Welcome to mirror list, hosted at ThFree Co, Russian Federation.

HingeConstraint.cpp « ConstraintSolver « BulletDynamics « bullet « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 12e02f2837ac3fc0cdabda132864e40930dfcba2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/


#include "HingeConstraint.h"
#include "Dynamics/RigidBody.h"
#include "Dynamics/MassProps.h"
#include "SimdTransformUtil.h"


HingeConstraint::HingeConstraint()
{
}

HingeConstraint::HingeConstraint(RigidBody& rbA,RigidBody& rbB, const SimdVector3& pivotInA,const SimdVector3& pivotInB,
								 SimdVector3& axisInA,SimdVector3& axisInB)
:TypedConstraint(rbA,rbB),m_pivotInA(pivotInA),m_pivotInB(pivotInB),
m_axisInA(axisInA),
m_axisInB(axisInB),
m_angularOnly(false)
{

}


HingeConstraint::HingeConstraint(RigidBody& rbA,const SimdVector3& pivotInA,SimdVector3& axisInA)
:TypedConstraint(rbA),m_pivotInA(pivotInA),m_pivotInB(rbA.getCenterOfMassTransform()(pivotInA)),
m_axisInA(axisInA),
//fixed axis in worldspace
m_axisInB(rbA.getCenterOfMassTransform().getBasis() * -axisInA),
m_angularOnly(false)
{
	
}

void	HingeConstraint::BuildJacobian()
{
	SimdVector3	normal(0,0,0);

	if (!m_angularOnly)
	{
		for (int i=0;i<3;i++)
		{
			normal[i] = 1;
			new (&m_jac[i]) JacobianEntry(
				m_rbA.getCenterOfMassTransform().getBasis().transpose(),
				m_rbB.getCenterOfMassTransform().getBasis().transpose(),
				m_rbA.getCenterOfMassTransform()*m_pivotInA - m_rbA.getCenterOfMassPosition(),
				m_rbB.getCenterOfMassTransform()*m_pivotInB - m_rbB.getCenterOfMassPosition(),
				normal,
				m_rbA.getInvInertiaDiagLocal(),
				m_rbA.getInvMass(),
				m_rbB.getInvInertiaDiagLocal(),
				m_rbB.getInvMass());
			normal[i] = 0;
		}
	}

	//calculate two perpendicular jointAxis, orthogonal to hingeAxis
	//these two jointAxis require equal angular velocities for both bodies

	//this is ununsed for now, it's a todo
	SimdVector3 axisWorldA = GetRigidBodyA().getCenterOfMassTransform().getBasis() * m_axisInA;
	SimdVector3 jointAxis0;
	SimdVector3 jointAxis1;
	SimdPlaneSpace1(axisWorldA,jointAxis0,jointAxis1);
	
	new (&m_jacAng[0])	JacobianEntry(jointAxis0,
		m_rbA.getCenterOfMassTransform().getBasis().transpose(),
		m_rbB.getCenterOfMassTransform().getBasis().transpose(),
		m_rbA.getInvInertiaDiagLocal(),
		m_rbB.getInvInertiaDiagLocal());

	new (&m_jacAng[1])	JacobianEntry(jointAxis1,
		m_rbA.getCenterOfMassTransform().getBasis().transpose(),
		m_rbB.getCenterOfMassTransform().getBasis().transpose(),
		m_rbA.getInvInertiaDiagLocal(),
		m_rbB.getInvInertiaDiagLocal());


}

void	HingeConstraint::SolveConstraint(SimdScalar	timeStep)
{

	SimdVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_pivotInA;
	SimdVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_pivotInB;

	SimdVector3 normal(0,0,0);
	SimdScalar tau = 0.3f;
	SimdScalar damping = 1.f;

	if (!m_angularOnly)
	{
		for (int i=0;i<3;i++)
		{		
			normal[i] = 1;
			SimdScalar jacDiagABInv = 1.f / m_jac[i].getDiagonal();

			SimdVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition(); 
			SimdVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition();
			
			SimdVector3 vel1 = m_rbA.getVelocityInLocalPoint(rel_pos1);
			SimdVector3 vel2 = m_rbB.getVelocityInLocalPoint(rel_pos2);
			SimdVector3 vel = vel1 - vel2;
			SimdScalar rel_vel;
			rel_vel = normal.dot(vel);
			//positional error (zeroth order error)
			SimdScalar depth = -(pivotAInW - pivotBInW).dot(normal); //this is the error projected on the normal
			SimdScalar impulse = depth*tau/timeStep  * jacDiagABInv -  damping * rel_vel * jacDiagABInv * damping;

			SimdVector3 impulse_vector = normal * impulse;
			m_rbA.applyImpulse(impulse_vector, pivotAInW - m_rbA.getCenterOfMassPosition());
			m_rbB.applyImpulse(-impulse_vector, pivotBInW - m_rbB.getCenterOfMassPosition());
			
			normal[i] = 0;
		}
	}

	///solve angular part

	// get axes in world space
	SimdVector3 axisA = GetRigidBodyA().getCenterOfMassTransform().getBasis() * m_axisInA;
	SimdVector3 axisB = GetRigidBodyB().getCenterOfMassTransform().getBasis() * m_axisInB;

	const SimdVector3& angVelA = GetRigidBodyA().getAngularVelocity();
	const SimdVector3& angVelB = GetRigidBodyB().getAngularVelocity();
	SimdVector3 angA = angVelA - axisA * axisA.dot(angVelA);
	SimdVector3 angB = angVelB - axisB * axisB.dot(angVelB);
	SimdVector3 velrel = angA-angB;

	//solve angular velocity correction
	float relaxation = 1.f;
	float len = velrel.length();
	if (len > 0.00001f)
	{
		SimdVector3 normal = velrel.normalized();
		float denom = GetRigidBodyA().ComputeAngularImpulseDenominator(normal) +
			GetRigidBodyB().ComputeAngularImpulseDenominator(normal);
		// scale for mass and relaxation
		velrel *= (1.f/denom) * 0.9;
	}

	//solve angular positional correction
	SimdVector3 angularError = -axisA.cross(axisB) *(1.f/timeStep);
	float len2 = angularError.length();
	if (len2>0.00001f)
	{
		SimdVector3 normal2 = angularError.normalized();
		float denom2 = GetRigidBodyA().ComputeAngularImpulseDenominator(normal2) +
				GetRigidBodyB().ComputeAngularImpulseDenominator(normal2);
		angularError *= (1.f/denom2) * relaxation;
	}

	m_rbA.applyTorqueImpulse(-velrel+angularError);
	m_rbB.applyTorqueImpulse(velrel-angularError);

}

void	HingeConstraint::UpdateRHS(SimdScalar	timeStep)
{

}