Welcome to mirror list, hosted at ThFree Co, Russian Federation.

SolveTriangular.h « Core « src « Eigen « Eigen2 « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 12fb0e1d1597428dcb425981a3b4ba2ab68174ae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_SOLVETRIANGULAR_H
#define EIGEN_SOLVETRIANGULAR_H

template<typename XprType> struct ei_is_part { enum {value=false}; };
template<typename XprType, unsigned int Mode> struct ei_is_part<Part<XprType,Mode> > { enum {value=true}; };

template<typename Lhs, typename Rhs,
  int TriangularPart = (int(Lhs::Flags) & LowerTriangularBit)
                     ? LowerTriangular
                     : (int(Lhs::Flags) & UpperTriangularBit)
                     ? UpperTriangular
                     : -1,
  int StorageOrder = ei_is_part<Lhs>::value ? -1  // this is to solve ambiguous specializations
                   : int(Lhs::Flags) & (RowMajorBit|SparseBit)
  >
struct ei_solve_triangular_selector;

// transform a Part xpr to a Flagged xpr
template<typename Lhs, unsigned int LhsMode, typename Rhs, int UpLo, int StorageOrder>
struct ei_solve_triangular_selector<Part<Lhs,LhsMode>,Rhs,UpLo,StorageOrder>
{
  static void run(const Part<Lhs,LhsMode>& lhs, Rhs& other)
  {
    ei_solve_triangular_selector<Flagged<Lhs,LhsMode,0>,Rhs>::run(lhs._expression(), other);
  }
};

// forward substitution, row-major
template<typename Lhs, typename Rhs, int UpLo>
struct ei_solve_triangular_selector<Lhs,Rhs,UpLo,RowMajor|IsDense>
{
  typedef typename Rhs::Scalar Scalar;
  static void run(const Lhs& lhs, Rhs& other)
  {
    const bool IsLowerTriangular = (UpLo==LowerTriangular);
    const int size = lhs.cols();
    /* We perform the inverse product per block of 4 rows such that we perfectly match
     * our optimized matrix * vector product. blockyStart represents the number of rows
     * we have process first using the non-block version.
     */
    int blockyStart = (std::max(size-5,0)/4)*4;
    if (IsLowerTriangular)
      blockyStart = size - blockyStart;
    else
      blockyStart -= 1;
    for(int c=0 ; c<other.cols() ; ++c)
    {
      // process first rows using the non block version
      if(!(Lhs::Flags & UnitDiagBit))
      {
        if (IsLowerTriangular)
          other.coeffRef(0,c) = other.coeff(0,c)/lhs.coeff(0, 0);
        else
          other.coeffRef(size-1,c) = other.coeff(size-1, c)/lhs.coeff(size-1, size-1);
      }
      for(int i=(IsLowerTriangular ? 1 : size-2); IsLowerTriangular ? i<blockyStart : i>blockyStart; i += (IsLowerTriangular ? 1 : -1) )
      {
        Scalar tmp = other.coeff(i,c)
          - (IsLowerTriangular ? ((lhs.row(i).start(i)) * other.col(c).start(i)).coeff(0,0)
                     : ((lhs.row(i).end(size-i-1)) * other.col(c).end(size-i-1)).coeff(0,0));
        if (Lhs::Flags & UnitDiagBit)
          other.coeffRef(i,c) = tmp;
        else
          other.coeffRef(i,c) = tmp/lhs.coeff(i,i);
      }

      // now let's process the remaining rows 4 at once
      for(int i=blockyStart; IsLowerTriangular ? i<size : i>0; )
      {
        int startBlock = i;
        int endBlock = startBlock + (IsLowerTriangular ? 4 : -4);

        /* Process the i cols times 4 rows block, and keep the result in a temporary vector */
        // FIXME use fixed size block but take care to small fixed size matrices...
        Matrix<Scalar,Dynamic,1> btmp(4);
        if (IsLowerTriangular)
          btmp = lhs.block(startBlock,0,4,i) * other.col(c).start(i);
        else
          btmp = lhs.block(i-3,i+1,4,size-1-i) * other.col(c).end(size-1-i);

