Welcome to mirror list, hosted at ThFree Co, Russian Federation.

Transform.h « Geometry « src « Eigen « Eigen2 « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 8425a1cd963f1f98bd8db53737017e16f1f17df3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_TRANSFORM_H
#define EIGEN_TRANSFORM_H

/** Represents some traits of a transformation */
enum TransformTraits {
  Isometry,       ///< the transformation is a concatenation of translations and rotations
  Affine,         ///< the transformation is affine (linear transformation + translation)
  Projective      ///< the transformation might not be affine
};

// Note that we have to pass Dim and HDim because it is not allowed to use a template
// parameter to define a template specialization. To be more precise, in the following
// specializations, it is not allowed to use Dim+1 instead of HDim.
template< typename Other,
          int Dim,
          int HDim,
          int OtherRows=Other::RowsAtCompileTime,
          int OtherCols=Other::ColsAtCompileTime>
struct ei_transform_product_impl;

/** \geometry_module \ingroup Geometry_Module
  *
  * \class Transform
  *
  * \brief Represents an homogeneous transformation in a N dimensional space
  *
  * \param _Scalar the scalar type, i.e., the type of the coefficients
  * \param _Dim the dimension of the space
  *
  * The homography is internally represented and stored as a (Dim+1)^2 matrix which
  * is available through the matrix() method.
  *
  * Conversion methods from/to Qt's QMatrix and QTransform are available if the
  * preprocessor token EIGEN_QT_SUPPORT is defined.
  *
  * \sa class Matrix, class Quaternion
  */
template<typename _Scalar, int _Dim>
class Transform
{
public:
  EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim==Dynamic ? Dynamic : (_Dim+1)*(_Dim+1))
  enum {
    Dim = _Dim,     ///< space dimension in which the transformation holds
    HDim = _Dim+1   ///< size of a respective homogeneous vector
  };
  /** the scalar type of the coefficients */
  typedef _Scalar Scalar;
  /** type of the matrix used to represent the transformation */
  typedef Matrix<Scalar,HDim,HDim> MatrixType;
  /** type of the matrix used to represent the linear part of the transformation */
  typedef Matrix<Scalar,Dim,Dim> LinearMatrixType;
  /** type of read/write reference to the linear part of the transformation */
  typedef Block<MatrixType,Dim,Dim> LinearPart;
  /** type of a vector */
  typedef Matrix<Scalar,Dim,1> VectorType;
  /** type of a read/write reference to the translation part of the rotation */
  typedef Block<MatrixType,Dim,1> TranslationPart;
  /** corresponding translation type */
  typedef Translation<Scalar,Dim> TranslationType;
  /** corresponding scaling transformation type */
  typedef Scaling<Scalar,Dim> ScalingType;

protected:

  MatrixType m_matrix;

public:

  /** Default constructor without initialization of the coefficients. */
  inline Transform() { }

  inline Transform(const Transform& other)
  {
    m_matrix = other.m_matrix;
  }

  inline explicit Transform(const TranslationType& t) { *this = t; }
  inline explicit Transform(const ScalingType& s) { *this = s; }
  template<typename Derived>
  inline explicit Transform(const RotationBase<Derived, Dim>& r) { *this = r; }

  inline Transform& operator=(const Transform& other)
  { m_matrix = other.m_matrix; return *this; }

  template<typename OtherDerived, bool BigMatrix> // MSVC 2005 will commit suicide if BigMatrix has a default value
  struct construct_from_matrix
  {
    static inline void run(Transform *transform, const MatrixBase<OtherDerived>& other)
    {
      transform->matrix() = other;
    }
  };

  template<typename OtherDerived> struct construct_from_matrix<OtherDerived, true>
  {
    static inline void run(Transform *transform, const MatrixBase<OtherDerived>& other)
    {
      transform->linear() = other;
      transform->translation().setZero();
      transform->matrix()(Dim,Dim) = Scalar(1);
      transform->matrix().template block<1,Dim>(Dim,0).setZero();
    }
  };

  /** Constructs and initializes a transformation from a Dim^2 or a (Dim+1)^2 matrix. */
  template<typename OtherDerived>
  inline explicit Transform(const MatrixBase<OtherDerived>& other)
  {
    construct_from_matrix<OtherDerived, int(OtherDerived::RowsAtCompileTime) == Dim>::run(this, other);
  }

  /** Set \c *this from a (Dim+1)^2 matrix. */
  template<typename OtherDerived>
  inline Transform& operator=(const MatrixBase<OtherDerived>& other)
  { m_matrix = other; return *this; }

