Welcome to mirror list, hosted at ThFree Co, Russian Federation.

SparseMatrix.h « Sparse « src « Eigen « Eigen3 « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 0e175ec6e71aa117c7650e853b148d12d5cea5a2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_SPARSEMATRIX_H
#define EIGEN_SPARSEMATRIX_H

/** \ingroup Sparse_Module
  *
  * \class SparseMatrix
  *
  * \brief The main sparse matrix class
  *
  * This class implements a sparse matrix using the very common compressed row/column storage
  * scheme.
  *
  * \tparam _Scalar the scalar type, i.e. the type of the coefficients
  * \tparam _Options Union of bit flags controlling the storage scheme. Currently the only possibility
  *                 is RowMajor. The default is 0 which means column-major.
  * \tparam _Index the type of the indices. Default is \c int.
  *
  * See http://www.netlib.org/linalg/html_templates/node91.html for details on the storage scheme.
  *
  * This class can be extended with the help of the plugin mechanism described on the page
  * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_SPARSEMATRIX_PLUGIN.
  */

namespace internal {
template<typename _Scalar, int _Options, typename _Index>
struct traits<SparseMatrix<_Scalar, _Options, _Index> >
{
  typedef _Scalar Scalar;
  typedef _Index Index;
  typedef Sparse StorageKind;
  typedef MatrixXpr XprKind;
  enum {
    RowsAtCompileTime = Dynamic,
    ColsAtCompileTime = Dynamic,
    MaxRowsAtCompileTime = Dynamic,
    MaxColsAtCompileTime = Dynamic,
    Flags = _Options | NestByRefBit | LvalueBit,
    CoeffReadCost = NumTraits<Scalar>::ReadCost,
    SupportedAccessPatterns = InnerRandomAccessPattern
  };
};

} // end namespace internal

template<typename _Scalar, int _Options, typename _Index>
class SparseMatrix
  : public SparseMatrixBase<SparseMatrix<_Scalar, _Options, _Index> >
{
  public:
    EIGEN_SPARSE_PUBLIC_INTERFACE(SparseMatrix)
//     using Base::operator=;
    EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseMatrix, +=)
    EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseMatrix, -=)
    // FIXME: why are these operator already alvailable ???
    // EIGEN_SPARSE_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(SparseMatrix, *=)
    // EIGEN_SPARSE_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(SparseMatrix, /=)

    typedef MappedSparseMatrix<Scalar,Flags> Map;
    using Base::IsRowMajor;
    typedef CompressedStorage<Scalar,Index> Storage;
    enum {
      Options = _Options
    };

  protected:

    typedef SparseMatrix<Scalar,(Flags&~RowMajorBit)|(IsRowMajor?RowMajorBit:0)> TransposedSparseMatrix;

    Index m_outerSize;
    Index m_innerSize;
    Index* m_outerIndex;
    CompressedStorage<Scalar,Index> m_data;

  public:

    inline Index rows() const { return IsRowMajor ? m_outerSize : m_innerSize; }
    inline Index cols() const { return IsRowMajor ? m_innerSize : m_outerSize; }

    inline Index innerSize() const { return m_innerSize; }
    inline Index outerSize() const { return m_outerSize; }
    inline Index innerNonZeros(Index j) const { return m_outerIndex[j+1]-m_outerIndex[j]; }

    inline const Scalar* _valuePtr() const { return &m_data.value(0); }
    inline Scalar* _valuePtr() { return &m_data.value(0); }

    inline const Index* _innerIndexPtr() const { return &m_data.index(0); }
    inline Index* _innerIndexPtr() { return &m_data.index(0); }

    inline const Index* _outerIndexPtr() const { return m_outerIndex; }
    inline Index* _outerIndexPtr() { return m_outerIndex; }

    inline Storage& data() { return m_data; }
    inline const Storage& data() const { return m_data; }

    inline Scalar coeff(Index row, Index col) const
    {
      const Index outer = IsRowMajor ? row : col;
      const Index inner = IsRowMajor ? col : row;
      return m_data.atInRange(m_outerIndex[outer], m_outerIndex[outer+1], inner);
    }

    inline Scalar& coeffRef(Index row, Index col)
    {
      const Index outer = IsRowMajor ? row : col;
      const Index inner = IsRowMajor ? col : row;