        /* Let's process the 4x4 sub-matrix as usual.
         * btmp stores the diagonal coefficients used to update the remaining part of the result.
         */
        {
          Scalar tmp = other.coeff(startBlock,c)-btmp.coeff(IsLowerTriangular?0:3);
          if (Lhs::Flags & UnitDiagBit)
            other.coeffRef(i,c) = tmp;
          else
            other.coeffRef(i,c) = tmp/lhs.coeff(i,i);
        }

        i += IsLowerTriangular ? 1 : -1;
        for (;IsLowerTriangular ? i<endBlock : i>endBlock; i += IsLowerTriangular ? 1 : -1)
        {
          int remainingSize = IsLowerTriangular ? i-startBlock : startBlock-i;
          Scalar tmp = other.coeff(i,c)
            - btmp.coeff(IsLowerTriangular ? remainingSize : 3-remainingSize)
            - (   lhs.row(i).segment(IsLowerTriangular ? startBlock : i+1, remainingSize)
              * other.col(c).segment(IsLowerTriangular ? startBlock : i+1, remainingSize)).coeff(0,0);

          if (Lhs::Flags & UnitDiagBit)
            other.coeffRef(i,c) = tmp;
          else
            other.coeffRef(i,c) = tmp/lhs.coeff(i,i);
        }
      }
    }
  }
};

// Implements the following configurations:
//  - inv(LowerTriangular,         ColMajor) * Column vector
//  - inv(LowerTriangular,UnitDiag,ColMajor) * Column vector
//  - inv(UpperTriangular,         ColMajor) * Column vector
//  - inv(UpperTriangular,UnitDiag,ColMajor) * Column vector
template<typename Lhs, typename Rhs, int UpLo>
struct ei_solve_triangular_selector<Lhs,Rhs,UpLo,ColMajor|IsDense>
{
  typedef typename Rhs::Scalar Scalar;
  typedef typename ei_packet_traits<Scalar>::type Packet;
  enum { PacketSize =  ei_packet_traits<Scalar>::size };

  static void run(const Lhs& lhs, Rhs& other)
  {
    static const bool IsLowerTriangular = (UpLo==LowerTriangular);
    const int size = lhs.cols();
    for(int c=0 ; c<other.cols() ; ++c)
    {
      /* let's perform the inverse product per block of 4 columns such that we perfectly match
       * our optimized matrix * vector product. blockyEnd represents the number of rows
       * we can process using the block version.
       */
      int blockyEnd = (std::max(size-5,0)/4)*4;
      if (!IsLowerTriangular)
        blockyEnd = size-1 - blockyEnd;
      for(int i=IsLowerTriangular ? 0 : size-1; IsLowerTriangular ? i<blockyEnd : i>blockyEnd;)
      {
        /* Let's process the 4x4 sub-matrix as usual.
         * btmp stores the diagonal coefficients used to update the remaining part of the result.
         */
        int startBlock = i;
        int endBlock = startBlock + (IsLowerTriangular ? 4 : -4);
        Matrix<Scalar,4,1> btmp;
        for (;IsLowerTriangular ? i<endBlock : i>endBlock;
             i += IsLowerTriangular ? 1 : -1)
        {
          if(!(Lhs::Flags & UnitDiagBit))
            other.coeffRef(i,c) /= lhs.coeff(i,i);
          int remainingSize = IsLowerTriangular ? endBlock-i-1 : i-endBlock-1;
          if (remainingSize>0)
            other.col(c).segment((IsLowerTriangular ? i : endBlock) + 1, remainingSize) -=
                other.coeffRef(i,c)
              * Block<Lhs,Dynamic,1>(lhs, (IsLowerTriangular ? i : endBlock) + 1, i, remainingSize, 1);
          btmp.coeffRef(IsLowerTriangular ? i-startBlock : remainingSize) = -other.coeffRef(i,c);
        }

        /* Now we can efficiently update the remaining part of the result as a matrix * vector product.
         * NOTE in order to reduce both compilation time and binary size, let's directly call
         * the fast product implementation. It is equivalent to the following code:
         *   other.col(c).end(size-endBlock) += (lhs.block(endBlock, startBlock, size-endBlock, endBlock-startBlock)
         *                                       * other.col(c).block(startBlock,endBlock-startBlock)).lazy();
         */
        // FIXME this is cool but what about conjugate/adjoint expressions ? do we want to evaluate them ?
        // this is a more general problem though.
        ei_cache_friendly_product_colmajor_times_vector(
          IsLowerTriangular ? size-endBlock : endBlock+1,
          &(lhs.const_cast_derived().coeffRef(IsLowerTriangular ? endBlock : 0, IsLowerTriangular ? startBlock : endBlock+1)),
          lhs.stride(),
          btmp, &(other.coeffRef(IsLowerTriangular ? endBlock : 0, c)));
// 				if (IsLowerTriangular)
//           other.col(c).end(size-endBlock) += (lhs.block(endBlock, startBlock, size-endBlock, endBlock-startBlock)
//                                           * other.col(c).block(startBlock,endBlock-startBlock)).lazy();
// 				else
//           other.col(c).end(size-endBlock) += (lhs.block(endBlock, startBlock, size-endBlock, endBlock-startBlock)
//                                           * other.col(c).block(startBlock,endBlock-startBlock)).lazy();
      }

