Welcome to mirror list, hosted at ThFree Co, Russian Federation.

AmbiVector.h « Sparse « src « Eigen « Eigen2 « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 75001a2fa25321b174e7f03cfe30ab09140e5b41 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_AMBIVECTOR_H
#define EIGEN_AMBIVECTOR_H

/** \internal
  * Hybrid sparse/dense vector class designed for intensive read-write operations.
  *
  * See BasicSparseLLT and SparseProduct for usage examples.
  */
template<typename _Scalar> class AmbiVector
{
  public:
    typedef _Scalar Scalar;
    typedef typename NumTraits<Scalar>::Real RealScalar;
    AmbiVector(int size)
      : m_buffer(0), m_size(0), m_allocatedSize(0), m_allocatedElements(0), m_mode(-1)
    {
      resize(size);
    }

    void init(RealScalar estimatedDensity);
    void init(int mode);

    void nonZeros() const;

    /** Specifies a sub-vector to work on */
    void setBounds(int start, int end) { m_start = start; m_end = end; }

    void setZero();

    void restart();
    Scalar& coeffRef(int i);
    Scalar coeff(int i);

    class Iterator;

    ~AmbiVector() { delete[] m_buffer; }

    void resize(int size)
    {
      if (m_allocatedSize < size)
        reallocate(size);
      m_size = size;
    }

    int size() const { return m_size; }

  protected:

    void reallocate(int size)
    {
      // if the size of the matrix is not too large, let's allocate a bit more than needed such
      // that we can handle dense vector even in sparse mode.
      delete[] m_buffer;
      if (size<1000)
      {
        int allocSize = (size * sizeof(ListEl))/sizeof(Scalar);
        m_allocatedElements = (allocSize*sizeof(Scalar))/sizeof(ListEl);
        m_buffer = new Scalar[allocSize];
      }
      else
      {
        m_allocatedElements = (size*sizeof(Scalar))/sizeof(ListEl);
        m_buffer = new Scalar[size];
      }
      m_size = size;
      m_start = 0;
      m_end = m_size;
    }

    void reallocateSparse()
    {
      int copyElements = m_allocatedElements;
      m_allocatedElements = std::min(int(m_allocatedElements*1.5),m_size);
      int allocSize = m_allocatedElements * sizeof(ListEl);
      allocSize = allocSize/sizeof(Scalar) + (allocSize%sizeof(Scalar)>0?1:0);
      Scalar* newBuffer = new Scalar[allocSize];
      memcpy(newBuffer,  m_buffer,  copyElements * sizeof(ListEl));
    }

  protected:
    // element type of the linked list
    struct ListEl
    {
      int next;
      int index;
      Scalar value;
    };

    // used to store data in both mode
    Scalar* m_buffer;
    int m_size;
    int m_start;
    int m_end;
    int m_allocatedSize;
    int m_allocatedElements;
    int m_mode;

    // linked list mode
    int m_llStart;
    int m_llCurrent;
    int m_llSize;

  private:
    AmbiVector(const AmbiVector&);

};

/** \returns the number of non zeros in the current sub vector */
template<typename Scalar>
void AmbiVector<Scalar>::nonZeros() const
{
  if (m_mode==IsSparse)
    return m_llSize;
  else
    return m_end - m_start;
}

template<typename Scalar>
void AmbiVector<Scalar>::init(RealScalar estimatedDensity)
{
  if (estimatedDensity>0.1)
    init(IsDense);
  else
    init(IsSparse);
}

template<typename Scalar>
void AmbiVector<Scalar>::init(int mode)
{
  m_mode = mode;
  if (m_mode==IsSparse)
  {
    m_llSize = 0;
    m_llStart = -1;
  }
}

/** Must be called whenever we might perform a write access
  * with an index smaller than the previous one.
  *
  * Don't worry, this function is extremely cheap.
  */
template<typename Scalar>
void AmbiVector<Scalar>::restart()
{
  m_llCurrent = m_llStart;
}

/** Set all coefficients of current subvector to zero */
template<typename Scalar>
void AmbiVector<Scalar>::setZero()
{
  if (m_mode==IsDense)
  {
    for (int i=m_start; i<m_end; ++i)
      m_buffer[i] = Scalar(0);
  }
  else
  {
    ei_assert(m_mode==IsSparse);
    m_llSize = 0;
    m_llStart = -1;
  }
}

