Welcome to mirror list, hosted at ThFree Co, Russian Federation.

Solve2LinearConstraint.cpp « ConstraintSolver « BulletDynamics « bullet « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 849e57d1088675d213ac9fb092b354c1053aa89e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
/*
 * Copyright (c) 2005 Erwin Coumans http://continuousphysics.com/Bullet/
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies.
 * Erwin Coumans makes no representations about the suitability 
 * of this software for any purpose.  
 * It is provided "as is" without express or implied warranty.
*/

#include "Solve2LinearConstraint.h"

#include "Dynamics/RigidBody.h"
#include "SimdVector3.h"
#include "JacobianEntry.h"


void Solve2LinearConstraint::resolveUnilateralPairConstraint(
												   RigidBody* body1,
		RigidBody* body2,

						const SimdMatrix3x3& world2A,
						const SimdMatrix3x3& world2B,
						
						const SimdVector3& invInertiaADiag,
						const SimdScalar invMassA,
						const SimdVector3& linvelA,const SimdVector3& angvelA,
						const SimdVector3& rel_posA1,
						const SimdVector3& invInertiaBDiag,
						const SimdScalar invMassB,
						const SimdVector3& linvelB,const SimdVector3& angvelB,
						const SimdVector3& rel_posA2,

					  SimdScalar depthA, const SimdVector3& normalA, 
					  const SimdVector3& rel_posB1,const SimdVector3& rel_posB2,
					  SimdScalar depthB, const SimdVector3& normalB, 
					  SimdScalar& imp0,SimdScalar& imp1)
{

	imp0 = 0.f;
	imp1 = 0.f;

	SimdScalar len = fabs(normalA.length())-1.f;
	if (fabs(len) >= SIMD_EPSILON)
		return;

	ASSERT(len < SIMD_EPSILON);


	//this jacobian entry could be re-used for all iterations
	JacobianEntry jacA(world2A,world2B,rel_posA1,rel_posA2,normalA,invInertiaADiag,invMassA,
		invInertiaBDiag,invMassB);
	JacobianEntry jacB(world2A,world2B,rel_posB1,rel_posB2,normalB,invInertiaADiag,invMassA,
		invInertiaBDiag,invMassB);
	
	//const SimdScalar vel0 = jacA.getRelativeVelocity(linvelA,angvelA,linvelB,angvelB);
	//const SimdScalar vel1 = jacB.getRelativeVelocity(linvelA,angvelA,linvelB,angvelB);

	const SimdScalar vel0 = normalA.dot(body1->getVelocityInLocalPoint(rel_posA1)-body2->getVelocityInLocalPoint(rel_posA1));
	const SimdScalar vel1 = normalB.dot(body1->getVelocityInLocalPoint(rel_posB1)-body2->getVelocityInLocalPoint(rel_posB1));

//	SimdScalar penetrationImpulse = (depth*contactTau*timeCorrection)  * massTerm;//jacDiagABInv
	SimdScalar massTerm = 1.f / (invMassA + invMassB);


	// calculate rhs (or error) terms
	const SimdScalar dv0 = depthA  * m_tau * massTerm - vel0 * m_damping;
	const SimdScalar dv1 = depthB  * m_tau * massTerm - vel1 * m_damping;


	// dC/dv * dv = -C
	
	// jacobian * impulse = -error
	//

	//impulse = jacobianInverse * -error

	// inverting 2x2 symmetric system (offdiagonal are equal!)
	// 


	SimdScalar nonDiag = jacA.getNonDiagonal(jacB,invMassA,invMassB);
	SimdScalar	invDet = 1.0f / (jacA.getDiagonal() * jacB.getDiagonal() - nonDiag * nonDiag );
	
	//imp0 = dv0 * jacA.getDiagonal() * invDet + dv1 * -nonDiag * invDet;
	//imp1 = dv1 * jacB.getDiagonal() * invDet + dv0 * - nonDiag * invDet;

	imp0 = dv0 * jacA.getDiagonal() * invDet + dv1 * -nonDiag * invDet;
	imp1 = dv1 * jacB.getDiagonal() * invDet + dv0 * - nonDiag * invDet;

	//[a b]								  [d -c]
	//[c d] inverse = (1 / determinant) * [-b a] where determinant is (ad - bc)

	//[jA nD] * [imp0] = [dv0]
	//[nD jB]   [imp1]   [dv1]

