Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
AgeCommit message (Collapse)Author
2016-06-11BGE: DeckLink card support for video capture and streaming.Benoit Bolsee
You can capture and stream video in the BGE using the DeckLink video cards from Black Magic Design. You need a card and Desktop Video software version 10.4 or above to use these features in the BGE. Many thanks to Nuno Estanquiero who tested the patch extensively on a variety of Decklink products, it wouldn't have been possible without his help. You can find a brief summary of the decklink features here: https://wiki.blender.org/index.php/Dev:Source/GameEngine/Decklink The full API details and samples are in the Python API documentation. bge.texture.VideoDeckLink(format, capture=0): Use this object to capture a video stream. the format argument describes the video and pixel formats and the capture argument the card number. This object can be used as a source for bge.texture.Texture so that the frame is sent to the GPU, or by itself using the new refresh method to get the video frame in a buffer. The frames are usually not in RGB but in YUV format (8bit or 10bit); they require a shader to extract the RGB components in the GPU. Details and sample shaders in the documentation. 3D video capture is supported: the frames are double height with left and right eyes in top-bottom order. The 'eye' uniform (see setUniformEyef) can be used to sample the 3D frame when the BGE is also in stereo mode. This allows to composite a 3D video stream with a 3D scene and render it in stereo. In Windows, and if you have a nVidia Quadro GPU, you can benefit of an additional performance boost by using 'GPUDirect': a method to send a video frame to the GPU without going through the OGL driver. The 'pinned memory' OGL extension is also supported (only on high-end AMD GPU) with the same effect. bge.texture.DeckLink(cardIdx=0, format=""): Use this object to send video frame to a DeckLink card. Only the immediate mode is supported, the scheduled mode is not implemented. This object is similar to bge.texture.Texture: you need to attach a image source and call refresh() to compute and send the frame to the card. This object is best suited for video keying: a video stream (not captured) flows through the card and the frame you send to the card are displayed above it (the card does the compositing automatically based on the alpha channel). At the time of this commit, 3D video keying is supported in the BGE but not in the DeckLink card due to a color space issue.
2016-06-11BGE: Various render improvements.Benoit Bolsee
bge.logic.setRender(flag) to enable/disable render. The render pass is enabled by default but it can be disabled with bge.logic.setRender(False). Once disabled, the render pass is skipped and a new logic frame starts immediately. Note that VSync no longer limits the fps when render is off but the 'Use Frame Rate' option in the Render Properties still does. To run as many frames as possible, untick the option This function is useful when you don't need the default render, e.g. when doing offscreen render to an alternate device than the monitor. Note that without VSync, you must limit the frame rate by other means. fbo = bge.render.offScreenCreate(width,height,[,samples=0][,target=bge.render.RAS_OFS_RENDER_BUFFER]) Use this method to create an offscreen buffer of given size, with given MSAA samples and targetting either a render buffer (bge.render.RAS_OFS_RENDER_BUFFER) or a texture (bge.render.RAS_OFS_RENDER_TEXTURE). Use the former if you want to retrieve the frame buffer on the host and the latter if you want to pass the render to another context (texture are proper OGL object, render buffers aren't) The object created by this function can only be used as a parameter of the bge.texture.ImageRender() constructor to send the the render to the FBO rather than to the frame buffer. This is best suited when you want to create a render of specific size, or if you need an image with an alpha channel. bge.texture.<imagetype>.refresh(buffer=None, format="RGBA", ts=-1.0) Without arg, the refresh method of the image objects is pretty much a no-op, it simply invalidates the image so that on next texture refresh, the image will be recalculated. It is now possible to pass an optional buffer object to transfer the image (and recalculate it if it was invalid) to an external object. The object must implement the 'buffer protocol'. The image will be transfered as "RGBA" or "BGRA" pixels depending on format argument (only those 2 formats are supported) and ts is an optional timestamp in the image depends on it (e.g. VideoFFmpeg playing a video file). With this function you don't need anymore to link the image object to a Texture object to use: the image object is self-sufficient. bge.texture.ImageRender(scene, camera, fbo=None) Render to buffer is possible by passing a FBO object (see offScreenCreate). bge.texture.ImageRender.render() Allows asynchronous render: call this method to render the scene but without extracting the pixels yet. The function returns as soon as the render commands have been send to the GPU. The render will proceed asynchronously in the GPU while