Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
AgeCommit message (Collapse)Author
2008-10-17BGE bug fix (continuation of previous bug fix): Benoit Bolsee
- Forgot to make SCA_ISensor::UnregisterToManager() virtual to intercept active-inactive transition on collision sensor to clear colliders reference. - Don't record collision on inactive sensor. This situation occurs when an object with an inactive collision sensor collides with an object with an active collision sensor: the collision handler triggers both sensors. The result of this bug was pending references that eventually cause temporary memory leak (until the sensor is reactivated).
2008-10-17BGE showstopper bug fix: Benoit Bolsee
- Reset hit object pointer at end of frame of touch sensor to avoid returning invalid pointer to getHitObject(). - Clear all references in KX_TouchSensor::m_colliders when the sensor is disabled to avoid loose references. - Test GetSGNode() systematically for all KX_GameObject functions that can be called from python in case a python controller keeps a reference in GameLogic (bad practice anyway).
2008-10-02Python 2.4 should build with the game engine now, no thanks to python for ↵Campbell Barton
switching from char to const char
2008-09-20[#17600] char* -> const char*Campbell Barton
Thanks to Sean Bartell (wtachi), was causing many many warnings which distracted from the real problems.
2008-07-30BGE patch: logic optimization part 2: remove inactive sensors from logic ↵Benoit Bolsee
manager. With this patch, only sensors that are connected to active states are actually registered in the logic manager. Inactive sensors won't take any CPU, especially the Radar and Near sensors that use a physical object for the detection: these objects are removed from the physics engine. To take advantage of this optimization patch, you need to define very light idle state when the objects are inactive: make them transparent, suspend the physics, keep few sensors active (e,g a message sensor to wake up), etc.
2008-07-04BGE logic update: new servo control motion actuator, new distance constraint ↵Benoit Bolsee
actuator, new orientation constraint actuator, new actuator sensor. General ======= - Removal of Damp option in motion actuator (replaced by Servo control motion). - No PyDoc at present, will be added soon. Generalization of the Lvl option ================================ A sensor with the Lvl option selected will always produce an event at the start of the game or when entering a state or at object creation. The event will be positive or negative depending of the sensor condition. A negative pulse makes sense when used with a NAND controller: it will be converted into an actuator activation. Servo control motion ==================== A new variant of the motion actuator allows to control speed with force. The control if of type "PID" (Propotional, Integral, Derivate): the force is automatically adapted to achieve the target speed. All the parameters of the servo controller are configurable. The result is a great variety of motion style: anysotropic friction, flying, sliding, pseudo Dloc... This actuator should be used in preference to Dloc and LinV as it produces more fluid movements and avoids the collision problem with Dloc. LinV : target speed as (X,Y,Z) vector in local or world coordinates (mostly useful in local coordinates). Limit: the force can be limited along each axis (in the same coordinates of LinV). No limitation means that the force will grow as large as necessary to achieve the target speed along that axis. Set a max value to limit the accelaration along an axis (slow start) and set a min value (negative) to limit the brake force. P: Proportional coefficient of servo controller, don't set directly unless you know what you're doing. I: Integral coefficient of servo controller. Use low value (<0.1) for slow reaction (sliding), high values (>0.5) for hard control. The P coefficient will be automatically set to 60 times the I coefficient (a reasonable value). D: Derivate coefficient. Leave to 0 unless you know what you're doing. High values create instability. Notes: - This actuator works perfectly in zero friction environment: the PID controller will simulate friction by applying force as needed. - This actuator is compatible with simple Drot motion actuator but not with LinV and Dloc motion. - (0,0,0) is a valid target speed. - All parameters are accessible through Python. Distance constraint actuator ============================ A new variant of the constraint actuator allows to set the distance and orientation relative to a surface. The controller uses a ray to detect the surface (or any object) and adapt the distance and orientation parallel to the surface. Damp: Time constant (in nb of frames) of distance and orientation control. Dist: Select to enable distance control and set target distance. The object will be position at the given distance of surface along the ray direction. Direction: chose a local axis as the ray direction. Range: length of ray. Objecgt within this distance will be detected. N : Select to enable orientation control. The actuator will change the orientation and the location of the object so that it is parallel to the surface at the vertical of the point of contact of the ray. M/P : Select to enable material detection. Default is property detection. Property/Material: name of property/material that the target of ray must have to be detected. If not set, property/ material filter is disabled and any collisioning object within range will be detected. PER : Select to enable persistent operation. Normally the actuator disables itself automatically if the ray does not reach a valid target. time : Maximum activation time of actuator. 0 : unlimited. >0: number of frames before automatic deactivation. rotDamp: Time constant (in nb of frame) of orientation control. 