  #ifdef EIGEN_QT_SUPPORT
  inline Transform(const QMatrix& other);
  inline Transform& operator=(const QMatrix& other);
  inline QMatrix toQMatrix(void) const;
  inline Transform(const QTransform& other);
  inline Transform& operator=(const QTransform& other);
  inline QTransform toQTransform(void) const;
  #endif

  /** shortcut for m_matrix(row,col);
    * \sa MatrixBase::operaror(int,int) const */
  inline Scalar operator() (int row, int col) const { return m_matrix(row,col); }
  /** shortcut for m_matrix(row,col);
    * \sa MatrixBase::operaror(int,int) */
  inline Scalar& operator() (int row, int col) { return m_matrix(row,col); }

  /** \returns a read-only expression of the transformation matrix */
  inline const MatrixType& matrix() const { return m_matrix; }
  /** \returns a writable expression of the transformation matrix */
  inline MatrixType& matrix() { return m_matrix; }

  /** \returns a read-only expression of the linear (linear) part of the transformation */
  inline const LinearPart linear() const { return m_matrix.template block<Dim,Dim>(0,0); }
  /** \returns a writable expression of the linear (linear) part of the transformation */
  inline LinearPart linear() { return m_matrix.template block<Dim,Dim>(0,0); }

  /** \returns a read-only expression of the translation vector of the transformation */
  inline const TranslationPart translation() const { return m_matrix.template block<Dim,1>(0,Dim); }
  /** \returns a writable expression of the translation vector of the transformation */
  inline TranslationPart translation() { return m_matrix.template block<Dim,1>(0,Dim); }

  /** \returns an expression of the product between the transform \c *this and a matrix expression \a other
  *
  * The right hand side \a other might be either:
  * \li a vector of size Dim,
  * \li an homogeneous vector of size Dim+1,
  * \li a transformation matrix of size Dim+1 x Dim+1.
  */
  // note: this function is defined here because some compilers cannot find the respective declaration
  template<typename OtherDerived>
  inline const typename ei_transform_product_impl<OtherDerived,_Dim,_Dim+1>::ResultType
  operator * (const MatrixBase<OtherDerived> &other) const
  { return ei_transform_product_impl<OtherDerived,Dim,HDim>::run(*this,other.derived()); }

  /** \returns the product expression of a transformation matrix \a a times a transform \a b
    * The transformation matrix \a a must have a Dim+1 x Dim+1 sizes. */
  template<typename OtherDerived>
  friend inline const typename ProductReturnType<OtherDerived,MatrixType>::Type
  operator * (const MatrixBase<OtherDerived> &a, const Transform &b)
  { return a.derived() * b.matrix(); }

  /** Contatenates two transformations */
  inline const Transform
  operator * (const Transform& other) const
  { return Transform(m_matrix * other.matrix()); }

  /** \sa MatrixBase::setIdentity() */
  void setIdentity() { m_matrix.setIdentity(); }
  static const typename MatrixType::IdentityReturnType Identity()
  {
    return MatrixType::Identity();
  }

  template<typename OtherDerived>
  inline Transform& scale(const MatrixBase<OtherDerived> &other);

  template<typename OtherDerived>
  inline Transform& prescale(const MatrixBase<OtherDerived> &other);

  inline Transform& scale(Scalar s);
  inline Transform& prescale(Scalar s);

  template<typename OtherDerived>
  inline Transform& translate(const MatrixBase<OtherDerived> &other);

  template<typename OtherDerived>
  inline Transform& pretranslate(const MatrixBase<OtherDerived> &other);

  template<typename RotationType>
  inline Transform& rotate(const RotationType& rotation);

  template<typename RotationType>
  inline Transform& prerotate(const RotationType& rotation);

  Transform& shear(Scalar sx, Scalar sy);
  Transform& preshear(Scalar sx, Scalar sy);

  inline Transform& operator=(const TranslationType& t);
  inline Transform& operator*=(const TranslationType& t) { return translate(t.vector()); }
  inline Transform operator*(const TranslationType& t) const;

  inline Transform& operator=(const ScalingType& t);
  inline Transform& operator*=(const ScalingType& s) { return scale(s.coeffs()); }
  inline Transform operator*(const ScalingType& s) const;
  friend inline Transform operator*(const LinearMatrixType& mat, const Transform& t)
  {
    Transform res = t;
    res.matrix().row(Dim) = t.matrix().row(Dim);
    res.matrix().template block<Dim,HDim>(0,0) = (mat * t.matrix().template block<Dim,HDim>(0,0)).lazy();
    return res;
  }

  template<typename Derived>
  inline Transform& operator=(const RotationBase<Derived,Dim>& r);
  template<typename Derived>
  inline Transform& operator*=(const RotationBase<Derived,Dim>& r) { return rotate(r.toRotationMatrix()); }
  template<typename Derived>
  inline Transform operator*(const RotationBase<Derived,Dim>& r) const;

