Welcome to mirror list, hosted at ThFree Co, Russian Federation.

CacheFriendlyProduct.h « Core « src « Eigen « Eigen2 « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: b1362b0a80c4fcbde6a3b2500c49fb359c9dd28f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_CACHE_FRIENDLY_PRODUCT_H
#define EIGEN_CACHE_FRIENDLY_PRODUCT_H

template <int L2MemorySize,typename Scalar>
struct ei_L2_block_traits {
  enum {width = 8 * ei_meta_sqrt<L2MemorySize/(64*sizeof(Scalar))>::ret };
};

#ifndef EIGEN_EXTERN_INSTANTIATIONS

template<typename Scalar>
static void ei_cache_friendly_product(
  int _rows, int _cols, int depth,
  bool _lhsRowMajor, const Scalar* _lhs, int _lhsStride,
  bool _rhsRowMajor, const Scalar* _rhs, int _rhsStride,
  bool resRowMajor, Scalar* res, int resStride)
{
  const Scalar* EIGEN_RESTRICT lhs;
  const Scalar* EIGEN_RESTRICT rhs;
  int lhsStride, rhsStride, rows, cols;
  bool lhsRowMajor;

  if (resRowMajor)
  {
    lhs = _rhs;
    rhs = _lhs;
    lhsStride = _rhsStride;
    rhsStride = _lhsStride;
    cols = _rows;
    rows = _cols;
    lhsRowMajor = !_rhsRowMajor;
    ei_assert(_lhsRowMajor);
  }
  else
  {
    lhs = _lhs;
    rhs = _rhs;
    lhsStride = _lhsStride;
    rhsStride = _rhsStride;
    rows = _rows;
    cols = _cols;
    lhsRowMajor = _lhsRowMajor;
    ei_assert(!_rhsRowMajor);
  }

  typedef typename ei_packet_traits<Scalar>::type PacketType;

  enum {
    PacketSize = sizeof(PacketType)/sizeof(Scalar),
    #if (defined __i386__)
    // i386 architecture provides only 8 xmm registers,
    // so let's reduce the max number of rows processed at once.
    MaxBlockRows = 4,
    MaxBlockRows_ClampingMask = 0xFFFFFC,
    #else
    MaxBlockRows = 8,
    MaxBlockRows_ClampingMask = 0xFFFFF8,
    #endif
    // maximal size of the blocks fitted in L2 cache
    MaxL2BlockSize = ei_L2_block_traits<EIGEN_TUNE_FOR_CPU_CACHE_SIZE,Scalar>::width
  };

  const bool resIsAligned = (PacketSize==1) || (((resStride%PacketSize) == 0) && (size_t(res)%16==0));

  const int remainingSize = depth % PacketSize;
  const int size = depth - remainingSize; // third dimension of the product clamped to packet boundaries
  const int l2BlockRows = MaxL2BlockSize > rows ? rows : MaxL2BlockSize;
  const int l2BlockCols = MaxL2BlockSize > cols ? cols : MaxL2BlockSize;
  const int l2BlockSize = MaxL2BlockSize > size ? size : MaxL2BlockSize;
  const int l2BlockSizeAligned = (1 + std::max(l2BlockSize,l2BlockCols)/PacketSize)*PacketSize;
  const bool needRhsCopy = (PacketSize>1) && ((rhsStride%PacketSize!=0) || (size_t(rhs)%16!=0));
  Scalar* EIGEN_RESTRICT block = 0;
  const int allocBlockSize = l2BlockRows*size;
  block = ei_aligned_stack_new(Scalar, allocBlockSize);
  Scalar* EIGEN_RESTRICT rhsCopy
    = ei_aligned_stack_new(Scalar, l2BlockSizeAligned*l2BlockSizeAligned);

  // loops on each L2 cache friendly blocks of the result
  for(int l2i=0; l2i<rows; l2i+=l2BlockRows)
  {
    const int l2blockRowEnd = std::min(l2i+l2BlockRows, rows);
    const int l2blockRowEndBW = l2blockRowEnd & MaxBlockRows_ClampingMask;    // end of the rows aligned to bw
    const int l2blockRemainingRows = l2blockRowEnd - l2blockRowEndBW;         // number of remaining rows
    //const int l2blockRowEndBWPlusOne = l2blockRowEndBW + (l2blockRemainingRows?0:MaxBlockRows);

    // build a cache friendly blocky matrix
    int count = 0;

