Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
AgeCommit message (Collapse)Author
2021-11-21Functions: use static string for parameter namesJacques Lucke
The idea behind this change is the same as in rB6ee2abde82ef121cd6e927995053ac33afdbb438. A `MultiFunction::debug_parameter_name` method could be added separately when necessary.
2021-11-21Functions: use static names for multi-functionsJacques Lucke
Previously, the function names were stored in `std::string` and were often created dynamically (especially when the function just output a constant). This resulted in a lot of overhead. Now the function name is just a `const char *` that should be statically allocated. This is good enough for the majority of cases. If a multi-function needs a more dynamic name, it can override the `MultiFunction::debug_name` method. In my test file with >400,000 simple math nodes, the execution time improves from 3s to 1s.
2021-08-20Functions: remove multi-function networkJacques Lucke
The multi-function network system was able to compose multiple multi-functions into a new one and to evaluate that efficiently. This functionality was heavily used by the particle nodes prototype a year ago. However, since then we only used multi-functions without the need to compose them in geometry nodes. The upcoming "fields" in geometry nodes will need a way to compose multi-functions again. Unfortunately, the code removed in this commit was not ideal for this different kind of function composition. I've been working on an alternative that will be added separately when it becomes needed. I've had to update all the function nodes, because their interface depended on the multi-function network data structure a bit. The actual multi-function implementations are still the same though.
2021-03-22Functions: make multi functions smaller and cheaper to construct in many casesJacques Lucke
Previously, the signature of a `MultiFunction` was always embedded into the function. There are two issues with that. First, `MFSignature` is relatively large, because it contains multiple strings and vectors. Secondly, constructing it can add overhead that should not be necessary, because often the same signature can be reused. The solution is to only keep a pointer to a signature in `MultiFunction` that is set during construction. Child classes are responsible for making sure that the signature lives long enough. In most cases, the signature is either embedded into the child class or it is allocated statically (and is only created once).
2021-03-21Functions: refactor virtual array data structuresJacques Lucke
When a function is executed for many elements (e.g. per point) it is often the case that some parameters are different for every element and other parameters are the same (there are some more less common cases). To simplify writing such functions one can use a "virtual array". This is a data structure that has a value for every index, but might not be stored as an actual array internally. Instead, it might be just a single value or is computed on the fly. There are various tradeoffs involved when using this data structure which are mentioned in `BLI_virtual_array.hh`. It is called "virtual", because it uses inheritance and virtual methods. Furthermore, there is a new virtual vector array data structure, which is an array of vectors. Both these types have corresponding generic variants, which can be used when the data type is not known at compile time. This is typically the case when building a somewhat generic execution system. The function system used these virtual data structures before, but now they are more versatile. I've done this refactor in preparation for the attribute processor and other features of geometry nodes. I moved the typed virtual arrays to blenlib, so that they can be used independent of the function system. One open question for me is whether all the generic data structures (and `CPPType`) should be moved to blenlib as well. They are well isolated and don't really contain any business logic. That can be done later if necessary.
2020-08-07Merge branch 'blender-v2.90-release' into masterJacques Lucke
2020-08-07Code Style: use "#pragma once" in source directoryJacques Lucke
This replaces header include guards with `#pragma once`. A couple of include guards are not removed yet (e.g. `__RNA_TYPES_H__`), because they are used in other places. This patch has been generated by P1561 followed by `make format`. Differential Revision: https://developer.blender.org/D8466
2020-07-24Cleanup: can use guarded instead of raw allocator nowJacques Lucke
2020-07-22Cleanup: spellingCampbell Barton
2020-07-21Particles: initial object socket and emitter node supportJacques Lucke
Object sockets work now, but only the new Object Transforms and the Particle Mesh Emitter node use it. The emitter does not actually use the mesh surface yet. Instead, new particles are just emitted around the origin of the object. Internally, handles to object data blocks are passed around in the network, instead of raw object pointers. Using handles has a couple of benefits: * The caller of the function has control over which handles can be resolved and therefore limit access to specific data. The set of data blocks that is accessed by a node tree should be known statically. This is necessary for a proper integration with the dependency graph. * When the pointer to an object changes (e.g. after restarting Blender), all handles are still valid. * When an object is deleted, the handle is invalidated without causing crashes. * The handle is just an integer that can be stored per particle and can be cached easily. The mapping between handles and their corresponding data blocks is stored in the Simulation data block.
2020-07-20BLI: add typedefs for containers that use raw allocatorsJacques Lucke
Those are useful when you have to create containers with static storage duration. If those would use Blender's guarded allocator, it would report memory leaks, that are not actually leaks.
2020-07-20Refactor: Update integer type usageJacques Lucke
This updates the usage of integer types in code I wrote according to our new style guides. Major changes: * Use signed instead of unsigned integers in many places. * C++ containers in blenlib use `int64_t` for size and indices now (instead of `uint`). * Hash values for C++ containers are 64 bit wide now (instead of 32 bit). I do hope that I broke no builds, but it is quite likely that some compiler reports slightly different errors. Please let me know when there are any errors. If the fix is small, feel free to commit it yourself. I compiled successfully on linux with gcc and on windows.
2020-07-03Cleanup: use nested namespacesJacques Lucke
2020-07-03Cleanup: use trailing underscore for non-public data membersJacques Lucke
2020-06-30Functions: use raw allocator for function signatureJacques Lucke
This allows multi-functions to have static storage duration.
2020-06-22Functions: Various improvements to the spans and generic data structuresJacques Lucke
Most of this code is covered by unit tests.
2020-06-16Functions: Multi FunctionJacques Lucke
This adds the `MultiFunction` type and some smallish utility types that it uses. A `MultiFunction` encapsulates a function that is optimized for throughput by always processing many elements at once. This is an important part of the new particle system, because it allows us to execute user generated node trees for many particles efficiently. Reviewers: brecht Differential Revision: https://developer.blender.org/D8030