handle->hash_edges = phash_new((PHashLink**)&handle->construction_chart->edges, 1);
- handle->hash_faces = phash_new((PHashLink**)&handle->construction_chart->faces, 1);
-
- return (ParamHandle*)handle;
-}
-
-void param_aspect_ratio(ParamHandle *handle, float aspx, float aspy)
-{
- PHandle *phandle = (PHandle*)handle;
-
- phandle->aspx = aspx;
- phandle->aspy = aspy;
-}
-
-void param_delete(ParamHandle *handle)
-{
- PHandle *phandle = (PHandle*)handle;
- int i;
-
- param_assert((phandle->state == PHANDLE_STATE_ALLOCATED) ||
- (phandle->state == PHANDLE_STATE_CONSTRUCTED));
-
- for (i = 0; i < phandle->ncharts; i++)
- p_chart_delete(phandle->charts[i]);
-
- if (phandle->charts)
- MEM_freeN(phandle->charts);
-
- if (phandle->construction_chart) {
- p_chart_delete(phandle->construction_chart);
-
- phash_delete(phandle->hash_verts);
- phash_delete(phandle->hash_edges);
- phash_delete(phandle->hash_faces);
- }
-
- BLI_memarena_free(phandle->arena);
- MEM_freeN(phandle);
-}
-
-void param_face_add(ParamHandle *handle, ParamKey key, int nverts,
- ParamKey *vkeys, float **co, float **uv,
- ParamBool *pin, ParamBool *select)
-{
- PHandle *phandle = (PHandle*)handle;
-
- param_assert(phash_lookup(phandle->hash_faces, key) == NULL);
- param_assert(phandle->state == PHANDLE_STATE_ALLOCATED);
- param_assert((nverts == 3) || (nverts == 4));
-
- if (nverts == 4) {
- if (p_quad_split_direction(phandle, co, vkeys)) {
- p_face_add_construct(phandle, key, vkeys, co, uv, 0, 1, 2, pin, select);
- p_face_add_construct(phandle, key, vkeys, co, uv, 0, 2, 3, pin, select);
- }
- else {
- p_face_add_construct(phandle, key, vkeys, co, uv, 0, 1, 3, pin, select);
- p_face_add_construct(phandle, key, vkeys, co, uv, 1, 2, 3, pin, select);
- }
- }
- else
- p_face_add_construct(phandle, key, vkeys, co, uv, 0, 1, 2, pin, select);
-}
-
-void param_edge_set_seam(ParamHandle *handle, ParamKey *vkeys)
-{
- PHandle *phandle = (PHandle*)handle;
- PEdge *e;
-
- param_assert(phandle->state == PHANDLE_STATE_ALLOCATED);
-
- e = p_edge_lookup(phandle, vkeys);
- if (e)
- e->flag |= PEDGE_SEAM;
-}
-
-void param_construct_end(ParamHandle *handle, ParamBool fill, ParamBool impl)
-{
- PHandle *phandle = (PHandle*)handle;
- PChart *chart = phandle->construction_chart;
- int i, j, nboundaries = 0;
- PEdge *outer;
-
- param_assert(phandle->state == PHANDLE_STATE_ALLOCATED);
-
- phandle->ncharts = p_connect_pairs(phandle, impl);
- phandle->charts = p_split_charts(phandle, chart, phandle->ncharts);
-
- p_chart_delete(phandle->construction_chart);
- phandle->construction_chart = NULL;
-
- phash_delete(phandle->hash_verts);
- phash_delete(phandle->hash_edges);
- phash_delete(phandle->hash_faces);
- phandle->hash_verts = phandle->hash_edges = phandle->hash_faces = NULL;
-
- for (i = j = 0; i < phandle->ncharts; i++) {
- PVert *v;
- chart = phandle->charts[i];
-
- p_chart_boundaries(chart, &nboundaries, &outer);
-
- if (!impl && nboundaries == 0) {
- p_chart_delete(chart);
- continue;
- }
-
- phandle->charts[j] = chart;
- j++;
-
- if (fill && (nboundaries > 1))
- p_chart_fill_boundaries(chart, outer);
-
- for (v=chart->verts; v; v=v->nextlink)
- p_vert_load_pin_select_uvs(handle, v);
- }
-
- phandle->ncharts = j;
-
- phandle->state = PHANDLE_STATE_CONSTRUCTED;
-}
-
-void param_lscm_begin(ParamHandle *handle, ParamBool live, ParamBool abf)
-{
- PHandle *phandle = (PHandle*)handle;
- PFace *f;
- int i;
-
- param_assert(phandle->state == PHANDLE_STATE_CONSTRUCTED);
- phandle->state = PHANDLE_STATE_LSCM;
-
- for (i = 0; i < phandle->ncharts; i++) {
- for (f=phandle->charts[i]->faces; f; f=f->nextlink)
- p_face_backup_uvs(f);
- p_chart_lscm_begin(phandle->charts[i], live, abf);
- }
-}
-
-void param_lscm_solve(ParamHandle *handle)
-{
- PHandle *phandle = (PHandle*)handle;