      Index start = m_outerIndex[outer];
      Index end = m_outerIndex[outer+1];
      eigen_assert(end>=start && "you probably called coeffRef on a non finalized matrix");
      eigen_assert(end>start && "coeffRef cannot be called on a zero coefficient");
      const Index p = m_data.searchLowerIndex(start,end-1,inner);
      eigen_assert((p<end) && (m_data.index(p)==inner) && "coeffRef cannot be called on a zero coefficient");
      return m_data.value(p);
    }

  public:

    class InnerIterator;

    /** Removes all non zeros */
    inline void setZero()
    {
      m_data.clear();
      memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(Index));
    }

    /** \returns the number of non zero coefficients */
    inline Index nonZeros() const  { return static_cast<Index>(m_data.size()); }

    /** Preallocates \a reserveSize non zeros */
    inline void reserve(Index reserveSize)
    {
      m_data.reserve(reserveSize);
    }

    //--- low level purely coherent filling ---

    /** \returns a reference to the non zero coefficient at position \a row, \a col assuming that:
      * - the nonzero does not already exist
      * - the new coefficient is the last one according to the storage order
      *
      * Before filling a given inner vector you must call the statVec(Index) function.
      *
      * After an insertion session, you should call the finalize() function.
      *
      * \sa insert, insertBackByOuterInner, startVec */
    inline Scalar& insertBack(Index row, Index col)
    {
      return insertBackByOuterInner(IsRowMajor?row:col, IsRowMajor?col:row);
    }

    /** \sa insertBack, startVec */
    inline Scalar& insertBackByOuterInner(Index outer, Index inner)
    {
      eigen_assert(size_t(m_outerIndex[outer+1]) == m_data.size() && "Invalid ordered insertion (invalid outer index)");
      eigen_assert( (m_outerIndex[outer+1]-m_outerIndex[outer]==0 || m_data.index(m_data.size()-1)<inner) && "Invalid ordered insertion (invalid inner index)");
      Index p = m_outerIndex[outer+1];
      ++m_outerIndex[outer+1];
      m_data.append(0, inner);
      return m_data.value(p);
    }

    /** \warning use it only if you know what you are doing */
    inline Scalar& insertBackByOuterInnerUnordered(Index outer, Index inner)
    {
      Index p = m_outerIndex[outer+1];
      ++m_outerIndex[outer+1];
      m_data.append(0, inner);
      return m_data.value(p);
    }

    /** \sa insertBack, insertBackByOuterInner */
    inline void startVec(Index outer)
    {
      eigen_assert(m_outerIndex[outer]==int(m_data.size()) && "You must call startVec for each inner vector sequentially");
      eigen_assert(m_outerIndex[outer+1]==0 && "You must call startVec for each inner vector sequentially");
      m_outerIndex[outer+1] = m_outerIndex[outer];
    }

    //---

    /** \returns a reference to a novel non zero coefficient with coordinates \a row x \a col.
      * The non zero coefficient must \b not already exist.
      *
      * \warning This function can be extremely slow if the non zero coefficients
      * are not inserted in a coherent order.
      *
      * After an insertion session, you should call the finalize() function.
      */
    EIGEN_DONT_INLINE Scalar& insert(Index row, Index col)
    {
      const Index outer = IsRowMajor ? row : col;
      const Index inner = IsRowMajor ? col : row;

      Index previousOuter = outer;
      if (m_outerIndex[outer+1]==0)
      {
        // we start a new inner vector
        while (previousOuter>=0 && m_outerIndex[previousOuter]==0)
        {
          m_outerIndex[previousOuter] = static_cast<Index>(m_data.size());
          --previousOuter;
        }
        m_outerIndex[outer+1] = m_outerIndex[outer];
      }

      // here we have to handle the tricky case where the outerIndex array
      // starts with: [ 0 0 0 0 0 1 ...] and we are inserting in, e.g.,
      // the 2nd inner vector...
      bool isLastVec = (!(previousOuter==-1 && m_data.size()!=0))
                    && (size_t(m_outerIndex[outer+1]) == m_data.size());

      size_t startId = m_outerIndex[outer];
      // FIXME let's make sure sizeof(long int) == sizeof(size_t)
      size_t p = m_outerIndex[outer+1];
      ++m_outerIndex[outer+1];

