Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
AgeCommit message (Collapse)Author
2008-10-02Python 2.4 should build with the game engine now, no thanks to python for ↵Campbell Barton
switching from char to const char
2008-09-20[#17600] char* -> const char*Campbell Barton
Thanks to Sean Bartell (wtachi), was causing many many warnings which distracted from the real problems.
2008-08-28BGE patch: add X-Ray option to ray sensor. The option is effective only if a ↵Benoit Bolsee
property is set: the sensor will ignore the objects that don't have the property.
2008-08-28more fix for compilation problem with KX_RayCast::Callback template in gccBenoit Bolsee
2008-08-27BGE patch: KX_GameObject::rayCast() improvements to have X-Ray option, ↵Benoit Bolsee
return true face normal and hit polygon information. rayCast(to,from,dist,prop,face,xray,poly): The face paremeter determines the orientation of the normal: 0 or omitted => hit normal is always oriented towards the ray origin (as if you casted the ray from outside) 1 => hit normal is the real face normal (only for mesh object, otherwise face has no effect) The ray has X-Ray capability if xray parameter is 1, otherwise the first object hit (other than self object) stops the ray. The prop and xray parameters interact as follow: prop off, xray off: return closest hit or no hit if there is no object on the full extend of the ray. prop off, xray on : idem. prop on, xray off: return closest hit if it matches prop, no hit otherwise. prop on, xray on : return closest hit matching prop or no hit if there is no object matching prop on the full extend of the ray. if poly is 0 or omitted, returns a 3-tuple with object reference, hit point and hit normal or (None,None,None) if no hit. if poly is 1, returns a 4-tuple with in addition a KX_PolyProxy as 4th element. The KX_PolyProxy object holds information on the polygon hit by the ray: the index of the vertex forming the poylgon, material, etc. Attributes (read-only): matname: The name of polygon material, empty if no material. material: The material of the polygon texture: The texture name of the polygon. matid: The material index of the polygon, use this to retrieve vertex proxy from mesh proxy v1: vertex index of the first vertex of the polygon, use this to retrieve vertex proxy from mesh proxy v2: vertex index of the second vertex of the polygon, use this to retrieve vertex proxy from mesh proxy v3: vertex index of the third vertex of the polygon, use this to retrieve vertex proxy from mesh proxy v4: vertex index of the fourth vertex of the polygon, 0 if polygon has only 3 vertex use this to retrieve vertex proxy from mesh proxy visible: visible state of the polygon: 1=visible, 0=invisible collide: collide state of the polygon: 1=receives collision, 0=collision free. Methods: getMaterialName(): Returns the polygon material name with MA prefix getMaterial(): Returns the polygon material getTextureName(): Returns the polygon texture name getMaterialIndex(): Returns the material bucket index of the polygon. getNumVertex(): Returns the number of vertex of the polygon. isVisible(): Returns whether the polygon is visible or not isCollider(): Returns whether the polygon is receives collision or not getVertexIndex(vertex): Returns the mesh vertex index of a polygon vertex getMesh(): Returns a mesh proxy New methods of KX_MeshProxy have been implemented to retrieve KX_PolyProxy objects: getNumPolygons(): Returns the number of polygon in the mesh. getPolygon(index): Gets the specified polygon from the mesh. More details in PyDoc.
