Welcome to mirror list, hosted at ThFree Co, Russian Federation.

Sum.h « Core « src « Eigen « Eigen2 « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 6d7e9959fa561b841aa159e9a68fac35585e1bfe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_SUM_H
#define EIGEN_SUM_H

/***************************************************************************
* Part 1 : the logic deciding a strategy for vectorization and unrolling
***************************************************************************/

template<typename Derived>
struct ei_sum_traits
{
private:
  enum {
    PacketSize = ei_packet_traits<typename Derived::Scalar>::size
  };

public:
  enum {
    Vectorization = (int(Derived::Flags)&ActualPacketAccessBit)
                 && (int(Derived::Flags)&LinearAccessBit)
                  ? LinearVectorization
                  : NoVectorization
  };

private:
  enum {
    Cost = Derived::SizeAtCompileTime * Derived::CoeffReadCost
           + (Derived::SizeAtCompileTime-1) * NumTraits<typename Derived::Scalar>::AddCost,
    UnrollingLimit = EIGEN_UNROLLING_LIMIT * (int(Vectorization) == int(NoVectorization) ? 1 : int(PacketSize))
  };

public:
  enum {
    Unrolling = Cost <= UnrollingLimit
              ? CompleteUnrolling
              : NoUnrolling
  };
};

/***************************************************************************
* Part 2 : unrollers
***************************************************************************/

/*** no vectorization ***/

template<typename Derived, int Start, int Length>
struct ei_sum_novec_unroller
{
  enum {
    HalfLength = Length/2
  };

  typedef typename Derived::Scalar Scalar;

  inline static Scalar run(const Derived &mat)
  {
    return ei_sum_novec_unroller<Derived, Start, HalfLength>::run(mat)
         + ei_sum_novec_unroller<Derived, Start+HalfLength, Length-HalfLength>::run(mat);
  }
};

template<typename Derived, int Start>
struct ei_sum_novec_unroller<Derived, Start, 1>
{
  enum {
    col = Start / Derived::RowsAtCompileTime,
    row = Start % Derived::RowsAtCompileTime
  };

  typedef typename Derived::Scalar Scalar;

  inline static Scalar run(const Derived &mat)
  {
    return mat.coeff(row, col);
  }
};

/*** vectorization ***/
  
template<typename Derived, int Start, int Length>
struct ei_sum_vec_unroller
{
  enum {
    PacketSize = ei_packet_traits<typename Derived::Scalar>::size,
    HalfLength = Length/2
  };

  typedef typename Derived::Scalar Scalar;
  typedef typename ei_packet_traits<Scalar>::type PacketScalar;

  inline static PacketScalar run(const Derived &mat)
  {
    return ei_padd(
            ei_sum_vec_unroller<Derived, Start, HalfLength>::run(mat),
            ei_sum_vec_unroller<Derived, Start+HalfLength, Length-HalfLength>::run(mat) );
  }
};

template<typename Derived, int Start>
struct ei_sum_vec_unroller<Derived, Start, 1>
{
  enum {
    index = Start * ei_packet_traits<typename Derived::Scalar>::size,
    row = int(Derived::Flags)&RowMajorBit
        ? index / int(Derived::ColsAtCompileTime)
        : index % Derived::RowsAtCompileTime,
    col = int(Derived::Flags)&RowMajorBit
        ? index % int(Derived::ColsAtCompileTime)
        : index / Derived::RowsAtCompileTime,
    alignment = (Derived::Flags & AlignedBit) ? Aligned : Unaligned
  };

  typedef typename Derived::Scalar Scalar;
  typedef typename ei_packet_traits<Scalar>::type PacketScalar;

  inline static PacketScalar run(const Derived &mat)
  {
    return mat.template packet<alignment>(row, col);
  }
};

