Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/gameengine/Ketsji/KX_ObstacleSimulation.cpp')
-rw-r--r--source/gameengine/Ketsji/KX_ObstacleSimulation.cpp832
1 files changed, 0 insertions, 832 deletions
diff --git a/source/gameengine/Ketsji/KX_ObstacleSimulation.cpp b/source/gameengine/Ketsji/KX_ObstacleSimulation.cpp
deleted file mode 100644
index 20d4a517552..00000000000
--- a/source/gameengine/Ketsji/KX_ObstacleSimulation.cpp
+++ /dev/null
@@ -1,832 +0,0 @@
-/*
- * ***** BEGIN GPL LICENSE BLOCK *****
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version 2
- * of the License, or (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
- *
- * Contributor(s): none yet.
- *
- * ***** END GPL LICENSE BLOCK *****
- */
-
-/** \file gameengine/Ketsji/KX_ObstacleSimulation.cpp
- * \ingroup ketsji
- *
- * Simulation for obstacle avoidance behavior
- */
-
-#include "KX_ObstacleSimulation.h"
-#include "KX_NavMeshObject.h"
-#include "KX_PythonInit.h"
-#include "DNA_object_types.h"
-#include "BLI_math.h"
-
-namespace
-{
- inline float perp(const MT_Vector2& a, const MT_Vector2& b) { return a.x()*b.y() - a.y()*b.x(); }
-
- inline float sqr(float x) { return x * x; }
- inline float lerp(float a, float b, float t) { return a + (b - a) * t; }
- inline float clamp(float a, float mn, float mx) { return a < mn ? mn : (a > mx ? mx : a); }
- inline void vset(float v[2], float x, float y) { v[0] = x; v[1] = y; }
-}
-
-/* grr, seems moto provides no nice way to do this */
-#define MT_3D_AS_2D(v) MT_Vector2((v)[0], (v)[1])
-
-static int sweepCircleCircle(
- const MT_Vector2 &pos0, const MT_Scalar r0, const MT_Vector2 &v,
- const MT_Vector2 &pos1, const MT_Scalar r1,
- float& tmin, float& tmax)
-{
- static const float EPS = 0.0001f;
- MT_Vector2 c0(pos0.x(), pos0.y());
- MT_Vector2 c1(pos1.x(), pos1.y());
- MT_Vector2 s = c1 - c0;
- MT_Scalar r = r0+r1;
- float c = s.length2() - r*r;
- float a = v.length2();
- if (a < EPS) return 0; // not moving
-
- // Overlap, calc time to exit.
- float b = MT_dot(v,s);
- float d = b*b - a*c;
- if (d < 0.0f) return 0; // no intersection.
- tmin = (b - sqrtf(d)) / a;
- tmax = (b + sqrtf(d)) / a;
- return 1;
-}
-
-static int sweepCircleSegment(
- const MT_Vector2 &pos0, const MT_Scalar r0, const MT_Vector2 &v,
- const MT_Vector2& pa, const MT_Vector2 &pb, const MT_Scalar sr,
- float& tmin, float &tmax)
-{
- // equation parameters
- MT_Vector2 c0(pos0.x(), pos0.y());
- MT_Vector2 sa(pa.x(), pa.y());
- MT_Vector2 sb(pb.x(), pb.y());
- MT_Vector2 L = sb-sa;
- MT_Vector2 H = c0-sa;
- MT_Scalar radius = r0+sr;
- float l2 = L.length2();
- float r2 = radius * radius;
- float dl = perp(v, L);
- float hl = perp(H, L);
- float a = dl * dl;
- float b = 2.0f * hl * dl;
- float c = hl * hl - (r2 * l2);
- float d = (b*b) - (4.0f * a * c);
-
- // infinite line missed by infinite ray.
- if (d < 0.0f)
- return 0;
-
- d = sqrtf(d);
- tmin = (-b - d) / (2.0f * a);
- tmax = (-b + d) / (2.0f * a);
-
- // line missed by ray range.