    // copy l2blocksize rows of m_lhs to blocks of ps x bw
    for(int l2k=0; l2k<size; l2k+=l2BlockSize)
    {
      const int l2blockSizeEnd = std::min(l2k+l2BlockSize, size);

      for (int i = l2i; i<l2blockRowEndBW/*PlusOne*/; i+=MaxBlockRows)
      {
        // TODO merge the "if l2blockRemainingRows" using something like:
        // const int blockRows = std::min(i+MaxBlockRows, rows) - i;

        for (int k=l2k; k<l2blockSizeEnd; k+=PacketSize)
        {
          // TODO write these loops using meta unrolling
          // negligible for large matrices but useful for small ones
          if (lhsRowMajor)
          {
            for (int w=0; w<MaxBlockRows; ++w)
              for (int s=0; s<PacketSize; ++s)
                block[count++] = lhs[(i+w)*lhsStride + (k+s)];
          }
          else
          {
            for (int w=0; w<MaxBlockRows; ++w)
              for (int s=0; s<PacketSize; ++s)
                block[count++] = lhs[(i+w) + (k+s)*lhsStride];
          }
        }
      }
      if (l2blockRemainingRows>0)
      {
        for (int k=l2k; k<l2blockSizeEnd; k+=PacketSize)
        {
          if (lhsRowMajor)
          {
            for (int w=0; w<l2blockRemainingRows; ++w)
              for (int s=0; s<PacketSize; ++s)
                block[count++] = lhs[(l2blockRowEndBW+w)*lhsStride + (k+s)];
          }
          else
          {
            for (int w=0; w<l2blockRemainingRows; ++w)
              for (int s=0; s<PacketSize; ++s)
                block[count++] = lhs[(l2blockRowEndBW+w) + (k+s)*lhsStride];
          }
        }
      }
    }

    for(int l2j=0; l2j<cols; l2j+=l2BlockCols)
    {
      int l2blockColEnd = std::min(l2j+l2BlockCols, cols);

      for(int l2k=0; l2k<size; l2k+=l2BlockSize)
      {
        // acumulate bw rows of lhs time a single column of rhs to a bw x 1 block of res
        int l2blockSizeEnd = std::min(l2k+l2BlockSize, size);

        // if not aligned, copy the rhs block
        if (needRhsCopy)
          for(int l1j=l2j; l1j<l2blockColEnd; l1j+=1)
          {
            ei_internal_assert(l2BlockSizeAligned*(l1j-l2j)+(l2blockSizeEnd-l2k) < l2BlockSizeAligned*l2BlockSizeAligned);
            memcpy(rhsCopy+l2BlockSizeAligned*(l1j-l2j),&(rhs[l1j*rhsStride+l2k]),(l2blockSizeEnd-l2k)*sizeof(Scalar));
          }

        // for each bw x 1 result's block
        for(int l1i=l2i; l1i<l2blockRowEndBW; l1i+=MaxBlockRows)
        {
          int offsetblock = l2k * (l2blockRowEnd-l2i) + (l1i-l2i)*(l2blockSizeEnd-l2k) - l2k*MaxBlockRows;
          const Scalar* EIGEN_RESTRICT localB = &block[offsetblock];

          for(int l1j=l2j; l1j<l2blockColEnd; l1j+=1)
          {
            const Scalar* EIGEN_RESTRICT rhsColumn;
            if (needRhsCopy)
              rhsColumn = &(rhsCopy[l2BlockSizeAligned*(l1j-l2j)-l2k]);
            else
              rhsColumn = &(rhs[l1j*rhsStride]);

            PacketType dst[MaxBlockRows];
            dst[3] = dst[2] = dst[1] = dst[0] = ei_pset1(Scalar(0.));
            if (MaxBlockRows==8)
              dst[7] = dst[6] = dst[5] = dst[4] = dst[0];

            PacketType tmp;