the host can perform other tasks. To complete the render, you can either call refresh() directly of refresh the texture to which this object is the source. Asynchronous render is useful to achieve optimal performance: call render() on frame N and refresh() on frame N+1 to give as much as time as possible to the GPU to render the frame while the game engine can perform other tasks. Support negative scale on camera. Camera scale was previously ignored in the BGE. It is now injected in the modelview matrix as a vertical or horizontal flip of the scene (respectively if scaleY<0 and scaleX<0). Note that the actual value of the scale is not used, only the sign. This allows to flip the image produced by ImageRender() without any performance degradation: the flip is integrated in the render itself. Optimized image transfer from ImageRender to buffer. Previously, images that were transferred to the host were always going through buffers in VideoTexture. It is now possible to transfer ImageRender images to external buffer without intermediate copy (i.e. directly from OGL to buffer) if the attributes of the ImageRender objects are set as follow: flip=False, alpha=True, scale=False, depth=False, zbuff=False. (if you need to flip the image, use camera negative scale)
2015-07-12BGE Clean-up: New EXP prefix for the BGE Expression moduleJorge Bernal
The expression module now uses an EXP prefix and it follows a distribution similar to blender. Additionally the hash function in EXP_HashedPtr.h was simplified and the files EXP_C-Api.h &.EXP_C-Api.cpp were deleted because were unused. Reviewers: campbellbarton, moguri, sybren, hg1 Projects: #game_engine Differential Revision: https://developer.blender.org/D1221
2013-08-03BGE: Making sure m_line is initialized in the Exception (VideoTexture) ↵Mitchell Stokes
constructor.
2013-03-26style cleanup:Campbell Barton
also rename mesh_getVertexCos() --> BKE_mesh_vertexCos_get() to match curve function.
2013-03-25code cleanup:Campbell Barton
- remove unused defines. - quiet some shadow warnings. - bevel, ifdef out some asserts that are too common. - style
2012-11-18code cleanup: gpl header update (formatting)Campbell Barton
2012-06-17code cleanup: includes, also correct some py example typosCampbell Barton
2011-10-23remove $Id: tags after discussion on the mailign list: ↵Campbell Barton
http://markmail.org/message/fp7ozcywxum3ar7n
2011-09-01whitespace bge editsCampbell Barton
2011-08-27- use %u rather tham %d for unsigned ints in string formatting funcs.Campbell Barton
- replace (strlen(str) == 0) with str[0]=='\0'
2011-02-25doxygen: gameengine/VideoTexture tagged.Nathan Letwory
2010-02-22VideoTexture: improvements to image data access API. Benoit Bolsee
- Use BGL buffer instead of string for image data. - Add buffer interface to image source. - Allow customization of pixel format. - Add valid property to check if the image data is available. The image property of all Image source objects will now return a BGL 'buffer' object. Previously it was returning a string, which was not working at all with Python 3.1. The BGL buffer type allows sequence access to bytes and is directly usable in BGL OpenGL wrapper functions. The buffer is formated as a 1 dimensional array of bytes with 4 bytes per pixel in RGBA order. BGL buffers will also be accepted in the ImageBuff load() and plot() functions. It is possible to customize the pixel format by using the VideoTexture.imageToArray(image, mode) function: the first argument is a Image source object, the second optional argument is a format string using the R, G, B, A, 0 and 1 characters. For example "BGR" means that each pixel will be 3 bytes, corresponding to the Blue, Green and Red channel in that order. Use 0 for a fixed hex 00 value, 1 for hex FF. The default mode is "RGBA". All Image source objects now support the buffer interface which allows to create memoryview objects for direct access to the image internal buffer without memory copy. The buffer format is one dimensional array of bytes with 4 bytes per pixel in RGBA order. The buffer is writable, which allows custom modifications of the image data. v = memoryview(source) A bug in the Python 3.1 buffer API will cause a crash if the memoryview object cannot be created. Therefore, you must always check first that an image data is available before creating a memoryview object. Use the new valid attribute for that: if source.valid: v = memoryview(source) ... Note: the BGL buffer object itself does not yet support the buffer interface. Note: the valid attribute makes sense only if you use image source in conjunction with texture object like this: # refresh texture but keep image data in memory texture.refresh(False) if texture.source.valid: v = memoryview(texture.source) # process image ... # invalidate image for next texture refresh texture.source.refresh() Limitation: While memoryview objects exist, the image cannot be resized. Resizing occurs with ImageViewport objects when the viewport size is changed or with ImageFFmpeg when a new image is reloaded for example. Any attempt to resize will cause a runtime error. Delete the memoryview objects is you want to resize an image source object.
