Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
AgeCommit message (Collapse)Author
2022-04-26Geometry Nodes: refactor array devirtualizationJacques Lucke
Goals: * Better high level control over where devirtualization occurs. There is always a trade-off between performance and compile-time/binary-size. * Simplify using array devirtualization. * Better performance for cases where devirtualization wasn't used before. Many geometry nodes accept fields as inputs. Internally, that means that the execution functions have to accept so called "virtual arrays" as inputs. Those can be e.g. actual arrays, just single values, or lazily computed arrays. Due to these different possible virtual arrays implementations, access to individual elements is slower than it would be if everything was just a normal array (access does through a virtual function call). For more complex execution functions, this overhead does not matter, but for small functions (like a simple addition) it very much does. The virtual function call also prevents the compiler from doing some optimizations (e.g. loop unrolling and inserting simd instructions). The solution is to "devirtualize" the virtual arrays for small functions where the overhead is measurable. Essentially, the function is generated many times with different array types as input. Then there is a run-time dispatch that calls the best implementation. We have been doing devirtualization in e.g. math nodes for a long time already. This patch just generalizes the concept and makes it easier to control. It also makes it easier to investigate the different trade-offs when it comes to devirtualization. Nodes that we've optimized using devirtualization before didn't get a speedup. However, a couple of nodes are using devirtualization now, that didn't before. Those got a 2-4x speedup in common cases. * Map Range * Random Value * Switch * Combine XYZ Differential Revision: https://developer.blender.org/D14628
2022-03-19BLI: move generic data structures to blenlibJacques Lucke
This is a follow up to rB2252bc6a5527cd7360d1ccfe7a2d1bc640a8dfa6.
2022-02-11File headers: SPDX License migrationCampbell Barton
Use a shorter/simpler license convention, stops the header taking so much space. Follow the SPDX license specification: https://spdx.org/licenses - C/C++/objc/objc++ - Python - Shell Scripts - CMake, GNUmakefile While most of the source tree has been included - `./extern/` was left out. - `./intern/cycles` & `./intern/atomic` are also excluded because they use different header conventions. doc/license/SPDX-license-identifiers.txt has been added to list SPDX all used identifiers. See P2788 for the script that automated these edits. Reviewed By: brecht, mont29, sergey Ref D14069
2021-11-26Geometry Nodes: refactor multi-threading in field evaluationJacques Lucke
Previously, there was a fixed grain size for all multi-functions. That was not sufficient because some functions could benefit a lot from smaller grain sizes. This refactors adds a new `MultiFunction::call_auto` method which has the same effect as just calling `MultiFunction::call` but additionally figures out how to execute the specific multi-function efficiently. It determines a good grain size and decides whether the mask indices should be shifted or not. Most multi-function evaluations benefit from this, but medium sized work loads (1000 - 50000 elements) benefit from it the most. Especially when expensive multi-functions (e.g. noise) is involved. This is because for smaller work loads, threading is rarely used and for larger work loads threading worked fine before already. With this patch, multi-functions can specify execution hints, that allow the caller to execute it most efficiently. These execution hints still have to be added to more functions. Some performance measurements of a field evaluation involving noise and math nodes, ordered by the number of elements being evaluated: ``` 1,000,000: 133 ms -> 120 ms 100,000: 30 ms -> 18 ms 10,000: 20 ms -> 2.7 ms 1,000: 4 ms -> 0.5 ms 100: 0.5 ms -> 0.4 ms ```
2021-11-16Geometry Nodes: refactor virtual array systemJacques Lucke
Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-09-20Geometry Nodes: support Noise Texture nodeJacques Lucke
This makes the Noise Texture node available in geometry nodes. It should behave the same as in shader node, with the exception that it does not have an implicit position input yet. That will be added separately. Differential Revision: https://developer.blender.org/D12467
2021-09-14Cleanup: simplify resource scope methodsJacques Lucke
Previously, a debug name had to be passed to all methods that added a resource to the `ResourceScope`. The idea was that this would make it easier to find certain bugs. In reality I never found this to be useful, and it was mostly annoying. The thing is, something that is in a resource scope never leaks (unless the resource scope is not destructed of course). Removing the name parameter makes the structure easier to use.
2021-09-14Functions: support optional outputs in multi-functionJacques Lucke
Sometimes not all outputs of a multi-function are required by the caller. In those cases it would be a waste of compute resources to calculate the unused values anyway. Now, the caller of a multi-function can specify when a specific output is not used. The called function can check if an output is unused and may ignore it. Multi-functions can still computed unused outputs as before if they don't want to check if a specific output is unused. The multi-function procedure system has been updated to support ignored outputs in call instructions. An ignored output just has no variable assigned to it. The field system has been updated to generate a multi-function procedure where unused outputs are ignored.