2008-07-04BGE logic update: new servo control motion actuator, new distance constraint ↵Benoit Bolsee
actuator, new orientation constraint actuator, new actuator sensor. General ======= - Removal of Damp option in motion actuator (replaced by Servo control motion). - No PyDoc at present, will be added soon. Generalization of the Lvl option ================================ A sensor with the Lvl option selected will always produce an event at the start of the game or when entering a state or at object creation. The event will be positive or negative depending of the sensor condition. A negative pulse makes sense when used with a NAND controller: it will be converted into an actuator activation. Servo control motion ==================== A new variant of the motion actuator allows to control speed with force. The control if of type "PID" (Propotional, Integral, Derivate): the force is automatically adapted to achieve the target speed. All the parameters of the servo controller are configurable. The result is a great variety of motion style: anysotropic friction, flying, sliding, pseudo Dloc... This actuator should be used in preference to Dloc and LinV as it produces more fluid movements and avoids the collision problem with Dloc. LinV : target speed as (X,Y,Z) vector in local or world coordinates (mostly useful in local coordinates). Limit: the force can be limited along each axis (in the same coordinates of LinV). No limitation means that the force will grow as large as necessary to achieve the target speed along that axis. Set a max value to limit the accelaration along an axis (slow start) and set a min value (negative) to limit the brake force. P: Proportional coefficient of servo controller, don't set directly unless you know what you're doing. I: Integral coefficient of servo controller. Use low value (<0.1) for slow reaction (sliding), high values (>0.5) for hard control. The P coefficient will be automatically set to 60 times the I coefficient (a reasonable value). D: Derivate coefficient. Leave to 0 unless you know what you're doing. High values create instability. Notes: - This actuator works perfectly in zero friction environment: the PID controller will simulate friction by applying force as needed. - This actuator is compatible with simple Drot motion actuator but not with LinV and Dloc motion. - (0,0,0) is a valid target speed. - All parameters are accessible through Python. Distance constraint actuator ============================ A new variant of the constraint actuator allows to set the distance and orientation relative to a surface. The controller uses a ray to detect the surface (or any object) and adapt the distance and orientation parallel to the surface. Damp: Time constant (in nb of frames) of distance and orientation control. Dist: Select to enable distance control and set target distance. The object will be position at the given distance of surface along the ray direction. Direction: chose a local axis as the ray direction. Range: length of ray. Objecgt within this distance will be detected. N : Select to enable orientation control. The actuator will change the orientation and the location of the object so that it is parallel to the surface at the vertical of the point of contact of the ray. M/P : Select to enable material detection. Default is property detection. Property/Material: name of property/material that the target of ray must have to be detected. If not set, property/ material filter is disabled and any collisioning object within range will be detected. PER : Select to enable persistent operation. Normally the actuator disables itself automatically if the ray does not reach a valid target. time : Maximum activation time of actuator. 0 : unlimited. >0: number of frames before automatic deactivation. rotDamp: Time constant (in nb of frame) of orientation control. 0 : use Damp parameter. >0: use a different time constant for orientation. Notes: - If neither N nor Dist options are set, the actuator does not change the position and orientation of the object; it works as a ray sensor. - The ray has no "X-ray" capability: if the first object hit does not have the required property/material, it returns no hit and the actuator disables itself unless PER option is enabled. - This actuator changes the position and orientation but not the speed of the object. This has an important implication in a gravity environment: the gravity will cause the speed to increase although the object seems to stay still (it is repositioned at each frame). The gravity must be compensated in one way or another. the new servo control motion actuator is the simplest way: set the target speed along the ray axis to 0 and the servo control will automatically compensate the gravity. - This actuator changes the orientation of the object and will conflict with Drot motion unless it is placed BEFORE the Drot motion actuator (the order of actuator is important) - All parameters are accessible through Python. Orientation constraint ====================== A new variant of the constraint actuator allows to align an object axis along a global direction. Damp : Time constant (in nb of frames) of orientation control. X,Y,Z: Global coordinates of reference direction. time : Maximum activation time of actuator. 0 : unlimited. >0: number of frames before automatic deactivation. Notes: - (X,Y,Z) = (0,0,0) is not a valid direction - This actuator changes the orientation of the object and will conflict with Drot motion unless it is placed BEFORE the Drot motion actuator (the order of actuator is important). - This actuator doesn't change the location and speed. It is compatible with gravity. - All parameters are accessible through Python. Actuator sensor =============== This sensor detects the activation and deactivation of actuators of the same object. The sensor generates a positive pulse when the corresponding sensor is activated and a negative pulse when it is deactivated (the contrary if the Inv option is selected). This is mostly useful to chain actions and to detect the loss of contact of the distance motion actuator. Notes: - Actuators are disabled at the start of the game; if you want to detect the On-Off transition of an actuator after it has been activated at least once, unselect the Lvl and Inv options and use a NAND controller. - Some actuators deactivates themselves immediately after being activated. The sensor detects this situation as an On-Off transition. - The actuator name can be set through Python.