- /* if (tmax < 0.0f || tmin > 1.0f)
- return 0;*/
-
- // find what part of the ray was collided.
- MT_Vector2 Pedge;
- Pedge = c0+v*tmin;
- H = Pedge - sa;
- float e0 = MT_dot(H, L) / l2;
- Pedge = c0 + v*tmax;
- H = Pedge - sa;
- float e1 = MT_dot(H, L) / l2;
-
- if (e0 < 0.0f || e1 < 0.0f)
- {
- float ctmin, ctmax;
- if (sweepCircleCircle(pos0, r0, v, pa, sr, ctmin, ctmax))
- {
- if (e0 < 0.0f && ctmin > tmin)
- tmin = ctmin;
- if (e1 < 0.0f && ctmax < tmax)
- tmax = ctmax;
- }
- else
- {
- return 0;
- }
- }
-
- if (e0 > 1.0f || e1 > 1.0f)
- {
- float ctmin, ctmax;
- if (sweepCircleCircle(pos0, r0, v, pb, sr, ctmin, ctmax))
- {
- if (e0 > 1.0f && ctmin > tmin)
- tmin = ctmin;
- if (e1 > 1.0f && ctmax < tmax)
- tmax = ctmax;
- }
- else
- {
- return 0;
- }
- }
-
- return 1;
-}
-
-static bool inBetweenAngle(float a, float amin, float amax, float& t)
-{
- if (amax < amin) amax += (float)M_PI*2;
- if (a < amin-(float)M_PI) a += (float)M_PI*2;
- if (a > amin+(float)M_PI) a -= (float)M_PI*2;
- if (a >= amin && a < amax)
- {
- t = (a-amin) / (amax-amin);
- return true;
- }
- return false;
-}
-
-static float interpolateToi(float a, const float* dir, const float* toi, const int ntoi)
-{
- for (int i = 0; i < ntoi; ++i)
- {
- int next = (i+1) % ntoi;
- float t;
- if (inBetweenAngle(a, dir[i], dir[next], t))
- {
- return lerp(toi[i], toi[next], t);
- }
- }
- return 0;
-}
-
-KX_ObstacleSimulation::KX_ObstacleSimulation(MT_Scalar levelHeight, bool enableVisualization)
-: m_levelHeight(levelHeight)
-, m_enableVisualization(enableVisualization)
-{
-
-}
-
-KX_ObstacleSimulation::~KX_ObstacleSimulation()
-{
- for (size_t i=0; i<m_obstacles.size(); i++)
- {
- KX_Obstacle* obs = m_obstacles[i];
- delete obs;
- }
- m_obstacles.clear();
-}
-KX_Obstacle* KX_ObstacleSimulation::CreateObstacle(KX_GameObject* gameobj)
-{
- KX_Obstacle* obstacle = new KX_Obstacle();
- obstacle->m_gameObj = gameobj;
-
- vset(obstacle->vel, 0,0);
- vset(obstacle->pvel, 0,0);
- vset(obstacle->dvel, 0,0);
- vset(obstacle->nvel, 0,0);
- for (int i = 0; i < VEL_HIST_SIZE; ++i)
- vset(&obstacle->hvel[i*2], 0,0);
- obstacle->hhead = 0;
-
- gameobj->RegisterObstacle(this);
- m_obstacles.push_back(obstacle);
- return obstacle;
-}
-
-void KX_ObstacleSimulation::AddObstacleForObj(KX_GameObject* gameobj)
-{
- KX_Obstacle* obstacle = CreateObstacle(gameobj);
- struct Object* blenderobject = gameobj->GetBlenderObject();
- obstacle->m_type = KX_OBSTACLE_OBJ;
- obstacle->m_shape = KX_OBSTACLE_CIRCLE;
- obstacle->m_rad = blenderobject->obstacleRad;
-}
-
-void KX_ObstacleSimulation::AddObstaclesForNavMesh(KX_NavMeshObject* navmeshobj)