      float reallocRatio = 1;
      if (m_data.allocatedSize()<=m_data.size())
      {
        // if there is no preallocated memory, let's reserve a minimum of 32 elements
        if (m_data.size()==0)
        {
          m_data.reserve(32);
        }
        else
        {
          // we need to reallocate the data, to reduce multiple reallocations
          // we use a smart resize algorithm based on the current filling ratio
          // in addition, we use float to avoid integers overflows
          float nnzEstimate = float(m_outerIndex[outer])*float(m_outerSize)/float(outer+1);
          reallocRatio = (nnzEstimate-float(m_data.size()))/float(m_data.size());
          // furthermore we bound the realloc ratio to:
          //   1) reduce multiple minor realloc when the matrix is almost filled
          //   2) avoid to allocate too much memory when the matrix is almost empty
          reallocRatio = (std::min)((std::max)(reallocRatio,1.5f),8.f);
        }
      }
      m_data.resize(m_data.size()+1,reallocRatio);

      if (!isLastVec)
      {
        if (previousOuter==-1)
        {
          // oops wrong guess.
          // let's correct the outer offsets
          for (Index k=0; k<=(outer+1); ++k)
            m_outerIndex[k] = 0;
          Index k=outer+1;
          while(m_outerIndex[k]==0)
            m_outerIndex[k++] = 1;
          while (k<=m_outerSize && m_outerIndex[k]!=0)
            m_outerIndex[k++]++;
          p = 0;
          --k;
          k = m_outerIndex[k]-1;
          while (k>0)
          {
            m_data.index(k) = m_data.index(k-1);
            m_data.value(k) = m_data.value(k-1);
            k--;
          }
        }
        else
        {
          // we are not inserting into the last inner vec
          // update outer indices:
          Index j = outer+2;
          while (j<=m_outerSize && m_outerIndex[j]!=0)
            m_outerIndex[j++]++;
          --j;
          // shift data of last vecs:
          Index k = m_outerIndex[j]-1;
          while (k>=Index(p))
          {
            m_data.index(k) = m_data.index(k-1);
            m_data.value(k) = m_data.value(k-1);
            k--;
          }
        }
      }

      while ( (p > startId) && (m_data.index(p-1) > inner) )
      {
        m_data.index(p) = m_data.index(p-1);
        m_data.value(p) = m_data.value(p-1);
        --p;
      }

      m_data.index(p) = inner;
      return (m_data.value(p) = 0);
    }




    /** Must be called after inserting a set of non zero entries.
      */
    inline void finalize()
    {
      Index size = static_cast<Index>(m_data.size());
      Index i = m_outerSize;
      // find the last filled column
      while (i>=0 && m_outerIndex[i]==0)
        --i;
      ++i;
      while (i<=m_outerSize)
      {
        m_outerIndex[i] = size;
        ++i;
      }
    }

    /** Suppress all nonzeros which are smaller than \a reference under the tolerence \a epsilon */
    void prune(Scalar reference, RealScalar epsilon = NumTraits<RealScalar>::dummy_precision())
    {
      prune(default_prunning_func(reference,epsilon));
    }
    
    /** Suppress all nonzeros which do not satisfy the predicate \a keep.
      * The functor type \a KeepFunc must implement the following function:
      * \code
      * bool operator() (const Index& row, const Index& col, const Scalar& value) const;
      * \endcode
      * \sa prune(Scalar,RealScalar)
      */
    template<typename KeepFunc>
    void prune(const KeepFunc& keep = KeepFunc())
    {
      Index k = 0;
      for(Index j=0; j<m_outerSize; ++j)
      {
        Index previousStart = m_outerIndex[j];
        m_outerIndex[j] = k;
        Index end = m_outerIndex[j+1];
        for(Index i=previousStart; i<end; ++i)
        {
          if(keep(IsRowMajor?j:m_data.index(i), IsRowMajor?m_data.index(i):j, m_data.value(i)))
          {
            m_data.value(k) = m_data.value(i);
            m_data.index(k) = m_data.index(i);
            ++k;
          }
        }
      }
      m_outerIndex[m_outerSize] = k;
      m_data.resize(k,0);
    }

    /** Resizes the matrix to a \a rows x \a cols matrix and initializes it to zero
      * \sa resizeNonZeros(Index), reserve(), setZero()
      */
    void resize(Index rows, Index cols)
    {
      const Index outerSize = IsRowMajor ? rows : cols;
      m_innerSize = IsRowMajor ? cols : rows;
      m_data.clear();
      if (m_outerSize != outerSize || m_outerSize==0)
      {
        delete[] m_outerIndex;
        m_outerIndex = new Index [outerSize+1];
        m_outerSize = outerSize;
      }
      memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(Index));
    }