0 : use Damp parameter. >0: use a different time constant for orientation. Notes: - If neither N nor Dist options are set, the actuator does not change the position and orientation of the object; it works as a ray sensor. - The ray has no "X-ray" capability: if the first object hit does not have the required property/material, it returns no hit and the actuator disables itself unless PER option is enabled. - This actuator changes the position and orientation but not the speed of the object. This has an important implication in a gravity environment: the gravity will cause the speed to increase although the object seems to stay still (it is repositioned at each frame). The gravity must be compensated in one way or another. the new servo control motion actuator is the simplest way: set the target speed along the ray axis to 0 and the servo control will automatically compensate the gravity. - This actuator changes the orientation of the object and will conflict with Drot motion unless it is placed BEFORE the Drot motion actuator (the order of actuator is important) - All parameters are accessible through Python. Orientation constraint ====================== A new variant of the constraint actuator allows to align an object axis along a global direction. Damp : Time constant (in nb of frames) of orientation control. X,Y,Z: Global coordinates of reference direction. time : Maximum activation time of actuator. 0 : unlimited. >0: number of frames before automatic deactivation. Notes: - (X,Y,Z) = (0,0,0) is not a valid direction - This actuator changes the orientation of the object and will conflict with Drot motion unless it is placed BEFORE the Drot motion actuator (the order of actuator is important). - This actuator doesn't change the location and speed. It is compatible with gravity. - All parameters are accessible through Python. Actuator sensor =============== This sensor detects the activation and deactivation of actuators of the same object. The sensor generates a positive pulse when the corresponding sensor is activated and a negative pulse when it is deactivated (the contrary if the Inv option is selected). This is mostly useful to chain actions and to detect the loss of contact of the distance motion actuator. Notes: - Actuators are disabled at the start of the game; if you want to detect the On-Off transition of an actuator after it has been activated at least once, unselect the Lvl and Inv options and use a NAND controller. - Some actuators deactivates themselves immediately after being activated. The sensor detects this situation as an On-Off transition. - The actuator name can be set through Python.
2008-06-24BGE patch: Add NAND, NOR, XOR, XNOR controllers.Benoit Bolsee
NAND controller is an inverted AND controller: the output is 1 if any of the input is 0. NOR controller is an inverted OR controller: the output is 0 if any of the input is 1. XOR controller is an exclusive OR: the output is 1 if and only if one input is 1 and all the other inputs are 0. XNOR controller is an inverted XOR: the output is 0 if and only if one input is 0 and all the other inputs are 0. The NAND, NORT and XNOR controllers are very usefull to create complementary outputs to start and stop actuators synchronously. MSCV project files updated.
2008-06-22BGE patch: add state engine support in the logic bricks.Benoit Bolsee
This patch introduces a simple state engine system with the logic bricks. This system features full backward compatibility, multiple active states, multiple state transitions, automatic disabling of sensor and actuators, full GUI support and selective display of sensors and actuators. Note: Python API is available but not documented yet. It will be added asap. State internals =============== The state system is object based. The current state mask is stored in the object as a 32 bit value; each bit set in the mask is an active state. The controllers have a state mask too but only one bit can be set: a controller belongs to a single state. The game engine will only execute controllers that belong to active states. Sensors and actuators don't have a state mask but are effectively attached to states via their links to the controllers. Sensors and actuators can be connected to more than one state. When a controller becomes inactive because of a state change, its links to sensors and actuators are temporarily broken (until the state becomes active again). If an actuator gets isolated, i.e all the links to controllers are broken, it is automatically disabled. If a sensor gets isolated, the game engine will stop calling it to save CPU. It will also reset the sensor internal state so that it can react as if the game just started when it gets reconnected to an active controller. For example, an Always sensor in no pulse mode that is connected to a single state (i.e connected to one or more controllers of a single state) will generate a pulse each time the state becomes active. This feature is not available on all sensors, see the notes below. GUI === This system system is fully configurable through the GUI: the object state mask is visible under the object bar in the controller's colum as an array of buttons just like the 3D view layer mask. Click on a state bit to only display the controllers of that state. You can select more than one state with SHIFT-click. The All button sets all the bits so that you can see all the controllers of the object. The Ini button sets the state mask back to the object default state. You can change the default state of object by first selecting the desired state mask and storing using the menu under the State button. If you define a default state mask, it will be loaded into the object state make when you load the blend file or when you run the game under the blenderplayer. However, when you run the game under Blender, the current selected state mask will be used as the startup state for the object. This allows