-{
- dtStatNavMesh* navmesh = navmeshobj->GetNavMesh();
- if (navmesh)
- {
- int npoly = navmesh->getPolyCount();
- for (int pi=0; pi<npoly; pi++)
- {
- const dtStatPoly* poly = navmesh->getPoly(pi);
-
- for (int i = 0, j = (int)poly->nv-1; i < (int)poly->nv; j = i++)
- {
- if (poly->n[j]) continue;
- const float* vj = navmesh->getVertex(poly->v[j]);
- const float* vi = navmesh->getVertex(poly->v[i]);
-
- KX_Obstacle* obstacle = CreateObstacle(navmeshobj);
- obstacle->m_type = KX_OBSTACLE_NAV_MESH;
- obstacle->m_shape = KX_OBSTACLE_SEGMENT;
- obstacle->m_pos = MT_Point3(vj[0], vj[2], vj[1]);
- obstacle->m_pos2 = MT_Point3(vi[0], vi[2], vi[1]);
- obstacle->m_rad = 0;
- }
- }
- }
-}
-
-void KX_ObstacleSimulation::DestroyObstacleForObj(KX_GameObject* gameobj)
-{
- for (size_t i=0; i<m_obstacles.size(); )
- {
- if (m_obstacles[i]->m_gameObj == gameobj)
- {
- KX_Obstacle* obstacle = m_obstacles[i];
- obstacle->m_gameObj->UnregisterObstacle();
- m_obstacles[i] = m_obstacles.back();
- m_obstacles.pop_back();
- delete obstacle;
- }
- else
- i++;
- }
-}
-
-void KX_ObstacleSimulation::UpdateObstacles()
-{
- for (size_t i=0; i<m_obstacles.size(); i++)
- {
- if (m_obstacles[i]->m_type==KX_OBSTACLE_NAV_MESH || m_obstacles[i]->m_shape==KX_OBSTACLE_SEGMENT)
- continue;
-
- KX_Obstacle* obs = m_obstacles[i];
- obs->m_pos = obs->m_gameObj->NodeGetWorldPosition();
- obs->vel[0] = obs->m_gameObj->GetLinearVelocity().x();
- obs->vel[1] = obs->m_gameObj->GetLinearVelocity().y();
-
- // Update velocity history and calculate perceived (average) velocity.
- copy_v2_v2(&obs->hvel[obs->hhead * 2], obs->vel);
- obs->hhead = (obs->hhead+1) % VEL_HIST_SIZE;
- vset(obs->pvel,0,0);
- for (int j = 0; j < VEL_HIST_SIZE; ++j)
- add_v2_v2v2(obs->pvel, obs->pvel, &obs->hvel[j * 2]);
- mul_v2_fl(obs->pvel, 1.0f / VEL_HIST_SIZE);
- }
-}
-
-KX_Obstacle* KX_ObstacleSimulation::GetObstacle(KX_GameObject* gameobj)
-{
- for (size_t i=0; i<m_obstacles.size(); i++)
- {
- if (m_obstacles[i]->m_gameObj == gameobj)
- return m_obstacles[i];
- }
-
- return NULL;
-}
-
-void KX_ObstacleSimulation::AdjustObstacleVelocity(KX_Obstacle* activeObst, KX_NavMeshObject* activeNavMeshObj,
- MT_Vector3& velocity, MT_Scalar maxDeltaSpeed,MT_Scalar maxDeltaAngle)
-{
-}
-
-void KX_ObstacleSimulation::DrawObstacles()
-{
- if (!m_enableVisualization)
- return;
- static const MT_Vector3 bluecolor(0,0,1);
- static const MT_Vector3 normal(0.0f, 0.0f, 1.0f);
- static const int SECTORS_NUM = 32;
- for (size_t i=0; i<m_obstacles.size(); i++)
- {
- if (m_obstacles[i]->m_shape==KX_OBSTACLE_SEGMENT)