2010-02-16[#18961] Use const char * where appropriate (2.5)Campbell Barton
from Sean Bartell (wtachi) added own changes bpy_props.c
2009-08-22[#19226] (2.5) blender uses deprecated 'strstream' STL class, causes ↵Campbell Barton
warnings with gcc thanks to Mauro Toffanin (equilibrium) This is the only place where strstream were used.
2008-12-142.50: svn merge https://svn.blender.org/svnroot/bf-blender/trunk/blender ↵Brecht Van Lommel
-r17434:HEAD
2008-11-05VideoTexture: Add support for GLSL. FIx small printout bug in Exception printoutBenoit Bolsee
2008-11-02VideoTexture: use PyObjectPlus.h instead of Python.h for compatibility with ↵Benoit Bolsee
Python2.3
2008-11-01BGE Video Texture: fix constant initializer problem with Exception ↵Benoit Bolsee
description. Uniformized the line ending.
2008-11-01VideoTexture module.Benoit Bolsee
The only compilation system that works for sure is the MSVC project files. I've tried my best to update the other compilation system but I count on the community to check and fix them. This is Zdeno Miklas video texture plugin ported to trunk. The original plugin API is maintained (can be found here http://home.scarlet.be/~tsi46445/blender/blendVideoTex.html) EXCEPT for the following: The module name is changed to VideoTexture (instead of blendVideoTex). A new (and only) video source is now available: VideoFFmpeg() You must pass 1 to 4 arguments when you create it (you can use named arguments): VideoFFmpeg(file) : play a video file VideoFFmpeg(file, capture, rate, width, height) : start a live video capture file: In the first form, file is a video file name, relative to startup directory. It can also be a URL, FFmpeg will happily stream a video from a network source. In the second form, file is empty or is a hint for the format of the video capture. In Windows, file is ignored and should be empty or not specified. In Linux, ffmpeg supports two types of device: VideoForLinux and DV1394. The user specifies the type of device with the file parameter: [<device_type>][:<standard>] <device_type> : 'v4l' for VideoForLinux, 'dv1394' for DV1394; default to 'v4l' <standard> : 'pal', 'secam' or 'ntsc', default to 'ntsc' The driver name is constructed automatically from the device types: v4l : /dev/video<capture> dv1394: /dev/dv1394/<capture> If you have different driver name, you can specify the driver name explicitely instead of device type. Examples of valid file parameter: /dev/v4l/video0:pal /dev/ieee1394/1:ntsc dv1394:ntsc v4l:pal :secam capture: Defines the index number of the capture source, starting from 0. The first capture device is always 0. The VideoTexutre modules knows that you want to start a live video capture when you set this parameter to a number >= 0. Setting this parameter < 0 indicates a video file playback. Default value is -1. rate: the capture frame rate, by default 25 frames/sec width: height: Width and height of the video capture in pixel, default value 0. In Windows you must specify these values and they must fit with the capture device capability. For example, if you have a webcam that can capture at 160x120, 320x240 or 640x480, you must specify one of these couple of values or the opening of the video source will fail. In Linux, default values are provided by the VideoForLinux driver if you don't specify width and height. Simple example ************** 1. Texture definition script: import VideoTexture contr = GameLogic.getCurrentController() obj = contr.getOwner() if not hasattr(GameLogic, 'video'): matID = VideoTexture.materialID(obj, 'MAVideoMat') GameLogic.video = VideoTexture.Texture(obj, matID) GameLogic.vidSrc = VideoTexture.VideoFFmpeg('trailer_400p.ogg') # Streaming is also possible: #GameLogic.vidSrc = VideoTexture.VideoFFmpeg('http://10.32.1.10/trailer_400p.ogg') GameLogic.vidSrc.repeat = -1 # If the video dimensions are not a power of 2, scaling must be done before # sending the texture to the GPU. This is done by default with gluScaleImage() # but you can also use a faster, but less precise, scaling by setting scale # to True. Best approach is to convert the video offline and set the dimensions right. GameLogic.vidSrc.scale = True # FFmpeg always delivers the video image upside down, so flipping is enabled automatically #GameLogic.vidSrc.flip = True if contr.getSensors()[0].isPositive(): GameLogic.video.source = GameLogic.vidSrc GameLogic.vidSrc.play() 2. Texture refresh script: obj = GameLogic.getCurrentController().getOwner() if hasattr(GameLogic, 'video') != 0: GameLogic.video.refresh(True) You can download this demo here: http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blend http://home.scarlet.be/~tsi46445/blender/trailer_400p.ogg