  LinearMatrixType rotation() const;
  template<typename RotationMatrixType, typename ScalingMatrixType>
  void computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const;
  template<typename ScalingMatrixType, typename RotationMatrixType>
  void computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const;

  template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
  Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
    const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale);

  inline const MatrixType inverse(TransformTraits traits = Affine) const;

  /** \returns a const pointer to the column major internal matrix */
  const Scalar* data() const { return m_matrix.data(); }
  /** \returns a non-const pointer to the column major internal matrix */
  Scalar* data() { return m_matrix.data(); }

  /** \returns \c *this with scalar type casted to \a NewScalarType
    *
    * Note that if \a NewScalarType is equal to the current scalar type of \c *this
    * then this function smartly returns a const reference to \c *this.
    */
  template<typename NewScalarType>
  inline typename ei_cast_return_type<Transform,Transform<NewScalarType,Dim> >::type cast() const
  { return typename ei_cast_return_type<Transform,Transform<NewScalarType,Dim> >::type(*this); }

  /** Copy constructor with scalar type conversion */
  template<typename OtherScalarType>
  inline explicit Transform(const Transform<OtherScalarType,Dim>& other)
  { m_matrix = other.matrix().template cast<Scalar>(); }

  /** \returns \c true if \c *this is approximately equal to \a other, within the precision
    * determined by \a prec.
    *
    * \sa MatrixBase::isApprox() */
  bool isApprox(const Transform& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
  { return m_matrix.isApprox(other.m_matrix, prec); }

  #ifdef EIGEN_TRANSFORM_PLUGIN
  #include EIGEN_TRANSFORM_PLUGIN
  #endif

protected:

};

/** \ingroup Geometry_Module */
typedef Transform<float,2> Transform2f;
/** \ingroup Geometry_Module */
typedef Transform<float,3> Transform3f;
/** \ingroup Geometry_Module */
typedef Transform<double,2> Transform2d;
/** \ingroup Geometry_Module */
typedef Transform<double,3> Transform3d;

/**************************
*** Optional QT support ***
**************************/

#ifdef EIGEN_QT_SUPPORT
/** Initialises \c *this from a QMatrix assuming the dimension is 2.
  *
  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
  */
template<typename Scalar, int Dim>
Transform<Scalar,Dim>::Transform(const QMatrix& other)
{
  *this = other;
}

/** Set \c *this from a QMatrix assuming the dimension is 2.
  *
  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
  */
template<typename Scalar, int Dim>
Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const QMatrix& other)
{
  EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
  m_matrix << other.m11(), other.m21(), other.dx(),
              other.m12(), other.m22(), other.dy(),
              0, 0, 1;
   return *this;
}

/** \returns a QMatrix from \c *this assuming the dimension is 2.
  *
  * \warning this convertion might loss data if \c *this is not affine
  *
  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
  */
template<typename Scalar, int Dim>
QMatrix Transform<Scalar,Dim>::toQMatrix(void) const
{
  EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
  return QMatrix(m_matrix.coeff(0,0), m_matrix.coeff(1,0),
                 m_matrix.coeff(0,1), m_matrix.coeff(1,1),
                 m_matrix.coeff(0,2), m_matrix.coeff(1,2));
}

/** Initialises \c *this from a QTransform assuming the dimension is 2.
  *
  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
  */
template<typename Scalar, int Dim>
Transform<Scalar,Dim>::Transform(const QTransform& other)
{
  *this = other;
}

/** Set \c *this from a QTransform assuming the dimension is 2.
  *
  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
  */
template<typename Scalar, int Dim>
Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const QTransform& other)
{
  EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
  m_matrix << other.m11(), other.m21(), other.dx(),
              other.m12(), other.m22(), other.dy(),
              other.m13(), other.m23(), other.m33();
   return *this;
}

