Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
AgeCommit message (Collapse)Author
2021-09-09Geometry Nodes: fields and anonymous attributesJacques Lucke
This implements the initial core framework for fields and anonymous attributes (also see T91274). The new functionality is hidden behind the "Geometry Nodes Fields" feature flag. When enabled in the user preferences, the following new nodes become available: `Position`, `Index`, `Normal`, `Set Position` and `Attribute Capture`. Socket inspection has not been updated to work with fields yet. Besides these changes at the user level, this patch contains the ground work for: * building and evaluating fields at run-time (`FN_fields.hh`) and * creating and accessing anonymous attributes on geometry (`BKE_anonymous_attribute.h`). For evaluating fields we use a new so called multi-function procedure (`FN_multi_function_procedure.hh`). It allows composing multi-functions in arbitrary ways and supports efficient evaluation as is required by fields. See `FN_multi_function_procedure.hh` for more details on how this evaluation mechanism can be used. A new `AttributeIDRef` has been added which allows handling named and anonymous attributes in the same way in many places. Hans and I worked on this patch together. Differential Revision: https://developer.blender.org/D12414
2021-08-20Functions: add utility methods to parameter builderJacques Lucke
2021-05-13Functions: simplify adding a single input to a multi-functionJacques Lucke
This is used by the upcoming new geometry nodes evaluator.
2021-04-17Functions: extend virtual array functionalityJacques Lucke
This adds support for mutable virtual arrays and provides many utilities for creating virtual arrays for various kinds of data. This commit is preparation for D10994.
2021-04-01BLI: rename resource collector to resource scopeJacques Lucke
Differential Revision: https://developer.blender.org/D10857
2021-03-21Functions: refactor virtual array data structuresJacques Lucke
When a function is executed for many elements (e.g. per point) it is often the case that some parameters are different for every element and other parameters are the same (there are some more less common cases). To simplify writing such functions one can use a "virtual array". This is a data structure that has a value for every index, but might not be stored as an actual array internally. Instead, it might be just a single value or is computed on the fly. There are various tradeoffs involved when using this data structure which are mentioned in `BLI_virtual_array.hh`. It is called "virtual", because it uses inheritance and virtual methods. Furthermore, there is a new virtual vector array data structure, which is an array of vectors. Both these types have corresponding generic variants, which can be used when the data type is not known at compile time. This is typically the case when building a somewhat generic execution system. The function system used these virtual data structures before, but now they are more versatile. I've done this refactor in preparation for the attribute processor and other features of geometry nodes. I moved the typed virtual arrays to blenlib, so that they can be used independent of the function system. One open question for me is whether all the generic data structures (and `CPPType`) should be moved to blenlib as well. They are well isolated and don't really contain any business logic. That can be done later if necessary.
2020-08-07Merge branch 'blender-v2.90-release' into masterJacques Lucke
2020-08-07Code Style: use "#pragma once" in source directoryJacques Lucke
This replaces header include guards with `#pragma once`. A couple of include guards are not removed yet (e.g. `__RNA_TYPES_H__`), because they are used in other places. This patch has been generated by P1561 followed by `make format`. Differential Revision: https://developer.blender.org/D8466
2020-07-23Particles: improve mesh emitterJacques Lucke
Particles are now emitted from vertices of the mesh.
2020-07-21Particles: initial object socket and emitter node supportJacques Lucke
Object sockets work now, but only the new Object Transforms and the Particle Mesh Emitter node use it. The emitter does not actually use the mesh surface yet. Instead, new particles are just emitted around the origin of the object. Internally, handles to object data blocks are passed around in the network, instead of raw object pointers. Using handles has a couple of benefits: * The caller of the function has control over which handles can be resolved and therefore limit access to specific data. The set of data blocks that is accessed by a node tree should be known statically. This is necessary for a proper integration with the dependency graph. * When the pointer to an object changes (e.g. after restarting Blender), all handles are still valid. * When an object is deleted, the handle is invalidated without causing crashes. * The handle is just an integer that can be stored per particle and can be cached easily. The mapping between handles and their corresponding data blocks is stored in the Simulation data block.
2020-07-20Refactor: Update integer type usageJacques Lucke
This updates the usage of integer types in code I wrote according to our new style guides. Major changes: * Use signed instead of unsigned integers in many places. * C++ containers in blenlib use `int64_t` for size and indices now (instead of `uint`). * Hash values for C++ containers are 64 bit wide now (instead of 32 bit). I do hope that I broke no builds, but it is quite likely that some compiler reports slightly different errors. Please let me know when there are any errors. If the fix is small, feel free to commit it yourself. I compiled successfully on linux with gcc and on windows.
2020-07-03Cleanup: use nested namespacesJacques Lucke
2020-07-03Cleanup: use trailing underscore for non-public data membersJacques Lucke
2020-06-22Functions: Various improvements to the spans and generic data structuresJacques Lucke
Most of this code is covered by unit tests.
2020-06-16Functions: Multi FunctionJacques Lucke
This adds the `MultiFunction` type and some smallish utility types that it uses. A `MultiFunction` encapsulates a function that is optimized for throughput by always processing many elements at once. This is an important part of the new particle system, because it allows us to execute user generated node trees for many particles efficiently. Reviewers: brecht Differential Revision: https://developer.blender.org/D8030