you to test specific state during the game design. The controller display the state they belong to with a new button in the controller header. When you add a new controller, it is added by default in the lowest enabled state. You can change the controller state by clicking on the button and selecting another state. If more than one state is enabled in the object state mask, controllers are grouped by state for more readibility. The new Sta button in the sensor and actuator column header allows you to display only the sensors and actuators that are linked to visible controllers. A new state actuator is available to modify the state during the game. It defines a bit mask and the operation to apply on the current object state mask: Cpy: the bit mask is copied to the object state mask. Add: the bits that set in the bit mask will be turned on in the object state mask. Sub: the bits that set in the bit mask will be turned off in the object state mask. Inv: the bits that set in the bit mask will be inverted in the objecyy state mask. Notes ===== - Although states have no name, a simply convention consists in using the name of the first controller of the state as the state name. The GUI will support that convention by displaying as a hint the name of the first controller of the state when you move the mouse over a state bit of the object state mask or of the state actuator bit mask. - Each object has a state mask and each object can have a state engine but if several objects are part of a logical group, it is recommended to put the state engine only in the main object and to link the controllers of that object to the sensors and actuators of the different objects. - When loading an old blend file, the state mask of all objects and controllers are initialized to 1 so that all the controllers belong to this single state. This ensures backward compatibility with existing game. - When the state actuator is activated at the same time as other actuators, these actuators are guaranteed to execute before being eventually disabled due to the state change. This is useful for example to send a message or update a property at the time of changing the state. - Sensors that depend on underlying resource won't reset fully when they are isolated. By the time they are acticated again, they will behave as follow: * keyboard sensor: keys already pressed won't be detected. The keyboard sensor is only sensitive to new key press. * collision sensor: objects already colliding won't be detected. Only new collisions are detected. * near and radar sensor: same as collision sensor.
2008-04-20fix BGE bug #8094: Collision sensor on child object makes the object rotate ↵Benoit Bolsee
or move very fast. Collision sensor can now be set on child object without side effect.
2008-04-17Patch from GSR that a) fixes a whole bunch of GPL/BL licenseChris Want
blocks that were previously missed; and b) greatly increase my ohloh stats!
2008-03-01unknown property fixed in sensor/actuatorsBenoit Bolsee
2006-12-04fixed some motionstate synchronization issuesErwin Coumans
nearsensor was not synchronized at the start wheels not synchronized properly (one frame delay)
2006-04-26fixed several internal Bullet rigidbody dynamics bugs:Erwin Coumans
- broadphase had bugs in removing objects, - persistent manifold renamed value, - cylinder penetration depth fixed, - memory leak for persistent manifold
2005-06-04new round of warning fixes. we are now down to 24 with Xcode on blenderJean-Luc Peurière
alone with the following flags : -Wall -Wno-char-subscripts -Wno-missing-braces. the only one still worrying me is in rand.c line 57 : rand.c:57: integer constant is too large for "long" type but i have no clue about how correct cross-compiler and 32/64 bits friendly see also my mail to commiter list for signed/unsigned issues
2005-03-25Big patches:Kester Maddock
Erwin Coumans: Abstract the physics engine Charlie C: Joystick fixes Me: Moved the ray cast (shadows, mouse sensor & ray sensor)
2005-03-09big warning hunt commitJean-Luc Peurière
lot of casts, added prototypes, missing includes and some true errors
2004-11-06Speed up the physics engine: hook the SOLID broad phase, so we can either ↵Kester Maddock
reject the test or request the penetration depth test as necessary. Previously we were doing the penetration depth test, as well as SOLID's intersection test.
2004-06-26Minor Fixes:Kester Maddock
Better use of booleans for python #include fixes for Windows Python Doc fixes Use the farthest vertex as the face position when z sorting faces. (Camera is on -z axis!)
2004-05-16Changed Python _getattr/_setattr methods to use const STR_String& instead of ↵Kester Maddock
char* - makes using these methods much nicer.
2004-04-111. Check material names passed to the physics engine (for collision sensors.)Kester Maddock
Consider: gameobj->getClientInfo()->m_auxilary_info = (matname ? (void*)(matname+2) : NULL); It works if matname is "MAblah", but not if matname is "". 2. Added constructor for struct RAS_CameraData. 3. Added initializers to the struct KX_ClientObjectInfo constructor 4. Collision sensors won't detect near sensors. 5. A stack of minor tweaks, adjusting whitespace, using ++it for stl stuff.
2004-03-23[GameEngine] Commit all Kester's changes made to the gameengine to restore ↵Nathan Letwory
2.25 like physics. [SCons] Build with Solid as default when enabling the gameengine in the build process [SCons] Build solid and qhull from the extern directory and link statically against them That was about it. There are a few things that needs double checking: * Makefiles * Projectfiles * All the other systems than Linux and Windows on which the build (with scons) has been successfully tested.
2002-11-25Last of the config.h mods...Kent Mein
#ifdef HAVE_CONFIG_H #include <config.h> #endif added to these files. Kent -- mein@cs.umn.edu
2002-10-12Initial revisionv2.25Hans Lambermont