            for(int k=l2k; k<l2blockSizeEnd; k+=PacketSize)
            {
              tmp = ei_ploadu(&rhsColumn[k]);
              PacketType A0, A1, A2, A3, A4, A5;
              A0 = ei_pload(localB + k*MaxBlockRows);
              A1 = ei_pload(localB + k*MaxBlockRows+1*PacketSize);
              A2 = ei_pload(localB + k*MaxBlockRows+2*PacketSize);
              A3 = ei_pload(localB + k*MaxBlockRows+3*PacketSize);
              if (MaxBlockRows==8) A4 = ei_pload(localB + k*MaxBlockRows+4*PacketSize);
              if (MaxBlockRows==8) A5 = ei_pload(localB + k*MaxBlockRows+5*PacketSize);
              dst[0] = ei_pmadd(tmp, A0, dst[0]);
              if (MaxBlockRows==8) A0 = ei_pload(localB + k*MaxBlockRows+6*PacketSize);
              dst[1] = ei_pmadd(tmp, A1, dst[1]);
              if (MaxBlockRows==8) A1 = ei_pload(localB + k*MaxBlockRows+7*PacketSize);
              dst[2] = ei_pmadd(tmp, A2, dst[2]);
              dst[3] = ei_pmadd(tmp, A3, dst[3]);
              if (MaxBlockRows==8)
              {
                dst[4] = ei_pmadd(tmp, A4, dst[4]);
                dst[5] = ei_pmadd(tmp, A5, dst[5]);
                dst[6] = ei_pmadd(tmp, A0, dst[6]);
                dst[7] = ei_pmadd(tmp, A1, dst[7]);
              }
            }

            Scalar* EIGEN_RESTRICT localRes = &(res[l1i + l1j*resStride]);

            if (PacketSize>1 && resIsAligned)
            {
              // the result is aligned: let's do packet reduction
              ei_pstore(&(localRes[0]), ei_padd(ei_pload(&(localRes[0])), ei_preduxp(&dst[0])));
              if (PacketSize==2)
                ei_pstore(&(localRes[2]), ei_padd(ei_pload(&(localRes[2])), ei_preduxp(&(dst[2]))));
              if (MaxBlockRows==8)
              {
                ei_pstore(&(localRes[4]), ei_padd(ei_pload(&(localRes[4])), ei_preduxp(&(dst[4]))));
                if (PacketSize==2)
                  ei_pstore(&(localRes[6]), ei_padd(ei_pload(&(localRes[6])), ei_preduxp(&(dst[6]))));
              }
            }
            else
            {
              // not aligned => per coeff packet reduction
              localRes[0] += ei_predux(dst[0]);
              localRes[1] += ei_predux(dst[1]);
              localRes[2] += ei_predux(dst[2]);
              localRes[3] += ei_predux(dst[3]);
              if (MaxBlockRows==8)
              {
                localRes[4] += ei_predux(dst[4]);
                localRes[5] += ei_predux(dst[5]);
                localRes[6] += ei_predux(dst[6]);
                localRes[7] += ei_predux(dst[7]);
              }
            }
          }
        }
        if (l2blockRemainingRows>0)
        {
          int offsetblock = l2k * (l2blockRowEnd-l2i) + (l2blockRowEndBW-l2i)*(l2blockSizeEnd-l2k) - l2k*l2blockRemainingRows;
          const Scalar* localB = &block[offsetblock];

          for(int l1j=l2j; l1j<l2blockColEnd; l1j+=1)
          {
            const Scalar* EIGEN_RESTRICT rhsColumn;
            if (needRhsCopy)
              rhsColumn = &(rhsCopy[l2BlockSizeAligned*(l1j-l2j)-l2k]);
            else
              rhsColumn = &(rhs[l1j*rhsStride]);

            PacketType dst[MaxBlockRows];
            dst[3] = dst[2] = dst[1] = dst[0] = ei_pset1(Scalar(0.));
            if (MaxBlockRows==8)
              dst[7] = dst[6] = dst[5] = dst[4] = dst[0];

            // let's declare a few other temporary registers
            PacketType tmp;

            for(int k=l2k; k<l2blockSizeEnd; k+=PacketSize)
            {
              tmp = ei_pload(&rhsColumn[k]);

                                           dst[0] = ei_pmadd(tmp, ei_pload(&(localB[k*l2blockRemainingRows             ])), dst[0]);
              if (l2blockRemainingRows>=2) dst[1] = ei_pmadd(tmp, ei_pload(&(localB[k*l2blockRemainingRows+  PacketSize])), dst[1]);
              if (l2blockRemainingRows>=3) dst[2] = ei_pmadd(tmp, ei_pload(&(localB[k*l2blockRemainingRows+2*PacketSize])), dst[2]);
              if (l2blockRemainingRows>=4) dst[3] = ei_pmadd(tmp, ei_pload(&(localB[k*l2blockRemainingRows+3*PacketSize])), dst[3]);
              if (MaxBlockRows==8)
              {
                if (l2blockRemainingRows>=5) dst[4] = ei_pmadd(tmp, ei_pload(&(localB[k*l2blockRemainingRows+4*PacketSize])), dst[4]);
                if (l2blockRemainingRows>=6) dst[5] = ei_pmadd(tmp, ei_pload(&(localB[k*l2blockRemainingRows+5*PacketSize])), dst[5]);
                if (l2blockRemainingRows>=7) dst[6] = ei_pmadd(tmp, ei_pload(&(localB[k*l2blockRemainingRows+6*PacketSize])), dst[6]);
                if (l2blockRemainingRows>=8) dst[7] = ei_pmadd(tmp, ei_pload(&(localB[k*l2blockRemainingRows+7*PacketSize])), dst[7]);
              }
            }