/** \returns a QTransform from \c *this assuming the dimension is 2.
  *
  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
  */
template<typename Scalar, int Dim>
QTransform Transform<Scalar,Dim>::toQTransform(void) const
{
  EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
  return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0), m_matrix.coeff(2,0),
                    m_matrix.coeff(0,1), m_matrix.coeff(1,1), m_matrix.coeff(2,1),
                    m_matrix.coeff(0,2), m_matrix.coeff(1,2), m_matrix.coeff(2,2));
}
#endif

/*********************
*** Procedural API ***
*********************/

/** Applies on the right the non uniform scale transformation represented
  * by the vector \a other to \c *this and returns a reference to \c *this.
  * \sa prescale()
  */
template<typename Scalar, int Dim>
template<typename OtherDerived>
Transform<Scalar,Dim>&
Transform<Scalar,Dim>::scale(const MatrixBase<OtherDerived> &other)
{
  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
  linear() = (linear() * other.asDiagonal()).lazy();
  return *this;
}

/** Applies on the right a uniform scale of a factor \a c to \c *this
  * and returns a reference to \c *this.
  * \sa prescale(Scalar)
  */
template<typename Scalar, int Dim>
inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::scale(Scalar s)
{
  linear() *= s;
  return *this;
}

/** Applies on the left the non uniform scale transformation represented
  * by the vector \a other to \c *this and returns a reference to \c *this.
  * \sa scale()
  */
template<typename Scalar, int Dim>
template<typename OtherDerived>
Transform<Scalar,Dim>&
Transform<Scalar,Dim>::prescale(const MatrixBase<OtherDerived> &other)
{
  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
  m_matrix.template block<Dim,HDim>(0,0) = (other.asDiagonal() * m_matrix.template block<Dim,HDim>(0,0)).lazy();
  return *this;
}

/** Applies on the left a uniform scale of a factor \a c to \c *this
  * and returns a reference to \c *this.
  * \sa scale(Scalar)
  */
template<typename Scalar, int Dim>
inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::prescale(Scalar s)
{
  m_matrix.template corner<Dim,HDim>(TopLeft) *= s;
  return *this;
}

/** Applies on the right the translation matrix represented by the vector \a other
  * to \c *this and returns a reference to \c *this.
  * \sa pretranslate()
  */
template<typename Scalar, int Dim>
template<typename OtherDerived>
Transform<Scalar,Dim>&
Transform<Scalar,Dim>::translate(const MatrixBase<OtherDerived> &other)
{
  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
  translation() += linear() * other;
  return *this;
}

/** Applies on the left the translation matrix represented by the vector \a other
  * to \c *this and returns a reference to \c *this.
  * \sa translate()
  */
template<typename Scalar, int Dim>
template<typename OtherDerived>
Transform<Scalar,Dim>&
Transform<Scalar,Dim>::pretranslate(const MatrixBase<OtherDerived> &other)
{
  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
  translation() += other;
  return *this;
}

/** Applies on the right the rotation represented by the rotation \a rotation
  * to \c *this and returns a reference to \c *this.
  *
  * The template parameter \a RotationType is the type of the rotation which
  * must be known by ei_toRotationMatrix<>.
  *
  * Natively supported types includes:
  *   - any scalar (2D),
  *   - a Dim x Dim matrix expression,
  *   - a Quaternion (3D),
  *   - a AngleAxis (3D)
  *
  * This mechanism is easily extendable to support user types such as Euler angles,
  * or a pair of Quaternion for 4D rotations.
  *
  * \sa rotate(Scalar), class Quaternion, class AngleAxis, prerotate(RotationType)
  */
template<typename Scalar, int Dim>
template<typename RotationType>
Transform<Scalar,Dim>&
Transform<Scalar,Dim>::rotate(const RotationType& rotation)
{
  linear() *= ei_toRotationMatrix<Scalar,Dim>(rotation);
  return *this;
}

/** Applies on the left the rotation represented by the rotation \a rotation
  * to \c *this and returns a reference to \c *this.
  *
  * See rotate() for further details.
  *
  * \sa rotate()
  */
template<typename Scalar, int Dim>
template<typename RotationType>
Transform<Scalar,Dim>&
Transform<Scalar,Dim>::prerotate(const RotationType& rotation)
{
  m_matrix.template block<Dim,HDim>(0,0) = ei_toRotationMatrix<Scalar,Dim>(rotation)
                                         * m_matrix.template block<Dim,HDim>(0,0);
  return *this;
}

