Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
AgeCommit message (Collapse)Author
2021-11-03Spreadsheet: Display geometry volume component gridsHans Goudey
This shows a geometry's volume grids in the spreadsheet. Three columns are displayed: - Name: The text name of each grid - Data type: Float, Vector, etc. - Class: Fog volume, Level Set, or unkown In the future, values of the voxels themselves could be displayed, but that is a much more complex problem, with important performance implications, etc. Differential Revision: https://developer.blender.org/D13049
2021-10-26Geometry Nodes: support viewing field values in spreadsheetJacques Lucke
The viewer node has been expanded to have a field input next to the geometry input. When both are connected (by ctrl+shift clicking on a node) the spreadsheet will show the evaluated field on the geometry. The operator to link to the viewer has become a bit smarter. It automatically detects if it should link to the geometry or field input. In the future some more smartness could be added, such as automatically relinking the "right" geometry when viewing a field. Internally, there are two major changes: * Refactor of what happens when ctrl+shift clicking on a node to link to a viewer. The behavior of the geometry nodes viewer is a bit more complex than that of the compositor viewers. The behavior in compositing nodes should not have changed. Any change should be reported as a bug (and then we can decide if it's worse than before or if it needs fixing). * Evaluation, display and caching of fields in the spreadsheet editor. Differential Revision: https://developer.blender.org/D12938
2021-09-06Geometry Nodes: support for geometry instancingJacques Lucke
Previously, the Point Instance node in geometry nodes could only instance existing objects or collections. The reason was that large parts of Blender worked under the assumption that objects are the main unit of instancing. Now we also want to instance geometry within an object, so a slightly larger refactor was necessary. This should not affect files that do not use the new kind of instances. The main change is a redefinition of what "instanced data" is. Now, an instances is a cow-object + object-data (the geometry). This can be nicely seen in `struct DupliObject`. This allows the same object to generate multiple geometries of different types which can be instanced individually. A nice side effect of this refactor is that having multiple geometry components is not a special case in the depsgraph object iterator anymore, because those components are integrated with the `DupliObject` system. Unfortunately, different systems that work with instances in Blender (e.g. render engines and exporters) often work under the assumption that objects are the main unit of instancing. So those have to be updated as well to be able to handle the new instances. This patch updates Cycles, EEVEE and other viewport engines. Exporters have not been updated yet. Some minimal (not master-ready) changes to update the obj and alembic exporters can be found in P2336 and P2335. Different file formats may want to handle these new instances in different ways. For users, the only thing that changed is that the Point Instance node now has a geometry mode. This also fixes T88454. Differential Revision: https://developer.blender.org/D11841
2021-05-25Blenlib: Explicit Colors.Jeroen Bakker
Colors are often thought of as being 4 values that make up that can make any color. But that is of course too limited. In C we didn’t spend time to annotate what we meant when using colors. Recently `BLI_color.hh` was made to facilitate color structures in CPP. CPP has possibilities to enforce annotating structures during compilation and can adds conversions between them using function overloading and explicit constructors. The storage structs can hold 4 channels (r, g, b and a). Usage: Convert a theme byte color to a linearrgb premultiplied. ``` ColorTheme4b theme_color; ColorSceneLinear4f<eAlpha::Premultiplied> linearrgb_color = BLI_color_convert_to_scene_linear(theme_color).premultiply_alpha(); ``` The API is structured to make most use of inlining. Most notable are space conversions done via `BLI_color_convert_to*` functions. - Conversions between spaces (theme <=> scene linear) should always be done by invoking the `BLI_color_convert_to*` methods. - Encoding colors (compressing to store colors inside a less precision storage) should be done by invoking the `encode` and `decode` methods. - Changing alpha association should be done by invoking `premultiply_alpha` or `unpremultiply_alpha` methods. # Encoding. Color encoding is used to store colors with less precision as in using `uint8_t` in stead of `float`. This encoding is supported for `eSpace::SceneLinear`. To make this clear to the developer the `eSpace::SceneLinearByteEncoded` space is added. # Precision Colors can be stored using `uint8_t` or `float` colors. The conversion between the two precisions are available as methods. (`to_4b` and `to_4f`). # Alpha conversion Alpha conversion is only supported in SceneLinear space. Extending: - This file can be extended with `ColorHex/Hsl/Hsv` for different representations of rgb based colors. `ColorHsl4f<eSpace::SceneLinear, eAlpha::Premultiplied>` - Add non RGB spaces/storages ColorXyz. Reviewed By: JacquesLucke, brecht Differential Revision: https://developer.blender.org/D10978
2021-05-25Revert "Blenlib: Explicit Colors."Jeroen Bakker
This reverts commit fd94e033446c72fb92048a9864c1d539fccde59a. does not compile against latest master.
2021-05-25Blenlib: Explicit Colors.Jeroen Bakker
Colors are often thought of as being 4 values that make up that can make any color. But that is of course too limited. In C we didn’t spend time to annotate what we meant when using colors. Recently `BLI_color.hh` was made to facilitate color structures in CPP. CPP has possibilities to enforce annotating structures during compilation and can adds conversions between them using function overloading and explicit constructors. The storage structs can hold 4 channels (r, g, b and a). Usage: Convert a theme byte color to a linearrgb premultiplied. ``` ColorTheme4b theme_color; ColorSceneLinear4f<eAlpha::Premultiplied> linearrgb_color = BLI_color_convert_to_scene_linear(theme_color).premultiply_alpha(); ``` The API is structured to make most use of inlining. Most notable are space conversions done via `BLI_color_convert_to*` functions. - Conversions between spaces (theme <=> scene linear) should always be done by invoking the `BLI_color_convert_to*` methods. - Encoding colors (compressing to store colors inside a less precision storage) should be done by invoking the `encode` and `decode` methods. - Changing alpha association should be done by invoking `premultiply_alpha` or `unpremultiply_alpha` methods. # Encoding. Color encoding is used to store colors with less precision as in using `uint8_t` in stead of `float`. This encoding is supported for `eSpace::SceneLinear`. To make this clear to the developer the `eSpace::SceneLinearByteEncoded` space is added. # Precision Colors can be stored using `uint8_t` or `float` colors. The conversion between the two precisions are available as methods. (`to_4b` and `to_4f`). # Alpha conversion Alpha conversion is only supported in SceneLinear space. Extending: - This file can be extended with `ColorHex/Hsl/Hsv` for different representations of rgb based colors. `ColorHsl4f<eSpace::SceneLinear, eAlpha::Premultiplied>` - Add non RGB spaces/storages ColorXyz. Reviewed By: JacquesLucke, brecht Differential Revision: https://developer.blender.org/D10978
2021-04-26Spreadsheet: combine vector/color spreadsheet columnsJacques Lucke
Differential Revision: https://developer.blender.org/D11056
2021-04-09Spreadsheet: persistent column storage and data sourceJacques Lucke
A `DataSource` provides columns for the spreadsheet to display. Every column has a SpreadsheetColumnID as identifier. Columns are not generated eagerly anymore, instead the main spreadsheet code can request a column from a data source with an column identifier. The column identifiers can be stored in DNA and allow us to store persistent data per column. On the user level the only thing that changes is that columns are not shown in alphabetical order anymore. Instead, new columns are always added on the left. The behavior can be changed, however I'd prefer not to automate this too much currently. I think we should just add operators to hide/reorder/resize columns soonish. Differential Revision: https://developer.blender.org/D10901