- PChart *chart;
- int i;
- PBool result;
-
- param_assert(phandle->state == PHANDLE_STATE_LSCM);
-
- for (i = 0; i < phandle->ncharts; i++) {
- chart = phandle->charts[i];
-
- if (chart->u.lscm.context) {
- result = p_chart_lscm_solve(phandle, chart);
-
- if (result && !(chart->flag & PCHART_NOPACK))
- p_chart_rotate_minimum_area(chart);
-
- if (!result || (chart->u.lscm.pin1))
- p_chart_lscm_end(chart);
- }
- }
-}
-
-void param_lscm_end(ParamHandle *handle)
-{
- PHandle *phandle = (PHandle*)handle;
- int i;
-
- param_assert(phandle->state == PHANDLE_STATE_LSCM);
-
- for (i = 0; i < phandle->ncharts; i++) {
- p_chart_lscm_end(phandle->charts[i]);
-#if 0
- p_chart_complexify(phandle->charts[i]);
-#endif
- }
-
- phandle->state = PHANDLE_STATE_CONSTRUCTED;
-}
-
-void param_stretch_begin(ParamHandle *handle)
-{
- PHandle *phandle = (PHandle*)handle;
- PChart *chart;
- PVert *v;
- PFace *f;
- int i;
-
- param_assert(phandle->state == PHANDLE_STATE_CONSTRUCTED);
- phandle->state = PHANDLE_STATE_STRETCH;
-
- phandle->rng = rng_new(31415926);
- phandle->blend = 0.0f;
-
- for (i = 0; i < phandle->ncharts; i++) {
- chart = phandle->charts[i];
-
- for (v=chart->verts; v; v=v->nextlink)
- v->flag &= ~PVERT_PIN; /* don't use user-defined pins */
-
- p_stretch_pin_boundary(chart);
-
- for (f=chart->faces; f; f=f->nextlink) {
- p_face_backup_uvs(f);
- f->u.area3d = p_face_area(f);
- }
- }
-}
-
-void param_stretch_blend(ParamHandle *handle, float blend)
-{
- PHandle *phandle = (PHandle*)handle;
-
- param_assert(phandle->state == PHANDLE_STATE_STRETCH);
- phandle->blend = blend;
-}
-
-void param_stretch_iter(ParamHandle *handle)
-{
- PHandle *phandle = (PHandle*)handle;
- PChart *chart;
- int i;
-
- param_assert(phandle->state == PHANDLE_STATE_STRETCH);
-
- for (i = 0; i < phandle->ncharts; i++) {
- chart = phandle->charts[i];
- p_chart_stretch_minimize(chart, phandle->rng);
- }
-}
-
-void param_stretch_end(ParamHandle *handle)
-{
- PHandle *phandle = (PHandle*)handle;
-
- param_assert(phandle->state == PHANDLE_STATE_STRETCH);
- phandle->state = PHANDLE_STATE_CONSTRUCTED;
-
- rng_free(phandle->rng);
- phandle->rng = NULL;
-}
-
-void param_smooth_area(ParamHandle *handle)
-{
- PHandle *phandle = (PHandle*)handle;
- int i;
-
- param_assert(phandle->state == PHANDLE_STATE_CONSTRUCTED);
-
- for (i = 0; i < phandle->ncharts; i++) {
- PChart *chart = phandle->charts[i];
- PVert *v;
-
- for (v=chart->verts; v; v=v->nextlink)
- v->flag &= ~PVERT_PIN;
-
- p_smooth(chart);
- }
-}
-
-void param_pack(ParamHandle *handle, float margin)
-{
- /* box packing variables */
- boxPack *boxarray, *box;
- float tot_width, tot_height, scale;
-
- PChart *chart;
- int i, unpacked=0;
- float trans[2];
- double area= 0.0;
-
- PHandle *phandle = (PHandle*)handle;
-
- if (phandle->ncharts == 0)
- return;
-
- if(phandle->aspx != phandle->aspy)
- param_scale(handle, 1.0f/phandle->aspx, 1.0f/phandle->aspy);
-
- /* we may not use all these boxes */
- boxarray = MEM_mallocN( phandle->ncharts*sizeof(boxPack), "boxPack box");
-
-
- for (i = 0; i < phandle->ncharts; i++) {
- chart = phandle->charts[i];
-
- if (chart->flag & PCHART_NOPACK) {
- unpacked++;
- continue;
- }
-
- box = boxarray+(i-unpacked);
-
- p_chart_uv_bbox(chart, trans, chart->u.pack.size);
-
- trans[0] = -trans[0];
- trans[1] = -trans[1];
-
- p_chart_uv_translate(chart, trans);
-
- box->w = chart->u.pack.size[0] + trans[0];
- box->h = chart->u.pack.size[1] + trans[1];
- box->index = i; /* warning this index skips PCHART_NOPACK boxes */
-
- if(margin>0.0f)
- area += sqrt(box->w*box->h);
- }
-
- if(margin>0.0f) {
- /* multiply the margin by the area to give pradictable results not dependant on UV scale,
- * ...Without using the area running pack multiple times also gives a bad feedback loop.