/** Applies on the right the shear transformation represented
  * by the vector \a other to \c *this and returns a reference to \c *this.
  * \warning 2D only.
  * \sa preshear()
  */
template<typename Scalar, int Dim>
Transform<Scalar,Dim>&
Transform<Scalar,Dim>::shear(Scalar sx, Scalar sy)
{
  EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
  VectorType tmp = linear().col(0)*sy + linear().col(1);
  linear() << linear().col(0) + linear().col(1)*sx, tmp;
  return *this;
}

/** Applies on the left the shear transformation represented
  * by the vector \a other to \c *this and returns a reference to \c *this.
  * \warning 2D only.
  * \sa shear()
  */
template<typename Scalar, int Dim>
Transform<Scalar,Dim>&
Transform<Scalar,Dim>::preshear(Scalar sx, Scalar sy)
{
  EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
  m_matrix.template block<Dim,HDim>(0,0) = LinearMatrixType(1, sx, sy, 1) * m_matrix.template block<Dim,HDim>(0,0);
  return *this;
}

/******************************************************
*** Scaling, Translation and Rotation compatibility ***
******************************************************/

template<typename Scalar, int Dim>
inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const TranslationType& t)
{
  linear().setIdentity();
  translation() = t.vector();
  m_matrix.template block<1,Dim>(Dim,0).setZero();
  m_matrix(Dim,Dim) = Scalar(1);
  return *this;
}

template<typename Scalar, int Dim>
inline Transform<Scalar,Dim> Transform<Scalar,Dim>::operator*(const TranslationType& t) const
{
  Transform res = *this;
  res.translate(t.vector());
  return res;
}

template<typename Scalar, int Dim>
inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const ScalingType& s)
{
  m_matrix.setZero();
  linear().diagonal() = s.coeffs();
  m_matrix.coeffRef(Dim,Dim) = Scalar(1);
  return *this;
}

template<typename Scalar, int Dim>
inline Transform<Scalar,Dim> Transform<Scalar,Dim>::operator*(const ScalingType& s) const
{
  Transform res = *this;
  res.scale(s.coeffs());
  return res;
}

template<typename Scalar, int Dim>
template<typename Derived>
inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const RotationBase<Derived,Dim>& r)
{
  linear() = ei_toRotationMatrix<Scalar,Dim>(r);
  translation().setZero();
  m_matrix.template block<1,Dim>(Dim,0).setZero();
  m_matrix.coeffRef(Dim,Dim) = Scalar(1);
  return *this;
}

template<typename Scalar, int Dim>
template<typename Derived>
inline Transform<Scalar,Dim> Transform<Scalar,Dim>::operator*(const RotationBase<Derived,Dim>& r) const
{
  Transform res = *this;
  res.rotate(r.derived());
  return res;
}

/************************
*** Special functions ***
************************/

/** \returns the rotation part of the transformation
  * \nonstableyet
  *
  * \svd_module
  *
  * \sa computeRotationScaling(), computeScalingRotation(), class SVD
  */
template<typename Scalar, int Dim>
typename Transform<Scalar,Dim>::LinearMatrixType
Transform<Scalar,Dim>::rotation() const
{
  LinearMatrixType result;
  computeRotationScaling(&result, (LinearMatrixType*)0);
  return result;
}


/** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being
  * not necessarily positive.
  *
  * If either pointer is zero, the corresponding computation is skipped.
  *
  * \nonstableyet
  *
  * \svd_module
  *
  * \sa computeScalingRotation(), rotation(), class SVD
  */
template<typename Scalar, int Dim>
template<typename RotationMatrixType, typename ScalingMatrixType>
void Transform<Scalar,Dim>::computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const
{
  linear().svd().computeRotationScaling(rotation, scaling);
}

/** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being
  * not necessarily positive.
  *
  * If either pointer is zero, the corresponding computation is skipped.
  *
  * \nonstableyet
  *
  * \svd_module
  *
  * \sa computeRotationScaling(), rotation(), class SVD
  */
template<typename Scalar, int Dim>
template<typename ScalingMatrixType, typename RotationMatrixType>
void Transform<Scalar,Dim>::computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const
{
  linear().svd().computeScalingRotation(scaling, rotation);
}

/** Convenient method to set \c *this from a position, orientation and scale
  * of a 3D object.
  */
template<typename Scalar, int Dim>
template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
Transform<Scalar,Dim>&
Transform<Scalar,Dim>::fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
  const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale)
{
  linear() = ei_toRotationMatrix<Scalar,Dim>(orientation);
  linear() *= scale.asDiagonal();
  translation() = position;
  m_matrix.template block<1,Dim>(Dim,0).setZero();
  m_matrix(Dim,Dim) = Scalar(1);
  return *this;
}

