Welcome to mirror list, hosted at ThFree Co, Russian Federation.

UmfPackSupport.h « Sparse « src « Eigen « Eigen2 « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: b76ffb2524811dafc3cf037321c62dac87cd7507 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_UMFPACKSUPPORT_H
#define EIGEN_UMFPACKSUPPORT_H

/* TODO extract L, extract U, compute det, etc... */

// generic double/complex<double> wrapper functions:

inline void umfpack_free_numeric(void **Numeric, double)
{ umfpack_di_free_numeric(Numeric); }

inline void umfpack_free_numeric(void **Numeric, std::complex<double>)
{ umfpack_zi_free_numeric(Numeric); }

inline void umfpack_free_symbolic(void **Symbolic, double)
{ umfpack_di_free_symbolic(Symbolic); }

inline void umfpack_free_symbolic(void **Symbolic, std::complex<double>)
{ umfpack_zi_free_symbolic(Symbolic); }

inline int umfpack_symbolic(int n_row,int n_col,
                            const int Ap[], const int Ai[], const double Ax[], void **Symbolic,
                            const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO])
{
  return umfpack_di_symbolic(n_row,n_col,Ap,Ai,Ax,Symbolic,Control,Info);
}

inline int umfpack_symbolic(int n_row,int n_col,
                            const int Ap[], const int Ai[], const std::complex<double> Ax[], void **Symbolic,
                            const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO])
{
  return umfpack_zi_symbolic(n_row,n_col,Ap,Ai,&Ax[0].real(),0,Symbolic,Control,Info);
}

inline int umfpack_numeric( const int Ap[], const int Ai[], const double Ax[],
                            void *Symbolic, void **Numeric,
                            const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO])
{
  return umfpack_di_numeric(Ap,Ai,Ax,Symbolic,Numeric,Control,Info);
}

inline int umfpack_numeric( const int Ap[], const int Ai[], const std::complex<double> Ax[],
                            void *Symbolic, void **Numeric,
                            const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO])
{
  return umfpack_zi_numeric(Ap,Ai,&Ax[0].real(),0,Symbolic,Numeric,Control,Info);
}

inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const double Ax[],
                          double X[], const double B[], void *Numeric,
                          const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
{
  return umfpack_di_solve(sys,Ap,Ai,Ax,X,B,Numeric,Control,Info);
}

inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const std::complex<double> Ax[],
                          std::complex<double> X[], const std::complex<double> B[], void *Numeric,
                          const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
{
  return umfpack_zi_solve(sys,Ap,Ai,&Ax[0].real(),0,&X[0].real(),0,&B[0].real(),0,Numeric,Control,Info);
}

inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, double)
{
  return umfpack_di_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric);
}

inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, std::complex<double>)
{
  return umfpack_zi_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric);
}

inline int umfpack_get_numeric(int Lp[], int Lj[], double Lx[], int Up[], int Ui[], double Ux[],
                               int P[], int Q[], double Dx[], int *do_recip, double Rs[], void *Numeric)
{
  return umfpack_di_get_numeric(Lp,Lj,Lx,Up,Ui,Ux,P,Q,Dx,do_recip,Rs,Numeric);
}

inline int umfpack_get_numeric(int Lp[], int Lj[], std::complex<double> Lx[], int Up[], int Ui[], std::complex<double> Ux[],
                               int P[], int Q[], std::complex<double> Dx[], int *do_recip, double Rs[], void *Numeric)
{
  return umfpack_zi_get_numeric(Lp,Lj,Lx?&Lx[0].real():0,0,Up,Ui,Ux?&Ux[0].real():0,0,P,Q,
                               Dx?&Dx[0].real():0,0,do_recip,Rs,Numeric);
}

inline int umfpack_get_determinant(double *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO])
{
  return umfpack_di_get_determinant(Mx,Ex,NumericHandle,User_Info);
}

inline int umfpack_get_determinant(std::complex<double> *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO])
{
  return umfpack_zi_get_determinant(&Mx->real(),0,Ex,NumericHandle,User_Info);
}


template<typename MatrixType>
class SparseLU<MatrixType,UmfPack> : public SparseLU<MatrixType>
{
  protected:
    typedef SparseLU<MatrixType> Base;
    typedef typename Base::Scalar Scalar;
    typedef typename Base::RealScalar RealScalar;
    typedef Matrix<Scalar,Dynamic,1> Vector;
    typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType;
    typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
    typedef SparseMatrix<Scalar,LowerTriangular|UnitDiagBit> LMatrixType;
    typedef SparseMatrix<Scalar,UpperTriangular> UMatrixType;
    using Base::m_flags;
    using Base::m_status;

  public:

    SparseLU(int flags = NaturalOrdering)
      : Base(flags), m_numeric(0)
    {
    }

    SparseLU(const MatrixType& matrix, int flags = NaturalOrdering)
      : Base(flags), m_numeric(0)
    {
      compute(matrix);
    }