            Scalar* EIGEN_RESTRICT localRes = &(res[l2blockRowEndBW + l1j*resStride]);

            // process the remaining rows once at a time
                                         localRes[0] += ei_predux(dst[0]);
            if (l2blockRemainingRows>=2) localRes[1] += ei_predux(dst[1]);
            if (l2blockRemainingRows>=3) localRes[2] += ei_predux(dst[2]);
            if (l2blockRemainingRows>=4) localRes[3] += ei_predux(dst[3]);
            if (MaxBlockRows==8)
            {
              if (l2blockRemainingRows>=5) localRes[4] += ei_predux(dst[4]);
              if (l2blockRemainingRows>=6) localRes[5] += ei_predux(dst[5]);
              if (l2blockRemainingRows>=7) localRes[6] += ei_predux(dst[6]);
              if (l2blockRemainingRows>=8) localRes[7] += ei_predux(dst[7]);
            }

          }
        }
      }
    }
  }
  if (PacketSize>1 && remainingSize)
  {
    if (lhsRowMajor)
    {
      for (int j=0; j<cols; ++j)
        for (int i=0; i<rows; ++i)
        {
          Scalar tmp = lhs[i*lhsStride+size] * rhs[j*rhsStride+size];
          // FIXME this loop get vectorized by the compiler !
          for (int k=1; k<remainingSize; ++k)
            tmp += lhs[i*lhsStride+size+k] * rhs[j*rhsStride+size+k];
          res[i+j*resStride] += tmp;
        }
    }
    else
    {
      for (int j=0; j<cols; ++j)
        for (int i=0; i<rows; ++i)
        {
          Scalar tmp = lhs[i+size*lhsStride] * rhs[j*rhsStride+size];
          for (int k=1; k<remainingSize; ++k)
            tmp += lhs[i+(size+k)*lhsStride] * rhs[j*rhsStride+size+k];
          res[i+j*resStride] += tmp;
        }
    }
  }

  ei_aligned_stack_delete(Scalar, block, allocBlockSize);
  ei_aligned_stack_delete(Scalar, rhsCopy, l2BlockSizeAligned*l2BlockSizeAligned);
}

#endif // EIGEN_EXTERN_INSTANTIATIONS

/* Optimized col-major matrix * vector product:
 * This algorithm processes 4 columns at onces that allows to both reduce
 * the number of load/stores of the result by a factor 4 and to reduce
 * the instruction dependency. Moreover, we know that all bands have the
 * same alignment pattern.
 * TODO: since rhs gets evaluated only once, no need to evaluate it
 */
template<typename Scalar, typename RhsType>
static EIGEN_DONT_INLINE void ei_cache_friendly_product_colmajor_times_vector(
  int size,
  const Scalar* lhs, int lhsStride,
  const RhsType& rhs,
  Scalar* res)
{
  #ifdef _EIGEN_ACCUMULATE_PACKETS
  #error _EIGEN_ACCUMULATE_PACKETS has already been defined
  #endif
  #define _EIGEN_ACCUMULATE_PACKETS(A0,A13,A2) \
    ei_pstore(&res[j], \
      ei_padd(ei_pload(&res[j]), \
        ei_padd( \
          ei_padd(ei_pmul(ptmp0,EIGEN_CAT(ei_ploa , A0)(&lhs0[j])), \
                  ei_pmul(ptmp1,EIGEN_CAT(ei_ploa , A13)(&lhs1[j]))), \
          ei_padd(ei_pmul(ptmp2,EIGEN_CAT(ei_ploa , A2)(&lhs2[j])), \
                  ei_pmul(ptmp3,EIGEN_CAT(ei_ploa , A13)(&lhs3[j]))) )))

  typedef typename ei_packet_traits<Scalar>::type Packet;
  const int PacketSize = sizeof(Packet)/sizeof(Scalar);

  enum { AllAligned = 0, EvenAligned, FirstAligned, NoneAligned };
  const int columnsAtOnce = 4;
  const int peels = 2;
  const int PacketAlignedMask = PacketSize-1;
  const int PeelAlignedMask = PacketSize*peels-1;