/** \nonstableyet
  *
  * \returns the inverse transformation matrix according to some given knowledge
  * on \c *this.
  *
  * \param traits allows to optimize the inversion process when the transformion
  * is known to be not a general transformation. The possible values are:
  *  - Projective if the transformation is not necessarily affine, i.e., if the
  *    last row is not guaranteed to be [0 ... 0 1]
  *  - Affine is the default, the last row is assumed to be [0 ... 0 1]
  *  - Isometry if the transformation is only a concatenations of translations
  *    and rotations.
  *
  * \warning unless \a traits is always set to NoShear or NoScaling, this function
  * requires the generic inverse method of MatrixBase defined in the LU module. If
  * you forget to include this module, then you will get hard to debug linking errors.
  *
  * \sa MatrixBase::inverse()
  */
template<typename Scalar, int Dim>
inline const typename Transform<Scalar,Dim>::MatrixType
Transform<Scalar,Dim>::inverse(TransformTraits traits) const
{
  if (traits == Projective)
  {
    return m_matrix.inverse();
  }
  else
  {
    MatrixType res;
    if (traits == Affine)
    {
      res.template corner<Dim,Dim>(TopLeft) = linear().inverse();
    }
    else if (traits == Isometry)
    {
      res.template corner<Dim,Dim>(TopLeft) = linear().transpose();
    }
    else
    {
      ei_assert("invalid traits value in Transform::inverse()");
    }
    // translation and remaining parts
    res.template corner<Dim,1>(TopRight) = - res.template corner<Dim,Dim>(TopLeft) * translation();
    res.template corner<1,Dim>(BottomLeft).setZero();
    res.coeffRef(Dim,Dim) = Scalar(1);
    return res;
  }
}

/*****************************************************
*** Specializations of operator* with a MatrixBase ***
*****************************************************/

template<typename Other, int Dim, int HDim>
struct ei_transform_product_impl<Other,Dim,HDim, HDim,HDim>
{
  typedef Transform<typename Other::Scalar,Dim> TransformType;
  typedef typename TransformType::MatrixType MatrixType;
  typedef typename ProductReturnType<MatrixType,Other>::Type ResultType;
  static ResultType run(const TransformType& tr, const Other& other)
  { return tr.matrix() * other; }
};

template<typename Other, int Dim, int HDim>
struct ei_transform_product_impl<Other,Dim,HDim, Dim,Dim>
{
  typedef Transform<typename Other::Scalar,Dim> TransformType;
  typedef typename TransformType::MatrixType MatrixType;
  typedef TransformType ResultType;
  static ResultType run(const TransformType& tr, const Other& other)
  {
    TransformType res;
    res.translation() = tr.translation();
    res.matrix().row(Dim) = tr.matrix().row(Dim);
    res.linear() = (tr.linear() * other).lazy();
    return res;
  }
};

template<typename Other, int Dim, int HDim>
struct ei_transform_product_impl<Other,Dim,HDim, HDim,1>
{
  typedef Transform<typename Other::Scalar,Dim> TransformType;
  typedef typename TransformType::MatrixType MatrixType;
  typedef typename ProductReturnType<MatrixType,Other>::Type ResultType;
  static ResultType run(const TransformType& tr, const Other& other)
  { return tr.matrix() * other; }
};

template<typename Other, int Dim, int HDim>
struct ei_transform_product_impl<Other,Dim,HDim, Dim,1>
{
  typedef typename Other::Scalar Scalar;
  typedef Transform<Scalar,Dim> TransformType;
  typedef typename TransformType::LinearPart MatrixType;
  typedef const CwiseUnaryOp<
      ei_scalar_multiple_op<Scalar>,
      NestByValue<CwiseBinaryOp<
        ei_scalar_sum_op<Scalar>,
        NestByValue<typename ProductReturnType<NestByValue<MatrixType>,Other>::Type >,
        NestByValue<typename TransformType::TranslationPart> > >
      > ResultType;
  // FIXME should we offer an optimized version when the last row is known to be 0,0...,0,1 ?
  static ResultType run(const TransformType& tr, const Other& other)
  { return ((tr.linear().nestByValue() * other).nestByValue() + tr.translation().nestByValue()).nestByValue()
          * (Scalar(1) / ( (tr.matrix().template block<1,Dim>(Dim,0) * other).coeff(0) + tr.matrix().coeff(Dim,Dim))); }
};

#endif // EIGEN_TRANSFORM_H