- {
- MT_Point3 p1 = m_obstacles[i]->m_pos;
- MT_Point3 p2 = m_obstacles[i]->m_pos2;
- //apply world transform
- if (m_obstacles[i]->m_type == KX_OBSTACLE_NAV_MESH)
- {
- KX_NavMeshObject* navmeshobj = static_cast<KX_NavMeshObject*>(m_obstacles[i]->m_gameObj);
- p1 = navmeshobj->TransformToWorldCoords(p1);
- p2 = navmeshobj->TransformToWorldCoords(p2);
- }
-
- KX_RasterizerDrawDebugLine(p1, p2, bluecolor);
- }
- else if (m_obstacles[i]->m_shape==KX_OBSTACLE_CIRCLE)
- {
- KX_RasterizerDrawDebugCircle(m_obstacles[i]->m_pos, m_obstacles[i]->m_rad, bluecolor,
- normal, SECTORS_NUM);
- }
- }
-}
-
-static MT_Point3 nearestPointToObstacle(MT_Point3& pos ,KX_Obstacle* obstacle)
-{
- switch (obstacle->m_shape)
- {
- case KX_OBSTACLE_SEGMENT :
- {
- MT_Vector3 ab = obstacle->m_pos2 - obstacle->m_pos;
- if (!ab.fuzzyZero())
- {
- const MT_Scalar dist = ab.length();
- MT_Vector3 abdir = ab.normalized();
- MT_Vector3 v = pos - obstacle->m_pos;
- MT_Scalar proj = abdir.dot(v);
- CLAMP(proj, 0, dist);
- MT_Point3 res = obstacle->m_pos + abdir*proj;
- return res;
- }
- ATTR_FALLTHROUGH;
- }
- case KX_OBSTACLE_CIRCLE :
- default:
- return obstacle->m_pos;
- }
-}
-
-static bool filterObstacle(KX_Obstacle* activeObst, KX_NavMeshObject* activeNavMeshObj, KX_Obstacle* otherObst,
- float levelHeight)
-{
- //filter obstacles by type
- if ( (otherObst == activeObst) ||
- (otherObst->m_type==KX_OBSTACLE_NAV_MESH && otherObst->m_gameObj!=activeNavMeshObj) )
- return false;
-
- //filter obstacles by position
- MT_Point3 p = nearestPointToObstacle(activeObst->m_pos, otherObst);
- if ( fabsf(activeObst->m_pos.z() - p.z()) > levelHeight)
- return false;
-
- return true;
-}
-
-///////////*********TOI_rays**********/////////////////
-KX_ObstacleSimulationTOI::KX_ObstacleSimulationTOI(MT_Scalar levelHeight, bool enableVisualization)
-: KX_ObstacleSimulation(levelHeight, enableVisualization),
- m_maxSamples(32),
- m_minToi(0.0f),
- m_maxToi(0.0f),
- m_velWeight(1.0f),
- m_curVelWeight(1.0f),
- m_toiWeight(1.0f),
- m_collisionWeight(1.0f)
-{
-}
-
-
-void KX_ObstacleSimulationTOI::AdjustObstacleVelocity(KX_Obstacle* activeObst, KX_NavMeshObject* activeNavMeshObj,
- MT_Vector3& velocity, MT_Scalar maxDeltaSpeed, MT_Scalar maxDeltaAngle)
-{
- int nobs = m_obstacles.size();
- int obstidx = std::find(m_obstacles.begin(), m_obstacles.end(), activeObst) - m_obstacles.begin();
- if (obstidx == nobs)
- return;
-
- vset(activeObst->dvel, velocity.x(), velocity.y());
-
- //apply RVO
- sampleRVO(activeObst, activeNavMeshObj, maxDeltaAngle);
-
- // Fake dynamic constraint.