2008-06-24BGE patch: Add level option on sensor and fix sensor reset.Benoit Bolsee
Level option is now available on all sensors but is only implemented on mouse and keyboard sensors. The purpose of that option is to make the sensor react on level rather than edge by default. It's only applicable to state engine system when there is a state transition: the sensor will generate a pulse if the condition is met from the start of the state. Normally, the keyboard sensor generate a pulse only when the key is pressed and not when the key is already pressed. This patch allows to select this behavior. The second part of the patch corrects the reset method for sensors with inverted output.
2008-06-22BGE patch: add state engine support in the logic bricks.Benoit Bolsee
This patch introduces a simple state engine system with the logic bricks. This system features full backward compatibility, multiple active states, multiple state transitions, automatic disabling of sensor and actuators, full GUI support and selective display of sensors and actuators. Note: Python API is available but not documented yet. It will be added asap. State internals =============== The state system is object based. The current state mask is stored in the object as a 32 bit value; each bit set in the mask is an active state. The controllers have a state mask too but only one bit can be set: a controller belongs to a single state. The game engine will only execute controllers that belong to active states. Sensors and actuators don't have a state mask but are effectively attached to states via their links to the controllers. Sensors and actuators can be connected to more than one state. When a controller becomes inactive because of a state change, its links to sensors and actuators are temporarily broken (until the state becomes active again). If an actuator gets isolated, i.e all the links to controllers are broken, it is automatically disabled. If a sensor gets isolated, the game engine will stop calling it to save CPU. It will also reset the sensor internal state so that it can react as if the game just started when it gets reconnected to an active controller. For example, an Always sensor in no pulse mode that is connected to a single state (i.e connected to one or more controllers of a single state) will generate a pulse each time the state becomes active. This feature is not available on all sensors, see the notes below. GUI === This system system is fully configurable through the GUI: the object state mask is visible under the object bar in the controller's colum as an array of buttons just like the 3D view layer mask. Click on a state bit to only display the controllers of that state. You can select more than one state with SHIFT-click. The All button sets all the bits so that you can see all the controllers of the object. The Ini button sets the state mask back to the object default state. You can change the default state of object by first selecting the desired state mask and storing using the menu under the State button. If you define a default state mask, it will be loaded into the object state make when you load the blend file or when you run the game under the blenderplayer. However, when you run the game under Blender, the current selected state mask will be used as the startup state for the object. This allows you to test specific state during the game design. The controller display the state they belong to with a new button in the controller header. When you add a new controller, it is added by default in the lowest enabled state. You can change the controller state by clicking on the button and selecting another state. If more than one state is enabled in the object state mask, controllers are grouped by state for more readibility. The new Sta button in the sensor and actuator column header allows you to display only the sensors and actuators that are linked to visible controllers. A new state actuator is available to modify the state during the game. It defines a bit mask and the operation to apply on the current object state mask: Cpy: the bit mask is copied to the object state mask. Add: the bits that set in the bit mask will be turned on in the object state mask. Sub: the bits that set in the bit mask will be turned off in the object state mask. Inv: the bits that set in the bit mask will be inverted in the objecyy state mask. Notes ===== - Although states have no name, a simply convention consists in using the name of the first controller of the state as the state name. The GUI will support that convention by displaying as a hint the name of the first controller of the state when you move the mouse over a state bit of the object state mask or of the state actuator bit mask. - Each object has a state mask and each object can have a state engine but if several objects are part of a logical group, it is recommended to put the state engine only in the main object and to link the controllers of that object to the sensors and actuators of the different objects. - When loading an old blend file, the state mask of all objects and controllers are initialized to 1 so that all the controllers belong to this single state. This ensures backward compatibility with existing game. - When the state actuator is activated at the same time as other actuators, these actuators are guaranteed to execute before being eventually disabled due to the state change. This is useful for example to send a message or update a property at the time of changing the state. - Sensors that depend on underlying resource won't reset fully when they are isolated. By the time they are acticated again, they will behave as follow: * keyboard sensor: keys already pressed won't be detected. The keyboard sensor is only sensitive to new key press. * collision sensor: objects already colliding won't be detected. Only new collisions are detected. * near and radar sensor: same as collision sensor.