      /* Now we have to process the remaining part as usual */
      int i;
      for(i=blockyEnd; IsLowerTriangular ? i<size-1 : i>0; i += (IsLowerTriangular ? 1 : -1) )
      {
        if(!(Lhs::Flags & UnitDiagBit))
          other.coeffRef(i,c) /= lhs.coeff(i,i);

        /* NOTE we cannot use lhs.col(i).end(size-i-1) because Part::coeffRef gets called by .col() to
         * get the address of the start of the row
         */
        if(IsLowerTriangular)
          other.col(c).end(size-i-1) -= other.coeffRef(i,c) * Block<Lhs,Dynamic,1>(lhs, i+1,i, size-i-1,1);
        else
          other.col(c).start(i) -= other.coeffRef(i,c) * Block<Lhs,Dynamic,1>(lhs, 0,i, i, 1);
      }
      if(!(Lhs::Flags & UnitDiagBit))
        other.coeffRef(i,c) /= lhs.coeff(i,i);
    }
  }
};

/** "in-place" version of MatrixBase::solveTriangular() where the result is written in \a other
  *
  * \nonstableyet
  *
  * The parameter is only marked 'const' to make the C++ compiler accept a temporary expression here.
  * This function will const_cast it, so constness isn't honored here.
  *
  * See MatrixBase:solveTriangular() for the details.
  */
template<typename Derived>
template<typename OtherDerived>
void MatrixBase<Derived>::solveTriangularInPlace(const MatrixBase<OtherDerived>& _other) const
{
  MatrixBase<OtherDerived>& other = _other.const_cast_derived();
  ei_assert(derived().cols() == derived().rows());
  ei_assert(derived().cols() == other.rows());
  ei_assert(!(Flags & ZeroDiagBit));
  ei_assert(Flags & (UpperTriangularBit|LowerTriangularBit));

  enum { copy = ei_traits<OtherDerived>::Flags & RowMajorBit };

  typedef typename ei_meta_if<copy,
    typename ei_plain_matrix_type_column_major<OtherDerived>::type, OtherDerived&>::ret OtherCopy;
  OtherCopy otherCopy(other.derived());

  ei_solve_triangular_selector<Derived, typename ei_unref<OtherCopy>::type>::run(derived(), otherCopy);

  if (copy)
    other = otherCopy;
}

/** \returns the product of the inverse of \c *this with \a other, \a *this being triangular.
  *
  * \nonstableyet
  *
  * This function computes the inverse-matrix matrix product inverse(\c *this) * \a other.
  * The matrix \c *this must be triangular and invertible (i.e., all the coefficients of the
  * diagonal must be non zero). It works as a forward (resp. backward) substitution if \c *this
  * is an upper (resp. lower) triangular matrix.
  *
  * It is required that \c *this be marked as either an upper or a lower triangular matrix, which
  * can be done by marked(), and that is automatically the case with expressions such as those returned
  * by extract().
  *
  * \addexample SolveTriangular \label How to solve a triangular system (aka. how to multiply the inverse of a triangular matrix by another one)
  *
  * Example: \include MatrixBase_marked.cpp
  * Output: \verbinclude MatrixBase_marked.out
  *
  * This function is essentially a wrapper to the faster solveTriangularInPlace() function creating
  * a temporary copy of \a other, calling solveTriangularInPlace() on the copy and returning it.
  * Therefore, if \a other is not needed anymore, it is quite faster to call solveTriangularInPlace()
  * instead of solveTriangular().
  *
  * For users coming from BLAS, this function (and more specifically solveTriangularInPlace()) offer
  * all the operations supported by the \c *TRSV and \c *TRSM BLAS routines.
  *
  * \b Tips: to perform a \em "right-inverse-multiply" you can simply transpose the operation, e.g.:
  * \code
  * M * T^1  <=>  T.transpose().solveTriangularInPlace(M.transpose());
  * \endcode
  *
  * \sa solveTriangularInPlace(), marked(), extract()
  */
template<typename Derived>
template<typename OtherDerived>
typename ei_plain_matrix_type_column_major<OtherDerived>::type
MatrixBase<Derived>::solveTriangular(const MatrixBase<OtherDerived>& other) const
{
  typename ei_plain_matrix_type_column_major<OtherDerived>::type res(other);
  solveTriangularInPlace(res);
  return res;
}

#endif // EIGEN_SOLVETRIANGULAR_H