    /** Low level API
      * Resize the nonzero vector to \a size */
    void resizeNonZeros(Index size)
    {
      m_data.resize(size);
    }

    /** Default constructor yielding an empty \c 0 \c x \c 0 matrix */
    inline SparseMatrix()
      : m_outerSize(-1), m_innerSize(0), m_outerIndex(0)
    {
      resize(0, 0);
    }

    /** Constructs a \a rows \c x \a cols empty matrix */
    inline SparseMatrix(Index rows, Index cols)
      : m_outerSize(0), m_innerSize(0), m_outerIndex(0)
    {
      resize(rows, cols);
    }

    /** Constructs a sparse matrix from the sparse expression \a other */
    template<typename OtherDerived>
    inline SparseMatrix(const SparseMatrixBase<OtherDerived>& other)
      : m_outerSize(0), m_innerSize(0), m_outerIndex(0)
    {
      *this = other.derived();
    }

    /** Copy constructor */
    inline SparseMatrix(const SparseMatrix& other)
      : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0)
    {
      *this = other.derived();
    }

    /** Swap the content of two sparse matrices of same type (optimization) */
    inline void swap(SparseMatrix& other)
    {
      //EIGEN_DBG_SPARSE(std::cout << "SparseMatrix:: swap\n");
      std::swap(m_outerIndex, other.m_outerIndex);
      std::swap(m_innerSize, other.m_innerSize);
      std::swap(m_outerSize, other.m_outerSize);
      m_data.swap(other.m_data);
    }

    inline SparseMatrix& operator=(const SparseMatrix& other)
    {
//       std::cout << "SparseMatrix& operator=(const SparseMatrix& other)\n";
      if (other.isRValue())
      {
        swap(other.const_cast_derived());
      }
      else
      {
        resize(other.rows(), other.cols());
        memcpy(m_outerIndex, other.m_outerIndex, (m_outerSize+1)*sizeof(Index));
        m_data = other.m_data;
      }
      return *this;
    }

    #ifndef EIGEN_PARSED_BY_DOXYGEN
    template<typename Lhs, typename Rhs>
    inline SparseMatrix& operator=(const SparseSparseProduct<Lhs,Rhs>& product)
    { return Base::operator=(product); }
    
    template<typename OtherDerived>
    inline SparseMatrix& operator=(const ReturnByValue<OtherDerived>& other)
    { return Base::operator=(other); }
    
    template<typename OtherDerived>
    inline SparseMatrix& operator=(const EigenBase<OtherDerived>& other)
    { return Base::operator=(other); }
    #endif

    template<typename OtherDerived>
    EIGEN_DONT_INLINE SparseMatrix& operator=(const SparseMatrixBase<OtherDerived>& other)
    {
      const bool needToTranspose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit);
      if (needToTranspose)
      {
        // two passes algorithm:
        //  1 - compute the number of coeffs per dest inner vector
        //  2 - do the actual copy/eval
        // Since each coeff of the rhs has to be evaluated twice, let's evaluate it if needed
        typedef typename internal::nested<OtherDerived,2>::type OtherCopy;
        typedef typename internal::remove_all<OtherCopy>::type _OtherCopy;
        OtherCopy otherCopy(other.derived());

        resize(other.rows(), other.cols());
        Eigen::Map<Matrix<Index, Dynamic, 1> > (m_outerIndex,outerSize()).setZero();
        // pass 1
        // FIXME the above copy could be merged with that pass
        for (Index j=0; j<otherCopy.outerSize(); ++j)
          for (typename _OtherCopy::InnerIterator it(otherCopy, j); it; ++it)
            ++m_outerIndex[it.index()];

        // prefix sum
        Index count = 0;
        VectorXi positions(outerSize());
        for (Index j=0; j<outerSize(); ++j)
        {
          Index tmp = m_outerIndex[j];
          m_outerIndex[j] = count;
          positions[j] = count;
          count += tmp;
        }
        m_outerIndex[outerSize()] = count;
        // alloc
        m_data.resize(count);
        // pass 2
        for (Index j=0; j<otherCopy.outerSize(); ++j)
        {
          for (typename _OtherCopy::InnerIterator it(otherCopy, j); it; ++it)
          {
            Index pos = positions[it.index()]++;
            m_data.index(pos) = j;
            m_data.value(pos) = it.value();
          }
        }
        return *this;
      }
      else
      {
        // there is no special optimization
        return SparseMatrixBase<SparseMatrix>::operator=(other.derived());
      }
    }