2008-04-17Patch from GSR that a) fixes a whole bunch of GPL/BL licenseChris Want
blocks that were previously missed; and b) greatly increase my ohloh stats!
2008-02-04bugfix 8183, Ray sensor with material/property filter always triggers when ↵Hamed Zaghaghi
hitting object without the required characteristic fixed by Benoit Blosee(ben2610), and some minor changes for 2d-filters.
2007-02-20Patch provided by Carsten,Kent Mein
KX_RaySensor::Evaluate returns false when hit was detected and it was already marked as hit. (no change in state) Kent
2006-01-30More simple fixes to cleanup warnings and what not:Kent Mein
extern/bullet/BulletDynamics/ConstraintSolver/SimpleConstraintSolver.h added newline at end of file. intern/boolop/intern/BOP_Face2Face.cpp fixed indentation and had nested declarations of a varible i used for multiple for loops, changed it to just one declaration. source/blender/blenkernel/bad_level_call_stubs/stubs.c added prototypes and a couple other fixes. source/blender/include/BDR_drawobject.h source/blender/include/BSE_node.h source/blender/include/butspace.h source/blender/render/extern/include/RE_shader_ext.h added struct definitions source/blender/src/editmesh_mods.c source/gameengine/Ketsji/KX_BlenderMaterial.cpp source/gameengine/Ketsji/KX_ConvertPhysicsObjects.cpp source/gameengine/Ketsji/KX_RaySensor.cpp removed unused variables; source/gameengine/GameLogic/Joystick/SCA_Joystick.cpp changed format of case statements to avoid warnings in gcc. Kent
2005-11-11fixed raysensor, hooked up a few more bullet method: force, torque etc, + ↵Erwin Coumans
'local'. cosmetic change in physics-engine menu.
2005-08-17some more fixes in the raycast/mouse overErwin Coumans
2005-08-06fixed sphere shape, added non-uniform scaling (making it an ellipsoid)Erwin Coumans
removed bug-fixing comments
2005-08-05fixed the mouse-over sensor,Erwin Coumans
added raycast support for bullet (no triangle-mesh support, soon) added python methods for 'getHitObject', getRayDirection, getHitPosition and getHitNormal for mouse over sensor, which makes it easy for a shootout.blend demo :)
2005-03-25Big patches:Kester Maddock
Erwin Coumans: Abstract the physics engine Charlie C: Joystick fixes Me: Moved the ray cast (shadows, mouse sensor & ray sensor)
2004-11-06Speed up the physics engine: hook the SOLID broad phase, so we can either ↵Kester Maddock
reject the test or request the penetration depth test as necessary. Previously we were doing the penetration depth test, as well as SOLID's intersection test.
2004-08-10Clear the Python error flag between 'overloaded' Python methods.Kester Maddock
2004-05-16Changed Python _getattr/_setattr methods to use const STR_String& instead of ↵Kester Maddock
char* - makes using these methods much nicer.
2004-04-09Fix bug #1126: Ray sensor detects a near sensor attached to the same object ↵Kester Maddock
and then goes into an endless loop trying to ignore it.
2004-03-23[GameEngine] Commit all Kester's changes made to the gameengine to restore ↵Nathan Letwory
2.25 like physics. [SCons] Build with Solid as default when enabling the gameengine in the build process [SCons] Build solid and qhull from the extern directory and link statically against them That was about it. There are a few things that needs double checking: * Makefiles * Projectfiles * All the other systems than Linux and Windows on which the build (with scons) has been successfully tested.
2002-11-25Last of the config.h mods...Kent Mein
#ifdef HAVE_CONFIG_H #include <config.h> #endif added to these files. Kent -- mein@cs.umn.edu
2002-10-12Initial revisionv2.25Hans Lambermont