    ~SparseLU()
    {
      if (m_numeric)
        umfpack_free_numeric(&m_numeric,Scalar());
    }

    inline const LMatrixType& matrixL() const
    {
      if (m_extractedDataAreDirty) extractData();
      return m_l;
    }

    inline const UMatrixType& matrixU() const
    {
      if (m_extractedDataAreDirty) extractData();
      return m_u;
    }

    inline const IntColVectorType& permutationP() const
    {
      if (m_extractedDataAreDirty) extractData();
      return m_p;
    }

    inline const IntRowVectorType& permutationQ() const
    {
      if (m_extractedDataAreDirty) extractData();
      return m_q;
    }

    Scalar determinant() const;

    template<typename BDerived, typename XDerived>
    bool solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>* x) const;

    void compute(const MatrixType& matrix);

  protected:

    void extractData() const;
  
  protected:
    // cached data:
    void* m_numeric;
    const MatrixType* m_matrixRef;
    mutable LMatrixType m_l;
    mutable UMatrixType m_u;
    mutable IntColVectorType m_p;
    mutable IntRowVectorType m_q;
    mutable bool m_extractedDataAreDirty;
};

template<typename MatrixType>
void SparseLU<MatrixType,UmfPack>::compute(const MatrixType& a)
{
  const int rows = a.rows();
  const int cols = a.cols();
  ei_assert((MatrixType::Flags&RowMajorBit)==0 && "Row major matrices are not supported yet");

  m_matrixRef = &a;

  if (m_numeric)
    umfpack_free_numeric(&m_numeric,Scalar());

  void* symbolic;
  int errorCode = 0;
  errorCode = umfpack_symbolic(rows, cols, a._outerIndexPtr(), a._innerIndexPtr(), a._valuePtr(),
                                  &symbolic, 0, 0);
  if (errorCode==0)
    errorCode = umfpack_numeric(a._outerIndexPtr(), a._innerIndexPtr(), a._valuePtr(),
                                   symbolic, &m_numeric, 0, 0);

  umfpack_free_symbolic(&symbolic,Scalar());

  m_extractedDataAreDirty = true;

  Base::m_succeeded = (errorCode==0);
}

template<typename MatrixType>
void SparseLU<MatrixType,UmfPack>::extractData() const
{
  if (m_extractedDataAreDirty)
  {
    // get size of the data
    int lnz, unz, rows, cols, nz_udiag;
    umfpack_get_lunz(&lnz, &unz, &rows, &cols, &nz_udiag, m_numeric, Scalar());

    // allocate data
    m_l.resize(rows,std::min(rows,cols));
    m_l.resizeNonZeros(lnz);
    
    m_u.resize(std::min(rows,cols),cols);
    m_u.resizeNonZeros(unz);

    m_p.resize(rows);
    m_q.resize(cols);

    // extract
    umfpack_get_numeric(m_l._outerIndexPtr(), m_l._innerIndexPtr(), m_l._valuePtr(),
                        m_u._outerIndexPtr(), m_u._innerIndexPtr(), m_u._valuePtr(),
                        m_p.data(), m_q.data(), 0, 0, 0, m_numeric);
    
    m_extractedDataAreDirty = false;
  }
}

template<typename MatrixType>
typename SparseLU<MatrixType,UmfPack>::Scalar SparseLU<MatrixType,UmfPack>::determinant() const
{
  Scalar det;
  umfpack_get_determinant(&det, 0, m_numeric, 0);
  return det;
}

template<typename MatrixType>
template<typename BDerived,typename XDerived>
bool SparseLU<MatrixType,UmfPack>::solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived> *x) const
{
  //const int size = m_matrix.rows();
  const int rhsCols = b.cols();
//   ei_assert(size==b.rows());
  ei_assert((BDerived::Flags&RowMajorBit)==0 && "UmfPack backend does not support non col-major rhs yet");
  ei_assert((XDerived::Flags&RowMajorBit)==0 && "UmfPack backend does not support non col-major result yet");

  int errorCode;
  for (int j=0; j<rhsCols; ++j)
  {
    errorCode = umfpack_solve(UMFPACK_A,
        m_matrixRef->_outerIndexPtr(), m_matrixRef->_innerIndexPtr(), m_matrixRef->_valuePtr(),
        &x->col(j).coeffRef(0), &b.const_cast_derived().col(j).coeffRef(0), m_numeric, 0, 0);
    if (errorCode!=0)
      return false;
  }
//   errorCode = umfpack_di_solve(UMFPACK_A,
//       m_matrixRef._outerIndexPtr(), m_matrixRef._innerIndexPtr(), m_matrixRef._valuePtr(),
//       x->derived().data(), b.derived().data(), m_numeric, 0, 0);

  return true;
}

#endif // EIGEN_UMFPACKSUPPORT_H