2021-09-09Geometry Nodes: fields and anonymous attributesJacques Lucke
This implements the initial core framework for fields and anonymous attributes (also see T91274). The new functionality is hidden behind the "Geometry Nodes Fields" feature flag. When enabled in the user preferences, the following new nodes become available: `Position`, `Index`, `Normal`, `Set Position` and `Attribute Capture`. Socket inspection has not been updated to work with fields yet. Besides these changes at the user level, this patch contains the ground work for: * building and evaluating fields at run-time (`FN_fields.hh`) and * creating and accessing anonymous attributes on geometry (`BKE_anonymous_attribute.h`). For evaluating fields we use a new so called multi-function procedure (`FN_multi_function_procedure.hh`). It allows composing multi-functions in arbitrary ways and supports efficient evaluation as is required by fields. See `FN_multi_function_procedure.hh` for more details on how this evaluation mechanism can be used. A new `AttributeIDRef` has been added which allows handling named and anonymous attributes in the same way in many places. Hans and I worked on this patch together. Differential Revision: https://developer.blender.org/D12414
2021-08-20Functions: add utility methods to parameter builderJacques Lucke
2021-05-13Functions: simplify adding a single input to a multi-functionJacques Lucke
This is used by the upcoming new geometry nodes evaluator.
2021-04-17Functions: extend virtual array functionalityJacques Lucke
This adds support for mutable virtual arrays and provides many utilities for creating virtual arrays for various kinds of data. This commit is preparation for D10994.
2021-04-01BLI: rename resource collector to resource scopeJacques Lucke
Differential Revision: https://developer.blender.org/D10857
2021-03-21Functions: refactor virtual array data structuresJacques Lucke
When a function is executed for many elements (e.g. per point) it is often the case that some parameters are different for every element and other parameters are the same (there are some more less common cases). To simplify writing such functions one can use a "virtual array". This is a data structure that has a value for every index, but might not be stored as an actual array internally. Instead, it might be just a single value or is computed on the fly. There are various tradeoffs involved when using this data structure which are mentioned in `BLI_virtual_array.hh`. It is called "virtual", because it uses inheritance and virtual methods. Furthermore, there is a new virtual vector array data structure, which is an array of vectors. Both these types have corresponding generic variants, which can be used when the data type is not known at compile time. This is typically the case when building a somewhat generic execution system. The function system used these virtual data structures before, but now they are more versatile. I've done this refactor in preparation for the attribute processor and other features of geometry nodes. I moved the typed virtual arrays to blenlib, so that they can be used independent of the function system. One open question for me is whether all the generic data structures (and `CPPType`) should be moved to blenlib as well. They are well isolated and don't really contain any business logic. That can be done later if necessary.
2020-08-07Merge branch 'blender-v2.90-release' into masterJacques Lucke
2020-08-07Code Style: use "#pragma once" in source directoryJacques Lucke
This replaces header include guards with `#pragma once`. A couple of include guards are not removed yet (e.g. `__RNA_TYPES_H__`), because they are used in other places. This patch has been generated by P1561 followed by `make format`. Differential Revision: https://developer.blender.org/D8466
2020-07-23Particles: improve mesh emitterJacques Lucke
Particles are now emitted from vertices of the mesh.
2020-07-21Particles: initial object socket and emitter node supportJacques Lucke
Object sockets work now, but only the new Object Transforms and the Particle Mesh Emitter node use it. The emitter does not actually use the mesh surface yet. Instead, new particles are just emitted around the origin of the object. Internally, handles to object data blocks are passed around in the network, instead of raw object pointers. Using handles has a couple of benefits: * The caller of the function has control over which handles can be resolved and therefore limit access to specific data. The set of data blocks that is accessed by a node tree should be known statically. This is necessary for a proper integration with the dependency graph. * When the pointer to an object changes (e.g. after restarting Blender), all handles are still valid. * When an object is deleted, the handle is invalidated without causing crashes. * The handle is just an integer that can be stored per particle and can be cached easily. The mapping between handles and their corresponding data blocks is stored in the Simulation data block.
2020-07-20Refactor: Update integer type usageJacques Lucke
This updates the usage of integer types in code I wrote according to our new style guides. Major changes: * Use signed instead of unsigned integers in many places. * C++ containers in blenlib use `int64_t` for size and indices now (instead of `uint`). * Hash values for C++ containers are 64 bit wide now (instead of 32 bit). I do hope that I broke no builds, but it is quite likely that some compiler reports slightly different errors. Please let me know when there are any errors. If the fix is small, feel free to commit it yourself. I compiled successfully on linux with gcc and on windows.
2020-07-03Cleanup: use nested namespacesJacques Lucke
2020-07-03Cleanup: use trailing underscore for non-public data membersJacques Lucke
2020-06-22Functions: Various improvements to the spans and generic data structuresJacques Lucke
Most of this code is covered by unit tests.
2020-06-16Functions: Multi FunctionJacques Lucke
This adds the `MultiFunction` type and some smallish utility types that it uses. A `MultiFunction` encapsulates a function that is optimized for throughput by always processing many elements at once. This is an important part of the new particle system, because it allows us to execute user generated node trees for many particles efficiently. Reviewers: brecht Differential Revision: https://developer.blender.org/D8030