  // How many coeffs of the result do we have to skip to be aligned.
  // Here we assume data are at least aligned on the base scalar type that is mandatory anyway.
  const int alignedStart = ei_alignmentOffset(res,size);
  const int alignedSize = PacketSize>1 ? alignedStart + ((size-alignedStart) & ~PacketAlignedMask) : 0;
  const int peeledSize  = peels>1 ? alignedStart + ((alignedSize-alignedStart) & ~PeelAlignedMask) : alignedStart;

  const int alignmentStep = PacketSize>1 ? (PacketSize - lhsStride % PacketSize) & PacketAlignedMask : 0;
  int alignmentPattern = alignmentStep==0 ? AllAligned
                       : alignmentStep==(PacketSize/2) ? EvenAligned
                       : FirstAligned;

  // we cannot assume the first element is aligned because of sub-matrices
  const int lhsAlignmentOffset = ei_alignmentOffset(lhs,size);

  // find how many columns do we have to skip to be aligned with the result (if possible)
  int skipColumns = 0;
  if (PacketSize>1)
  {
    ei_internal_assert(size_t(lhs+lhsAlignmentOffset)%sizeof(Packet)==0 || size<PacketSize);

    while (skipColumns<PacketSize &&
           alignedStart != ((lhsAlignmentOffset + alignmentStep*skipColumns)%PacketSize))
      ++skipColumns;
    if (skipColumns==PacketSize)
    {
      // nothing can be aligned, no need to skip any column
      alignmentPattern = NoneAligned;
      skipColumns = 0;
    }
    else
    {
      skipColumns = std::min(skipColumns,rhs.size());
      // note that the skiped columns are processed later.
    }

    ei_internal_assert((alignmentPattern==NoneAligned) || (size_t(lhs+alignedStart+lhsStride*skipColumns)%sizeof(Packet))==0);
  }

  int offset1 = (FirstAligned && alignmentStep==1?3:1);
  int offset3 = (FirstAligned && alignmentStep==1?1:3);

  int columnBound = ((rhs.size()-skipColumns)/columnsAtOnce)*columnsAtOnce + skipColumns;
  for (int i=skipColumns; i<columnBound; i+=columnsAtOnce)
  {
    Packet ptmp0 = ei_pset1(rhs[i]),   ptmp1 = ei_pset1(rhs[i+offset1]),
           ptmp2 = ei_pset1(rhs[i+2]), ptmp3 = ei_pset1(rhs[i+offset3]);

    // this helps a lot generating better binary code
    const Scalar *lhs0 = lhs + i*lhsStride, *lhs1 = lhs + (i+offset1)*lhsStride,
                 *lhs2 = lhs + (i+2)*lhsStride, *lhs3 = lhs + (i+offset3)*lhsStride;

    if (PacketSize>1)
    {
      /* explicit vectorization */
      // process initial unaligned coeffs
      for (int j=0; j<alignedStart; ++j)
        res[j] += ei_pfirst(ptmp0)*lhs0[j] + ei_pfirst(ptmp1)*lhs1[j] + ei_pfirst(ptmp2)*lhs2[j] + ei_pfirst(ptmp3)*lhs3[j];

      if (alignedSize>alignedStart)
      {
        switch(alignmentPattern)
        {
          case AllAligned:
            for (int j = alignedStart; j<alignedSize; j+=PacketSize)
              _EIGEN_ACCUMULATE_PACKETS(d,d,d);
            break;
          case EvenAligned:
            for (int j = alignedStart; j<alignedSize; j+=PacketSize)
              _EIGEN_ACCUMULATE_PACKETS(d,du,d);
            break;
          case FirstAligned:
            if(peels>1)
            {
              Packet A00, A01, A02, A03, A10, A11, A12, A13;

              A01 = ei_pload(&lhs1[alignedStart-1]);
              A02 = ei_pload(&lhs2[alignedStart-2]);
              A03 = ei_pload(&lhs3[alignedStart-3]);

              for (int j = alignedStart; j<peeledSize; j+=peels*PacketSize)
              {
                A11 = ei_pload(&lhs1[j-1+PacketSize]);  ei_palign<1>(A01,A11);
                A12 = ei_pload(&lhs2[j-2+PacketSize]);  ei_palign<2>(A02,A12);
                A13 = ei_pload(&lhs3[j-3+PacketSize]);  ei_palign<3>(A03,A13);

                A00 = ei_pload (&lhs0[j]);
                A10 = ei_pload (&lhs0[j+PacketSize]);
                A00 = ei_pmadd(ptmp0, A00, ei_pload(&res[j]));
                A10 = ei_pmadd(ptmp0, A10, ei_pload(&res[j+PacketSize]));