/***************************************************************************
* Part 3 : implementation of all cases
***************************************************************************/

template<typename Derived,
         int Vectorization = ei_sum_traits<Derived>::Vectorization,
         int Unrolling = ei_sum_traits<Derived>::Unrolling
>
struct ei_sum_impl;

template<typename Derived>
struct ei_sum_impl<Derived, NoVectorization, NoUnrolling>
{
  typedef typename Derived::Scalar Scalar;
  static Scalar run(const Derived& mat)
  {
    ei_assert(mat.rows()>0 && mat.cols()>0 && "you are using a non initialized matrix");
    Scalar res;
    res = mat.coeff(0, 0);
    for(int i = 1; i < mat.rows(); ++i)
      res += mat.coeff(i, 0);
    for(int j = 1; j < mat.cols(); ++j)
      for(int i = 0; i < mat.rows(); ++i)
        res += mat.coeff(i, j);
    return res;
  }
};

template<typename Derived>
struct ei_sum_impl<Derived, NoVectorization, CompleteUnrolling>
  : public ei_sum_novec_unroller<Derived, 0, Derived::SizeAtCompileTime>
{};

template<typename Derived>
struct ei_sum_impl<Derived, LinearVectorization, NoUnrolling>
{
  typedef typename Derived::Scalar Scalar;
  typedef typename ei_packet_traits<Scalar>::type PacketScalar;

  static Scalar run(const Derived& mat)
  {
    const int size = mat.size();
    const int packetSize = ei_packet_traits<Scalar>::size;
    const int alignedStart =  (Derived::Flags & AlignedBit)
                           || !(Derived::Flags & DirectAccessBit)
                           ? 0
                           : ei_alignmentOffset(&mat.const_cast_derived().coeffRef(0), size);
    enum {
      alignment = (Derived::Flags & DirectAccessBit) || (Derived::Flags & AlignedBit)
                ? Aligned : Unaligned
    };
    const int alignedSize = ((size-alignedStart)/packetSize)*packetSize;
    const int alignedEnd = alignedStart + alignedSize;
    Scalar res;

    if(alignedSize)
    {
      PacketScalar packet_res = mat.template packet<alignment>(alignedStart);
      for(int index = alignedStart + packetSize; index < alignedEnd; index += packetSize)
        packet_res = ei_padd(packet_res, mat.template packet<alignment>(index));
      res = ei_predux(packet_res);
    }
    else // too small to vectorize anything.
         // since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize.
    {
      res = Scalar(0);
    }

    for(int index = 0; index < alignedStart; ++index)
      res += mat.coeff(index);

    for(int index = alignedEnd; index < size; ++index)
      res += mat.coeff(index);

    return res;
  }
};

template<typename Derived>
struct ei_sum_impl<Derived, LinearVectorization, CompleteUnrolling>
{
  typedef typename Derived::Scalar Scalar;
  typedef typename ei_packet_traits<Scalar>::type PacketScalar;
  enum {
    PacketSize = ei_packet_traits<Scalar>::size,
    Size = Derived::SizeAtCompileTime,
    VectorizationSize = (Size / PacketSize) * PacketSize
  };
  static Scalar run(const Derived& mat)
  {
    Scalar res = ei_predux(ei_sum_vec_unroller<Derived, 0, Size / PacketSize>::run(mat));
    if (VectorizationSize != Size)
      res += ei_sum_novec_unroller<Derived, VectorizationSize, Size-VectorizationSize>::run(mat);
    return res;
  }
};

/***************************************************************************
* Part 4 : implementation of MatrixBase methods
***************************************************************************/

/** \returns the sum of all coefficients of *this
  *
  * \sa trace()
  */
template<typename Derived>
inline typename ei_traits<Derived>::Scalar
MatrixBase<Derived>::sum() const
{
  return ei_sum_impl<Derived>::run(derived());
}

/** \returns the trace of \c *this, i.e. the sum of the coefficients on the main diagonal.
  *
  * \c *this can be any matrix, not necessarily square.
  *
  * \sa diagonal(), sum()
  */
template<typename Derived>
inline typename ei_traits<Derived>::Scalar
MatrixBase<Derived>::trace() const
{
  return diagonal().sum();
}

#endif // EIGEN_SUM_H