Welcome to mirror list, hosted at ThFree Co, Russian Federation.

JacobianEntry.h « ConstraintSolver « BulletDynamics « bullet « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 3a89f2ad1fd784eaa2a756970acc70a561fc91ea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
/*
 * Copyright (c) 2005 Erwin Coumans http://continuousphysics.com/Bullet/
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies.
 * Erwin Coumans makes no representations about the suitability 
 * of this software for any purpose.  
 * It is provided "as is" without express or implied warranty.
*/
#ifndef JACOBIAN_ENTRY_H
#define JACOBIAN_ENTRY_H

#include "SimdVector3.h"
#include "Dynamics/RigidBody.h"


//notes:
// Another memory optimization would be to store m_1MinvJt in the remaining 3 w components
// which makes the JacobianEntry memory layout 16 bytes
// if you only are interested in angular part, just feed massInvA and massInvB zero

/// Jacobian entry is an abstraction that allows to describe constraints
/// it can be used in combination with a constraint solver
/// Can be used to relate the effect of an impulse to the constraint error
class JacobianEntry
{
public:
	JacobianEntry() {};
	//constraint between two different rigidbodies
	JacobianEntry(
		const SimdMatrix3x3& world2A,
		const SimdMatrix3x3& world2B,
		const SimdVector3& rel_pos1,const SimdVector3& rel_pos2,
		const SimdVector3& jointAxis,
		const SimdVector3& inertiaInvA, 
		const SimdScalar massInvA,
		const SimdVector3& inertiaInvB,
		const SimdScalar massInvB)
		:m_jointAxis(jointAxis)
	{
		m_aJ = world2A*(rel_pos1.cross(m_jointAxis));
		m_bJ = world2B*(rel_pos2.cross(m_jointAxis));
		m_0MinvJt	= inertiaInvA * m_aJ;
		m_1MinvJt = inertiaInvB * m_bJ;
		m_Adiag = massInvA + m_0MinvJt.dot(m_aJ) + massInvB + m_1MinvJt.dot(m_bJ);
	}

		//angular constraint between two different rigidbodies
	JacobianEntry(const SimdVector3& jointAxis,
		const SimdMatrix3x3& world2A,
		const SimdMatrix3x3& world2B,
		const SimdVector3& inertiaInvA,
		const SimdVector3& inertiaInvB)
		:m_jointAxis(m_jointAxis)
	{
		m_aJ= world2A*m_jointAxis;
		m_bJ = world2B*-m_jointAxis;
		m_0MinvJt	= inertiaInvA * m_aJ;
		m_1MinvJt = inertiaInvB * m_bJ;
		m_Adiag =  m_0MinvJt.dot(m_aJ) + m_1MinvJt.dot(m_bJ);
	}

	//constraint on one rigidbody
	JacobianEntry(
		const SimdMatrix3x3& world2A,
		const SimdVector3& rel_pos1,const SimdVector3& rel_pos2,
		const SimdVector3& jointAxis,
		const SimdVector3& inertiaInvA, 
		const SimdScalar massInvA)
		:m_jointAxis(jointAxis)
	{
		m_aJ= world2A*(rel_pos1.cross(m_jointAxis));
		m_bJ = world2A*(rel_pos2.cross(m_jointAxis));
		m_0MinvJt	= inertiaInvA * m_aJ;
		m_1MinvJt = SimdVector3(0.f,0.f,0.f);
		m_Adiag = massInvA + m_0MinvJt.dot(m_aJ);
	}

	SimdScalar	getDiagonal() const { return m_Adiag; }

	// for two constraints on the same rigidbody (for example vehicle friction)
	SimdScalar	getNonDiagonal(const JacobianEntry& jacB, const SimdScalar massInvA) const
	{
		const JacobianEntry& jacA = *this;
		SimdScalar lin = massInvA * jacA.m_jointAxis.dot(jacB.m_jointAxis);
		SimdScalar ang = jacA.m_0MinvJt.dot(jacB.m_aJ);
		return lin + ang;
	}

	

	// for two constraints on sharing two same rigidbodies (for example two contact points between two rigidbodies)
	SimdScalar	getNonDiagonal(const JacobianEntry& jacB,const SimdScalar massInvA,const SimdScalar massInvB) const
	{
		const JacobianEntry& jacA = *this;
		SimdVector3 lin = jacA.m_jointAxis* jacB.m_jointAxis;
		SimdVector3 ang0 = jacA.m_0MinvJt * jacB.m_aJ;
		SimdVector3 ang1 = jacA.m_1MinvJt * jacB.m_bJ;
		SimdVector3 lin0 = massInvA * lin ;
		SimdVector3 lin1 = massInvB * lin;
		SimdVector3 sum = ang0+ang1+lin0+lin1;
		return sum[0]+sum[1]+sum[2];
	}

	SimdScalar getRelativeVelocity(const SimdVector3& linvelA,const SimdVector3& angvelA,const SimdVector3& linvelB,const SimdVector3& angvelB)
	{
		SimdVector3 linrel = linvelA - linvelB;
		SimdVector3 angvela  = angvelA * m_aJ;
		SimdVector3 angvelb  = angvelB * m_bJ;
		linrel *= m_jointAxis;
		angvela += angvelb;
		angvela += linrel;
		SimdScalar rel_vel2 = angvela[0]+angvela[1]+angvela[2];
		return rel_vel2 + SIMD_EPSILON;
	}
//private:

	SimdVector3	m_jointAxis;
	SimdVector3	m_aJ;
	SimdVector3	m_bJ;
	SimdVector3	m_0MinvJt;
	SimdVector3	m_1MinvJt;
	//Optimization: can be stored in the w/last component of one of the vectors
	SimdScalar	m_Adiag;

};

#endif //JACOBIAN_ENTRY_H