- float dv[2];
- float vel[2];
- sub_v2_v2v2(dv, activeObst->nvel, activeObst->vel);
- float ds = len_v2(dv);
- if (ds > maxDeltaSpeed || ds<-maxDeltaSpeed)
- mul_v2_fl(dv, fabs(maxDeltaSpeed / ds));
- add_v2_v2v2(vel, activeObst->vel, dv);
-
- velocity.x() = vel[0];
- velocity.y() = vel[1];
-}
-
-///////////*********TOI_rays**********/////////////////
-static const int AVOID_MAX_STEPS = 128;
-struct TOICircle
-{
- TOICircle() : n(0), minToi(0), maxToi(1) {}
- float toi[AVOID_MAX_STEPS]; // Time of impact (seconds)
- float toie[AVOID_MAX_STEPS]; // Time of exit (seconds)
- float dir[AVOID_MAX_STEPS]; // Direction (radians)
- int n; // Number of samples
- float minToi, maxToi; // Min/max TOI (seconds)
-};
-
-KX_ObstacleSimulationTOI_rays::KX_ObstacleSimulationTOI_rays(MT_Scalar levelHeight, bool enableVisualization):
- KX_ObstacleSimulationTOI(levelHeight, enableVisualization)
-{
- m_maxSamples = 32;
- m_minToi = 0.5f;
- m_maxToi = 1.2f;
- m_velWeight = 4.0f;
- m_toiWeight = 1.0f;
- m_collisionWeight = 100.0f;
-}
-
-
-void KX_ObstacleSimulationTOI_rays::sampleRVO(KX_Obstacle* activeObst, KX_NavMeshObject* activeNavMeshObj,
- const float maxDeltaAngle)
-{
- MT_Vector2 vel(activeObst->dvel[0], activeObst->dvel[1]);
- float vmax = (float) vel.length();
- float odir = (float) atan2(vel.y(), vel.x());
-
- MT_Vector2 ddir = vel;
- ddir.normalize();
-
- float bestScore = FLT_MAX;
- float bestDir = odir;
- float bestToi = 0;
-
- TOICircle tc;
- tc.n = m_maxSamples;
- tc.minToi = m_minToi;
- tc.maxToi = m_maxToi;
-
- const int iforw = m_maxSamples/2;
- const float aoff = (float)iforw / (float)m_maxSamples;
-
- size_t nobs = m_obstacles.size();
- for (int iter = 0; iter < m_maxSamples; ++iter)
- {
- // Calculate sample velocity
- const float ndir = ((float)iter/(float)m_maxSamples) - aoff;
- const float dir = odir+ndir*(float)M_PI*2.0f;
- MT_Vector2 svel;
- svel.x() = cosf(dir) * vmax;
- svel.y() = sinf(dir) * vmax;
-
- // Find min time of impact and exit amongst all obstacles.
- float tmin = m_maxToi;
- float tmine = 0.0f;
- for (int i = 0; i < nobs; ++i)
- {
- KX_Obstacle* ob = m_obstacles[i];
- bool res = filterObstacle(activeObst, activeNavMeshObj, ob, m_levelHeight);
- if (!res)
- continue;
-
- float htmin,htmax;
-
- if (ob->m_shape == KX_OBSTACLE_CIRCLE)
- {
- MT_Vector2 vab;
- if (len_v2(ob->vel) < 0.01f * 0.01f) {
- // Stationary, use VO
- vab = svel;
- }
- else
- {
- // Moving, use RVO
- vab = 2*svel - vel - ob->vel;
- }
-
- if (!sweepCircleCircle(MT_3D_AS_2D(activeObst->m_pos), activeObst->m_rad,
- vab, MT_3D_AS_2D(ob->m_pos), ob->m_rad, htmin, htmax))
- {
- continue;
- }
- }
- else if (ob->m_shape == KX_OBSTACLE_SEGMENT)
- {
- MT_Point3 p1 = ob->m_pos;
- MT_Point3 p2 = ob->m_pos2;
- //apply world transform
- if (ob->m_type == KX_OBSTACLE_NAV_MESH)
- {
- KX_NavMeshObject* navmeshobj = static_cast<KX_NavMeshObject*>(ob->m_gameObj);
- p1 = navmeshobj->TransformToWorldCoords(p1);
- p2 = navmeshobj->TransformToWorldCoords(p2);
- }
-
- if (!sweepCircleSegment(MT_3D_AS_2D(activeObst->m_pos), activeObst->m_rad, svel,
- MT_3D_AS_2D(p1), MT_3D_AS_2D(p2), ob->m_rad, htmin, htmax))
- {
- continue;
- }
- }
- else {
- continue;
- }
-
- if (htmin > 0.0f)
- {
- // The closest obstacle is somewhere ahead of us, keep track of nearest obstacle.