                A00 = ei_pmadd(ptmp1, A01, A00);
                A01 = ei_pload(&lhs1[j-1+2*PacketSize]);  ei_palign<1>(A11,A01);
                A00 = ei_pmadd(ptmp2, A02, A00);
                A02 = ei_pload(&lhs2[j-2+2*PacketSize]);  ei_palign<2>(A12,A02);
                A00 = ei_pmadd(ptmp3, A03, A00);
                ei_pstore(&res[j],A00);
                A03 = ei_pload(&lhs3[j-3+2*PacketSize]);  ei_palign<3>(A13,A03);
                A10 = ei_pmadd(ptmp1, A11, A10);
                A10 = ei_pmadd(ptmp2, A12, A10);
                A10 = ei_pmadd(ptmp3, A13, A10);
                ei_pstore(&res[j+PacketSize],A10);
              }
            }
            for (int j = peeledSize; j<alignedSize; j+=PacketSize)
              _EIGEN_ACCUMULATE_PACKETS(d,du,du);
            break;
          default:
            for (int j = alignedStart; j<alignedSize; j+=PacketSize)
              _EIGEN_ACCUMULATE_PACKETS(du,du,du);
            break;
        }
      }
    } // end explicit vectorization

    /* process remaining coeffs (or all if there is no explicit vectorization) */
    for (int j=alignedSize; j<size; ++j)
      res[j] += ei_pfirst(ptmp0)*lhs0[j] + ei_pfirst(ptmp1)*lhs1[j] + ei_pfirst(ptmp2)*lhs2[j] + ei_pfirst(ptmp3)*lhs3[j];
  }

  // process remaining first and last columns (at most columnsAtOnce-1)
  int end = rhs.size();
  int start = columnBound;
  do
  {
    for (int i=start; i<end; ++i)
    {
      Packet ptmp0 = ei_pset1(rhs[i]);
      const Scalar* lhs0 = lhs + i*lhsStride;

      if (PacketSize>1)
      {
        /* explicit vectorization */
        // process first unaligned result's coeffs
        for (int j=0; j<alignedStart; ++j)
          res[j] += ei_pfirst(ptmp0) * lhs0[j];

        // process aligned result's coeffs
        if ((size_t(lhs0+alignedStart)%sizeof(Packet))==0)
          for (int j = alignedStart;j<alignedSize;j+=PacketSize)
            ei_pstore(&res[j], ei_pmadd(ptmp0,ei_pload(&lhs0[j]),ei_pload(&res[j])));
        else
          for (int j = alignedStart;j<alignedSize;j+=PacketSize)
            ei_pstore(&res[j], ei_pmadd(ptmp0,ei_ploadu(&lhs0[j]),ei_pload(&res[j])));
      }

      // process remaining scalars (or all if no explicit vectorization)
      for (int j=alignedSize; j<size; ++j)
        res[j] += ei_pfirst(ptmp0) * lhs0[j];
    }
    if (skipColumns)
    {
      start = 0;
      end = skipColumns;
      skipColumns = 0;
    }
    else
      break;
  } while(PacketSize>1);
  #undef _EIGEN_ACCUMULATE_PACKETS
}

// TODO add peeling to mask unaligned load/stores
template<typename Scalar, typename ResType>
static EIGEN_DONT_INLINE void ei_cache_friendly_product_rowmajor_times_vector(
  const Scalar* lhs, int lhsStride,
  const Scalar* rhs, int rhsSize,
  ResType& res)
{
  #ifdef _EIGEN_ACCUMULATE_PACKETS
  #error _EIGEN_ACCUMULATE_PACKETS has already been defined
  #endif

  #define _EIGEN_ACCUMULATE_PACKETS(A0,A13,A2) {\
    Packet b = ei_pload(&rhs[j]); \
    ptmp0 = ei_pmadd(b, EIGEN_CAT(ei_ploa,A0) (&lhs0[j]), ptmp0); \
    ptmp1 = ei_pmadd(b, EIGEN_CAT(ei_ploa,A13)(&lhs1[j]), ptmp1); \
    ptmp2 = ei_pmadd(b, EIGEN_CAT(ei_ploa,A2) (&lhs2[j]), ptmp2); \
    ptmp3 = ei_pmadd(b, EIGEN_CAT(ei_ploa,A13)(&lhs3[j]), ptmp3); }

  typedef typename ei_packet_traits<Scalar>::type Packet;
  const int PacketSize = sizeof(Packet)/sizeof(Scalar);

  enum { AllAligned=0, EvenAligned=1, FirstAligned=2, NoneAligned=3 };
  const int rowsAtOnce = 4;
  const int peels = 2;
  const int PacketAlignedMask = PacketSize-1;
  const int PeelAlignedMask = PacketSize*peels-1;
  const int size = rhsSize;