template<typename Scalar>
Scalar& AmbiVector<Scalar>::coeffRef(int i)
{
  if (m_mode==IsDense)
    return m_buffer[i];
  else
  {
    ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_buffer);
    // TODO factorize the following code to reduce code generation
    ei_assert(m_mode==IsSparse);
    if (m_llSize==0)
    {
      // this is the first element
      m_llStart = 0;
      m_llCurrent = 0;
      ++m_llSize;
      llElements[0].value = Scalar(0);
      llElements[0].index = i;
      llElements[0].next = -1;
      return llElements[0].value;
    }
    else if (i<llElements[m_llStart].index)
    {
      // this is going to be the new first element of the list
      ListEl& el = llElements[m_llSize];
      el.value = Scalar(0);
      el.index = i;
      el.next = m_llStart;
      m_llStart = m_llSize;
      ++m_llSize;
      m_llCurrent = m_llStart;
      return el.value;
    }
    else
    {
      int nextel = llElements[m_llCurrent].next;
      ei_assert(i>=llElements[m_llCurrent].index && "you must call restart() before inserting an element with lower or equal index");
      while (nextel >= 0 && llElements[nextel].index<=i)
      {
        m_llCurrent = nextel;
        nextel = llElements[nextel].next;
      }

      if (llElements[m_llCurrent].index==i)
      {
        // the coefficient already exists and we found it !
        return llElements[m_llCurrent].value;
      }
      else
      {
        if (m_llSize>=m_allocatedElements)
          reallocateSparse();
        ei_internal_assert(m_llSize<m_size && "internal error: overflow in sparse mode");
        // let's insert a new coefficient
        ListEl& el = llElements[m_llSize];
        el.value = Scalar(0);
        el.index = i;
        el.next = llElements[m_llCurrent].next;
        llElements[m_llCurrent].next = m_llSize;
        ++m_llSize;
        return el.value;
      }
    }
  }
}

template<typename Scalar>
Scalar AmbiVector<Scalar>::coeff(int i)
{
  if (m_mode==IsDense)
    return m_buffer[i];
  else
  {
    ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_buffer);
    ei_assert(m_mode==IsSparse);
    if ((m_llSize==0) || (i<llElements[m_llStart].index))
    {
      return Scalar(0);
    }
    else
    {
      int elid = m_llStart;
      while (elid >= 0 && llElements[elid].index<i)
        elid = llElements[elid].next;

      if (llElements[elid].index==i)
        return llElements[m_llCurrent].value;
      else
        return Scalar(0);
    }
  }
}

/** Iterator over the nonzero coefficients */
template<typename _Scalar>
class AmbiVector<_Scalar>::Iterator
{
  public:
    typedef _Scalar Scalar;
    typedef typename NumTraits<Scalar>::Real RealScalar;

    /** Default constructor
      * \param vec the vector on which we iterate
      * \param epsilon the minimal value used to prune zero coefficients.
      * In practice, all coefficients having a magnitude smaller than \a epsilon
      * are skipped.
      */
    Iterator(const AmbiVector& vec, RealScalar epsilon = RealScalar(0.1)*precision<RealScalar>())
      : m_vector(vec)
    {
      m_epsilon = epsilon;
      m_isDense = m_vector.m_mode==IsDense;
      if (m_isDense)
      {
        m_cachedIndex = m_vector.m_start-1;
        ++(*this);
      }
      else
      {
        ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_vector.m_buffer);
        m_currentEl = m_vector.m_llStart;
        while (m_currentEl>=0 && ei_abs(llElements[m_currentEl].value)<m_epsilon)
          m_currentEl = llElements[m_currentEl].next;
        if (m_currentEl<0)
        {
          m_cachedIndex = -1;
        }
        else
        {
          m_cachedIndex = llElements[m_currentEl].index;
          m_cachedValue = llElements[m_currentEl].value;
        }
      }
    }

    int index() const { return m_cachedIndex; }
    Scalar value() const { return m_cachedValue; }

    operator bool() const { return m_cachedIndex>=0; }

    Iterator& operator++()
    {
      if (m_isDense)
      {
        do {
          ++m_cachedIndex;
        } while (m_cachedIndex<m_vector.m_end && ei_abs(m_vector.m_buffer[m_cachedIndex])<m_epsilon);
        if (m_cachedIndex<m_vector.m_end)
          m_cachedValue = m_vector.m_buffer[m_cachedIndex];
        else
          m_cachedIndex=-1;
      }
      else
      {
        ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_vector.m_buffer);
        do {
          m_currentEl = llElements[m_currentEl].next;
        } while (m_currentEl>=0 && ei_abs(llElements[m_currentEl].value)<m_epsilon);
        if (m_currentEl<0)
        {
          m_cachedIndex = -1;
        }
        else
        {
          m_cachedIndex = llElements[m_currentEl].index;
          m_cachedValue = llElements[m_currentEl].value;
        }
      }
      return *this;
    }

  protected:
    const AmbiVector& m_vector; // the target vector
    int m_currentEl;            // the current element in sparse/linked-list mode
    RealScalar m_epsilon;       // epsilon used to prune zero coefficients
    int m_cachedIndex;          // current coordinate
    Scalar m_cachedValue;       // current value
    bool m_isDense;             // mode of the vector
};


#endif // EIGEN_AMBIVECTOR_H