- if (htmin < tmin)
- tmin = htmin;
- }
- else if (htmax > 0.0f)
- {
- // The agent overlaps the obstacle, keep track of first safe exit.
- if (htmax > tmine)
- tmine = htmax;
- }
- }
-
- // Calculate sample penalties and final score.
- const float apen = m_velWeight * fabsf(ndir);
- const float tpen = m_toiWeight * (1.0f/(0.0001f+tmin/m_maxToi));
- const float cpen = m_collisionWeight * (tmine/m_minToi)*(tmine/m_minToi);
- const float score = apen + tpen + cpen;
-
- // Update best score.
- if (score < bestScore)
- {
- bestDir = dir;
- bestToi = tmin;
- bestScore = score;
- }
-
- tc.dir[iter] = dir;
- tc.toi[iter] = tmin;
- tc.toie[iter] = tmine;
- }
-
- if (len_v2(activeObst->vel) > 0.1f) {
- // Constrain max turn rate.
- float cura = atan2(activeObst->vel[1],activeObst->vel[0]);
- float da = bestDir - cura;
- if (da < -M_PI) da += (float)M_PI*2;
- if (da > M_PI) da -= (float)M_PI*2;
- if (da < -maxDeltaAngle)
- {
- bestDir = cura - maxDeltaAngle;
- bestToi = min(bestToi, interpolateToi(bestDir, tc.dir, tc.toi, tc.n));
- }
- else if (da > maxDeltaAngle)
- {
- bestDir = cura + maxDeltaAngle;
- bestToi = min(bestToi, interpolateToi(bestDir, tc.dir, tc.toi, tc.n));
- }
- }
-
- // Adjust speed when time of impact is less than min TOI.
- if (bestToi < m_minToi)
- vmax *= bestToi/m_minToi;
-
- // New steering velocity.
- activeObst->nvel[0] = cosf(bestDir) * vmax;
- activeObst->nvel[1] = sinf(bestDir) * vmax;
-}
-
-///////////********* TOI_cells**********/////////////////
-
-static void processSamples(KX_Obstacle* activeObst, KX_NavMeshObject* activeNavMeshObj,
- KX_Obstacles& obstacles, float levelHeight, const float vmax,
- const float* spos, const float cs, const int nspos, float* res,
- float maxToi, float velWeight, float curVelWeight, float sideWeight,
- float toiWeight)
-{
- vset(res, 0,0);
-
- const float ivmax = 1.0f / vmax;
-
- float adir[2] /*, adist */;
- if (normalize_v2_v2(adir, activeObst->pvel) <= 0.01f) {
- zero_v2(adir);
- }
-
- float activeObstPos[2];
- vset(activeObstPos, activeObst->m_pos.x(), activeObst->m_pos.y());
- /* adist = vdot(adir, activeObstPos); */
-
- float minPenalty = FLT_MAX;
-
- for (int n = 0; n < nspos; ++n)
- {
- float vcand[2];
- copy_v2_v2(vcand, &spos[n * 2]);
-
- // Find min time of impact and exit amongst all obstacles.