- * multiply by 0.1 so the margin value from the UI can be from 0.0 to 1.0 but not give a massive margin */
- margin = (margin*(float)area) * 0.1;
- unpacked= 0;
- for (i = 0; i < phandle->ncharts; i++) {
- chart = phandle->charts[i];
-
- if (chart->flag & PCHART_NOPACK) {
- unpacked++;
- continue;
- }
-
- box = boxarray+(i-unpacked);
- trans[0] = margin * area;
- trans[1] = margin * area;
- p_chart_uv_translate(chart, trans);
- box->w += (margin * area) *2;
- box->h += (margin * area) *2;
- }
- }
-
- boxPack2D(boxarray, phandle->ncharts-unpacked, &tot_width, &tot_height);
-
- if (tot_height>tot_width)
- scale = 1.0/tot_height;
- else
- scale = 1.0/tot_width;
-
- for (i = 0; i < phandle->ncharts-unpacked; i++) {
- box = boxarray+i;
- trans[0] = box->x;
- trans[1] = box->y;
-
- chart = phandle->charts[box->index];
- p_chart_uv_translate(chart, trans);
- p_chart_uv_scale(chart, scale);
- }
- MEM_freeN(boxarray);
-
- if(phandle->aspx != phandle->aspy)
- param_scale(handle, phandle->aspx, phandle->aspy);
-}
-
-void param_average(ParamHandle *handle)
-{
- PChart *chart;
- int i;
- float tot_uvarea = 0.0f, tot_facearea = 0.0f;
- float tot_fac, fac;
- float minv[2], maxv[2], trans[2];
- PHandle *phandle = (PHandle*)handle;
-
- if (phandle->ncharts == 0)
- return;
-
- for (i = 0; i < phandle->ncharts; i++) {
- PFace *f;
- chart = phandle->charts[i];
-
- chart->u.pack.area = 0.0f; /* 3d area */
- chart->u.pack.rescale = 0.0f; /* UV area, abusing rescale for tmp storage, oh well :/ */
-
- for (f=chart->faces; f; f=f->nextlink) {
- chart->u.pack.area += p_face_area(f);
- chart->u.pack.rescale += fabs(p_face_uv_area_signed(f));
- }
-
- tot_facearea += chart->u.pack.area;
- tot_uvarea += chart->u.pack.rescale;
- }
-
- if (tot_facearea == tot_uvarea || tot_facearea==0.0f || tot_uvarea==0.0f) {
- /* nothing to do */
- return;
- }
-
- tot_fac = tot_facearea/tot_uvarea;
-
- for (i = 0; i < phandle->ncharts; i++) {
- chart = phandle->charts[i];
- if (chart->u.pack.area != 0.0f && chart->u.pack.rescale != 0.0f) {
- fac = chart->u.pack.area / chart->u.pack.rescale;
-
- /* Get the island center */
- p_chart_uv_bbox(chart, minv, maxv);
- trans[0] = (minv[0] + maxv[0]) /-2.0f;
- trans[1] = (minv[1] + maxv[1]) /-2.0f;
-
- /* Move center to 0,0 */
- p_chart_uv_translate(chart, trans);
- p_chart_uv_scale(chart, sqrt(fac / tot_fac));
-
- /* Move to original center */
- trans[0] = -trans[0];
- trans[1] = -trans[1];
- p_chart_uv_translate(chart, trans);
- }
- }
-}
-
-void param_scale(ParamHandle *handle, float x, float y)
-{
- PHandle *phandle = (PHandle*)handle;
- PChart *chart;
- int i;
-
- for (i = 0; i < phandle->ncharts; i++) {
- chart = phandle->charts[i];
- p_chart_uv_scale_xy(chart, x, y);
- }
-}
-
-void param_flush(ParamHandle *handle)
-{
- PHandle *phandle = (PHandle*)handle;
- PChart *chart;
- int i;
-
- for (i = 0; i < phandle->ncharts; i++) {
- chart = phandle->charts[i];
-
- if ((phandle->state == PHANDLE_STATE_LSCM) && !chart->u.lscm.context)
- continue;
-
- if (phandle->blend == 0.0f)
- p_flush_uvs(phandle, chart);
- else
- p_flush_uvs_blend(phandle, chart, phandle->blend);
- }
-}
-
-void param_flush_restore(ParamHandle *handle)
-{
- PHandle *phandle = (PHandle*)handle;
- PChart *chart;
- PFace *f;
- int i;
-
- for (i = 0; i < phandle->ncharts; i++) {
- chart = phandle->charts[i];
-
- for (f=chart->faces; f; f=f->nextlink)
- p_face_restore_uvs(f);
- }
-}
-