  // How many coeffs of the result do we have to skip to be aligned.
  // Here we assume data are at least aligned on the base scalar type that is mandatory anyway.
  const int alignedStart = ei_alignmentOffset(rhs, size);
  const int alignedSize = PacketSize>1 ? alignedStart + ((size-alignedStart) & ~PacketAlignedMask) : 0;
  const int peeledSize  = peels>1 ? alignedStart + ((alignedSize-alignedStart) & ~PeelAlignedMask) : alignedStart;

  const int alignmentStep = PacketSize>1 ? (PacketSize - lhsStride % PacketSize) & PacketAlignedMask : 0;
  int alignmentPattern = alignmentStep==0 ? AllAligned
                       : alignmentStep==(PacketSize/2) ? EvenAligned
                       : FirstAligned;

  // we cannot assume the first element is aligned because of sub-matrices
  const int lhsAlignmentOffset = ei_alignmentOffset(lhs,size);

  // find how many rows do we have to skip to be aligned with rhs (if possible)
  int skipRows = 0;
  if (PacketSize>1)
  {
    ei_internal_assert(size_t(lhs+lhsAlignmentOffset)%sizeof(Packet)==0  || size<PacketSize);

    while (skipRows<PacketSize &&
           alignedStart != ((lhsAlignmentOffset + alignmentStep*skipRows)%PacketSize))
      ++skipRows;
    if (skipRows==PacketSize)
    {
      // nothing can be aligned, no need to skip any column
      alignmentPattern = NoneAligned;
      skipRows = 0;
    }
    else
    {
      skipRows = std::min(skipRows,res.size());
      // note that the skiped columns are processed later.
    }
    ei_internal_assert((alignmentPattern==NoneAligned) || PacketSize==1
      || (size_t(lhs+alignedStart+lhsStride*skipRows)%sizeof(Packet))==0);
  }

  int offset1 = (FirstAligned && alignmentStep==1?3:1);
  int offset3 = (FirstAligned && alignmentStep==1?1:3);

  int rowBound = ((res.size()-skipRows)/rowsAtOnce)*rowsAtOnce + skipRows;
  for (int i=skipRows; i<rowBound; i+=rowsAtOnce)
  {
    Scalar tmp0 = Scalar(0), tmp1 = Scalar(0), tmp2 = Scalar(0), tmp3 = Scalar(0);

    // this helps the compiler generating good binary code
    const Scalar *lhs0 = lhs + i*lhsStride,     *lhs1 = lhs + (i+offset1)*lhsStride,
                 *lhs2 = lhs + (i+2)*lhsStride, *lhs3 = lhs + (i+offset3)*lhsStride;

    if (PacketSize>1)
    {
      /* explicit vectorization */
      Packet ptmp0 = ei_pset1(Scalar(0)), ptmp1 = ei_pset1(Scalar(0)), ptmp2 = ei_pset1(Scalar(0)), ptmp3 = ei_pset1(Scalar(0));

      // process initial unaligned coeffs
      // FIXME this loop get vectorized by the compiler !
      for (int j=0; j<alignedStart; ++j)
      {
        Scalar b = rhs[j];
        tmp0 += b*lhs0[j]; tmp1 += b*lhs1[j]; tmp2 += b*lhs2[j]; tmp3 += b*lhs3[j];
      }

      if (alignedSize>alignedStart)
      {
        switch(alignmentPattern)
        {
          case AllAligned:
            for (int j = alignedStart; j<alignedSize; j+=PacketSize)
              _EIGEN_ACCUMULATE_PACKETS(d,d,d);
            break;
          case EvenAligned:
            for (int j = alignedStart; j<alignedSize; j+=PacketSize)
              _EIGEN_ACCUMULATE_PACKETS(d,du,d);
            break;
          case FirstAligned:
            if (peels>1)
            {
              /* Here we proccess 4 rows with with two peeled iterations to hide
               * tghe overhead of unaligned loads. Moreover unaligned loads are handled
               * using special shift/move operations between the two aligned packets
               * overlaping the desired unaligned packet. This is *much* more efficient
               * than basic unaligned loads.
               */
              Packet A01, A02, A03, b, A11, A12, A13;
              A01 = ei_pload(&lhs1[alignedStart-1]);
              A02 = ei_pload(&lhs2[alignedStart-2]);
              A03 = ei_pload(&lhs3[alignedStart-3]);