- float tmin = maxToi;
- float side = 0;
- int nside = 0;
-
- for (int i = 0; i < obstacles.size(); ++i)
- {
- KX_Obstacle* ob = obstacles[i];
- bool res = filterObstacle(activeObst, activeNavMeshObj, ob, levelHeight);
- if (!res)
- continue;
- float htmin, htmax;
-
- if (ob->m_shape==KX_OBSTACLE_CIRCLE)
- {
- float vab[2];
-
- // Moving, use RVO
- mul_v2_v2fl(vab, vcand, 2);
- sub_v2_v2v2(vab, vab, activeObst->vel);
- sub_v2_v2v2(vab, vab, ob->vel);
-
- // Side
- // NOTE: dp, and dv are constant over the whole calculation,
- // they can be precomputed per object.
- const float* pa = activeObstPos;
- float pb[2];
- vset(pb, ob->m_pos.x(), ob->m_pos.y());
-
- const float orig[2] = {0, 0};
- float dp[2], dv[2], np[2];
- sub_v2_v2v2(dp, pb, pa);
- normalize_v2(dp);
- sub_v2_v2v2(dv, ob->dvel, activeObst->dvel);
-
- /* TODO: use line_point_side_v2 */
- if (area_tri_signed_v2(orig, dp, dv) < 0.01f) {
- np[0] = -dp[1];
- np[1] = dp[0];
- }
- else {
- np[0] = dp[1];
- np[1] = -dp[0];
- }
-
- side += clamp(min(dot_v2v2(dp, vab),
- dot_v2v2(np, vab)) * 2.0f, 0.0f, 1.0f);
- nside++;
-
- if (!sweepCircleCircle(MT_3D_AS_2D(activeObst->m_pos), activeObst->m_rad,
- vab, MT_3D_AS_2D(ob->m_pos), ob->m_rad, htmin, htmax))
- {
- continue;
- }
-
- // Handle overlapping obstacles.
- if (htmin < 0.0f && htmax > 0.0f)
- {
- // Avoid more when overlapped.
- htmin = -htmin * 0.5f;
- }
- }
- else if (ob->m_shape == KX_OBSTACLE_SEGMENT)
- {
- MT_Point3 p1 = ob->m_pos;
- MT_Point3 p2 = ob->m_pos2;
- //apply world transform
- if (ob->m_type == KX_OBSTACLE_NAV_MESH)
- {
- KX_NavMeshObject* navmeshobj = static_cast<KX_NavMeshObject*>(ob->m_gameObj);
- p1 = navmeshobj->TransformToWorldCoords(p1);
- p2 = navmeshobj->TransformToWorldCoords(p2);
- }
- float p[2], q[2];
- vset(p, p1.x(), p1.y());
- vset(q, p2.x(), p2.y());
-
- // NOTE: the segments are assumed to come from a navmesh which is shrunken by
- // the agent radius, hence the use of really small radius.
- // This can be handle more efficiently by using seg-seg test instead.
- // If the whole segment is to be treated as obstacle, use agent->rad instead of 0.01f!
- const float r = 0.01f; // agent->rad
- if (dist_squared_to_line_segment_v2(activeObstPos, p, q) < sqr(r + ob->m_rad)) {
- float sdir[2], snorm[2];
- sub_v2_v2v2(sdir, q, p);
- snorm[0] = sdir[1];
- snorm[1] = -sdir[0];
- // If the velocity is pointing towards the segment, no collision.
- if (dot_v2v2(snorm, vcand) < 0.0f)
- continue;
- // Else immediate collision.
- htmin = 0.0f;
- htmax = 10.0f;
- }
- else
- {
- if (!sweepCircleSegment(activeObstPos, r, vcand, p, q, ob->m_rad, htmin, htmax))
- continue;
- }
-
- // Avoid less when facing walls.
- htmin *= 2.0f;
- }
- else {
- continue;
- }
-
- if (htmin >= 0.0f)
- {
- // The closest obstacle is somewhere ahead of us, keep track of nearest obstacle.
- if (htmin < tmin)
- tmin = htmin;
- }
- }
-
- // Normalize side bias, to prevent it dominating too much.