    friend std::ostream & operator << (std::ostream & s, const SparseMatrix& m)
    {
      EIGEN_DBG_SPARSE(
        s << "Nonzero entries:\n";
        for (Index i=0; i<m.nonZeros(); ++i)
        {
          s << "(" << m.m_data.value(i) << "," << m.m_data.index(i) << ") ";
        }
        s << std::endl;
        s << std::endl;
        s << "Column pointers:\n";
        for (Index i=0; i<m.outerSize(); ++i)
        {
          s << m.m_outerIndex[i] << " ";
        }
        s << " $" << std::endl;
        s << std::endl;
      );
      s << static_cast<const SparseMatrixBase<SparseMatrix>&>(m);
      return s;
    }

    /** Destructor */
    inline ~SparseMatrix()
    {
      delete[] m_outerIndex;
    }

    /** Overloaded for performance */
    Scalar sum() const;

  public:

    /** \deprecated use setZero() and reserve()
      * Initializes the filling process of \c *this.
      * \param reserveSize approximate number of nonzeros
      * Note that the matrix \c *this is zero-ed.
      */
    EIGEN_DEPRECATED void startFill(Index reserveSize = 1000)
    {
      setZero();
      m_data.reserve(reserveSize);
    }

    /** \deprecated use insert()
      * Like fill() but with random inner coordinates.
      */
    EIGEN_DEPRECATED Scalar& fillrand(Index row, Index col)
    {
      return insert(row,col);
    }

    /** \deprecated use insert()
      */
    EIGEN_DEPRECATED Scalar& fill(Index row, Index col)
    {
      const Index outer = IsRowMajor ? row : col;
      const Index inner = IsRowMajor ? col : row;

      if (m_outerIndex[outer+1]==0)
      {
        // we start a new inner vector
        Index i = outer;
        while (i>=0 && m_outerIndex[i]==0)
        {
          m_outerIndex[i] = m_data.size();
          --i;
        }
        m_outerIndex[outer+1] = m_outerIndex[outer];
      }
      else
      {
        eigen_assert(m_data.index(m_data.size()-1)<inner && "wrong sorted insertion");
      }
//       std::cerr << size_t(m_outerIndex[outer+1]) << " == " << m_data.size() << "\n";
      assert(size_t(m_outerIndex[outer+1]) == m_data.size());
      Index p = m_outerIndex[outer+1];
      ++m_outerIndex[outer+1];

      m_data.append(0, inner);
      return m_data.value(p);
    }

    /** \deprecated use finalize */
    EIGEN_DEPRECATED void endFill() { finalize(); }
    
#   ifdef EIGEN_SPARSEMATRIX_PLUGIN
#     include EIGEN_SPARSEMATRIX_PLUGIN
#   endif

private:
  struct default_prunning_func {
    default_prunning_func(Scalar ref, RealScalar eps) : reference(ref), epsilon(eps) {}
    inline bool operator() (const Index&, const Index&, const Scalar& value) const
    {
      return !internal::isMuchSmallerThan(value, reference, epsilon);
    }
    Scalar reference;
    RealScalar epsilon;
  };
};

template<typename Scalar, int _Options, typename _Index>
class SparseMatrix<Scalar,_Options,_Index>::InnerIterator
{
  public:
    InnerIterator(const SparseMatrix& mat, Index outer)
      : m_values(mat._valuePtr()), m_indices(mat._innerIndexPtr()), m_outer(outer), m_id(mat.m_outerIndex[outer]), m_end(mat.m_outerIndex[outer+1])
    {}

    inline InnerIterator& operator++() { m_id++; return *this; }

    inline const Scalar& value() const { return m_values[m_id]; }
    inline Scalar& valueRef() { return const_cast<Scalar&>(m_values[m_id]); }

    inline Index index() const { return m_indices[m_id]; }
    inline Index outer() const { return m_outer; }
    inline Index row() const { return IsRowMajor ? m_outer : index(); }
    inline Index col() const { return IsRowMajor ? index() : m_outer; }

    inline operator bool() const { return (m_id < m_end); }

  protected:
    const Scalar* m_values;
    const Index* m_indices;
    const Index m_outer;
    Index m_id;
    const Index m_end;
};

#endif // EIGEN_SPARSEMATRIX_H