              for (int j = alignedStart; j<peeledSize; j+=peels*PacketSize)
              {
                b = ei_pload(&rhs[j]);
                A11 = ei_pload(&lhs1[j-1+PacketSize]);  ei_palign<1>(A01,A11);
                A12 = ei_pload(&lhs2[j-2+PacketSize]);  ei_palign<2>(A02,A12);
                A13 = ei_pload(&lhs3[j-3+PacketSize]);  ei_palign<3>(A03,A13);

                ptmp0 = ei_pmadd(b, ei_pload (&lhs0[j]), ptmp0);
                ptmp1 = ei_pmadd(b, A01, ptmp1);
                A01 = ei_pload(&lhs1[j-1+2*PacketSize]);  ei_palign<1>(A11,A01);
                ptmp2 = ei_pmadd(b, A02, ptmp2);
                A02 = ei_pload(&lhs2[j-2+2*PacketSize]);  ei_palign<2>(A12,A02);
                ptmp3 = ei_pmadd(b, A03, ptmp3);
                A03 = ei_pload(&lhs3[j-3+2*PacketSize]);  ei_palign<3>(A13,A03);

                b = ei_pload(&rhs[j+PacketSize]);
                ptmp0 = ei_pmadd(b, ei_pload (&lhs0[j+PacketSize]), ptmp0);
                ptmp1 = ei_pmadd(b, A11, ptmp1);
                ptmp2 = ei_pmadd(b, A12, ptmp2);
                ptmp3 = ei_pmadd(b, A13, ptmp3);
              }
            }
            for (int j = peeledSize; j<alignedSize; j+=PacketSize)
              _EIGEN_ACCUMULATE_PACKETS(d,du,du);
            break;
          default:
            for (int j = alignedStart; j<alignedSize; j+=PacketSize)
              _EIGEN_ACCUMULATE_PACKETS(du,du,du);
            break;
        }
        tmp0 += ei_predux(ptmp0);
        tmp1 += ei_predux(ptmp1);
        tmp2 += ei_predux(ptmp2);
        tmp3 += ei_predux(ptmp3);
      }
    } // end explicit vectorization

    // process remaining coeffs (or all if no explicit vectorization)
    // FIXME this loop get vectorized by the compiler !
    for (int j=alignedSize; j<size; ++j)
    {
      Scalar b = rhs[j];
      tmp0 += b*lhs0[j]; tmp1 += b*lhs1[j]; tmp2 += b*lhs2[j]; tmp3 += b*lhs3[j];
    }
    res[i] += tmp0; res[i+offset1] += tmp1; res[i+2] += tmp2; res[i+offset3] += tmp3;
  }

  // process remaining first and last rows (at most columnsAtOnce-1)
  int end = res.size();
  int start = rowBound;
  do
  {
    for (int i=start; i<end; ++i)
    {
      Scalar tmp0 = Scalar(0);
      Packet ptmp0 = ei_pset1(tmp0);
      const Scalar* lhs0 = lhs + i*lhsStride;
      // process first unaligned result's coeffs
      // FIXME this loop get vectorized by the compiler !
      for (int j=0; j<alignedStart; ++j)
        tmp0 += rhs[j] * lhs0[j];

      if (alignedSize>alignedStart)
      {
        // process aligned rhs coeffs
        if ((size_t(lhs0+alignedStart)%sizeof(Packet))==0)
          for (int j = alignedStart;j<alignedSize;j+=PacketSize)
            ptmp0 = ei_pmadd(ei_pload(&rhs[j]), ei_pload(&lhs0[j]), ptmp0);
        else
          for (int j = alignedStart;j<alignedSize;j+=PacketSize)
            ptmp0 = ei_pmadd(ei_pload(&rhs[j]), ei_ploadu(&lhs0[j]), ptmp0);
        tmp0 += ei_predux(ptmp0);
      }

      // process remaining scalars
      // FIXME this loop get vectorized by the compiler !
      for (int j=alignedSize; j<size; ++j)
        tmp0 += rhs[j] * lhs0[j];
      res[i] += tmp0;
    }
    if (skipRows)
    {
      start = 0;
      end = skipRows;
      skipRows = 0;
    }
    else
      break;
  } while(PacketSize>1);

  #undef _EIGEN_ACCUMULATE_PACKETS
}

#endif // EIGEN_CACHE_FRIENDLY_PRODUCT_H