- if (nside)
- side /= nside;
-
- const float vpen = velWeight * (len_v2v2(vcand, activeObst->dvel) * ivmax);
- const float vcpen = curVelWeight * (len_v2v2(vcand, activeObst->vel) * ivmax);
- const float spen = sideWeight * side;
- const float tpen = toiWeight * (1.0f/(0.1f+tmin/maxToi));
-
- const float penalty = vpen + vcpen + spen + tpen;
-
- if (penalty < minPenalty) {
- minPenalty = penalty;
- copy_v2_v2(res, vcand);
- }
- }
-}
-
-void KX_ObstacleSimulationTOI_cells::sampleRVO(KX_Obstacle* activeObst, KX_NavMeshObject* activeNavMeshObj,
- const float maxDeltaAngle)
-{
- vset(activeObst->nvel, 0.f, 0.f);
- float vmax = len_v2(activeObst->dvel);
-
- float* spos = new float[2*m_maxSamples];
- int nspos = 0;
-
- if (!m_adaptive)
- {
- const float cvx = activeObst->dvel[0]*m_bias;
- const float cvy = activeObst->dvel[1]*m_bias;
- float vmax = len_v2(activeObst->dvel);
- const float vrange = vmax*(1-m_bias);
- const float cs = 1.0f / (float)m_sampleRadius*vrange;
-
- for (int y = -m_sampleRadius; y <= m_sampleRadius; ++y)
- {
- for (int x = -m_sampleRadius; x <= m_sampleRadius; ++x)
- {
- if (nspos < m_maxSamples)
- {
- const float vx = cvx + (float)(x+0.5f)*cs;
- const float vy = cvy + (float)(y+0.5f)*cs;
- if (vx*vx+vy*vy > sqr(vmax+cs/2)) continue;
- spos[nspos*2+0] = vx;
- spos[nspos*2+1] = vy;
- nspos++;
- }
- }
- }
- processSamples(activeObst, activeNavMeshObj, m_obstacles, m_levelHeight, vmax, spos, cs/2,
- nspos, activeObst->nvel, m_maxToi, m_velWeight, m_curVelWeight, m_collisionWeight, m_toiWeight);
- }
- else
- {
- int rad;
- float res[2];
- float cs;
- // First sample location.
- rad = 4;
- res[0] = activeObst->dvel[0]*m_bias;
- res[1] = activeObst->dvel[1]*m_bias;
- cs = vmax*(2-m_bias*2) / (float)(rad-1);
-
- for (int k = 0; k < 5; ++k)
- {
- const float half = (rad-1)*cs*0.5f;
-
- nspos = 0;
- for (int y = 0; y < rad; ++y)
- {
- for (int x = 0; x < rad; ++x)
- {
- const float v_xy[2] = {
- res[0] + x * cs - half,
- res[1] + y * cs - half};
-
- if (len_squared_v2(v_xy) > sqr(vmax + cs / 2))
- continue;
-
- copy_v2_v2(&spos[nspos * 2 + 0], v_xy);
- nspos++;
- }
- }
-
- processSamples(activeObst, activeNavMeshObj, m_obstacles, m_levelHeight, vmax, spos, cs/2,
- nspos, res, m_maxToi, m_velWeight, m_curVelWeight, m_collisionWeight, m_toiWeight);
-
- cs *= 0.5f;
- }
- copy_v2_v2(activeObst->nvel, res);
- }
-
- delete [] spos;
-}
-
-KX_ObstacleSimulationTOI_cells::KX_ObstacleSimulationTOI_cells(MT_Scalar levelHeight, bool enableVisualization)
-: KX_ObstacleSimulationTOI(levelHeight, enableVisualization)
-, m_bias(0.4f)
-, m_adaptive(true)
-, m_sampleRadius(15)
-{
- m_maxSamples = (m_sampleRadius*2+1)*(m_sampleRadius*2+1) + 100;
- m_maxToi = 1.5f;
- m_velWeight = 2.0f;
- m_curVelWeight = 0.75f;
- m_toiWeight = 2.5f;
- m_collisionWeight = 0.75f; //side_weight
-}