}



void Solve2LinearConstraint::resolveBilateralPairConstraint(
						RigidBody* body1,
						RigidBody* body2,
						const SimdMatrix3x3& world2A,
						const SimdMatrix3x3& world2B,
						
						const SimdVector3& invInertiaADiag,
						const SimdScalar invMassA,
						const SimdVector3& linvelA,const SimdVector3& angvelA,
						const SimdVector3& rel_posA1,
						const SimdVector3& invInertiaBDiag,
						const SimdScalar invMassB,
						const SimdVector3& linvelB,const SimdVector3& angvelB,
						const SimdVector3& rel_posA2,

					  SimdScalar depthA, const SimdVector3& normalA, 
					  const SimdVector3& rel_posB1,const SimdVector3& rel_posB2,
					  SimdScalar depthB, const SimdVector3& normalB, 
					  SimdScalar& imp0,SimdScalar& imp1)
{

	imp0 = 0.f;
	imp1 = 0.f;

	SimdScalar len = fabs(normalA.length())-1.f;
	if (fabs(len) >= SIMD_EPSILON)
		return;

	ASSERT(len < SIMD_EPSILON);


	//this jacobian entry could be re-used for all iterations
	JacobianEntry jacA(world2A,world2B,rel_posA1,rel_posA2,normalA,invInertiaADiag,invMassA,
		invInertiaBDiag,invMassB);
	JacobianEntry jacB(world2A,world2B,rel_posB1,rel_posB2,normalB,invInertiaADiag,invMassA,
		invInertiaBDiag,invMassB);
	
	//const SimdScalar vel0 = jacA.getRelativeVelocity(linvelA,angvelA,linvelB,angvelB);
	//const SimdScalar vel1 = jacB.getRelativeVelocity(linvelA,angvelA,linvelB,angvelB);

	const SimdScalar vel0 = normalA.dot(body1->getVelocityInLocalPoint(rel_posA1)-body2->getVelocityInLocalPoint(rel_posA1));
	const SimdScalar vel1 = normalB.dot(body1->getVelocityInLocalPoint(rel_posB1)-body2->getVelocityInLocalPoint(rel_posB1));

	// calculate rhs (or error) terms
	const SimdScalar dv0 = depthA  * m_tau - vel0 * m_damping;
	const SimdScalar dv1 = depthB  * m_tau - vel1 * m_damping;

	// dC/dv * dv = -C
	
	// jacobian * impulse = -error
	//

	//impulse = jacobianInverse * -error

	// inverting 2x2 symmetric system (offdiagonal are equal!)
	// 


	SimdScalar nonDiag = jacA.getNonDiagonal(jacB,invMassA,invMassB);
	SimdScalar	invDet = 1.0f / (jacA.getDiagonal() * jacB.getDiagonal() - nonDiag * nonDiag );
	
	//imp0 = dv0 * jacA.getDiagonal() * invDet + dv1 * -nonDiag * invDet;
	//imp1 = dv1 * jacB.getDiagonal() * invDet + dv0 * - nonDiag * invDet;

	imp0 = dv0 * jacA.getDiagonal() * invDet + dv1 * -nonDiag * invDet;
	imp1 = dv1 * jacB.getDiagonal() * invDet + dv0 * - nonDiag * invDet;

	//[a b]								  [d -c]
	//[c d] inverse = (1 / determinant) * [-b a] where determinant is (ad - bc)

	//[jA nD] * [imp0] = [dv0]
	//[nD jB]   [imp1]   [dv1]

	if ( imp0 > 0.0f)
	{
		if ( imp1 > 0.0f )
		{
			//both positive
		}
		else
		{
			imp1 = 0.f;

			// now imp0>0 imp1<0
			imp0 = dv0 / jacA.getDiagonal();
			if ( imp0 > 0.0f )
			{
			} else
			{
				imp0 = 0.f;
			}
		}
	}
	else
	{
		imp0 = 0.f;

		imp1 = dv1 / jacB.getDiagonal();
		if ( imp1 <= 0.0f )
		{
			imp1 = 0.f;
			// now imp0>0 imp1<0
			imp0 = dv0 / jacA.getDiagonal();
			if ( imp0 > 0.0f )
			{
			} else
			{
				imp0 = 0.f;
			}
		} else
		{
		}
	}
}



void Solve2LinearConstraint::resolveAngularConstraint(	const SimdMatrix3x3& invInertiaAWS,
											const SimdScalar invMassA,
											const SimdVector3& linvelA,const SimdVector3& angvelA,
											const SimdVector3& rel_posA1,
											const SimdMatrix3x3& invInertiaBWS,
											const SimdScalar invMassB,
											const SimdVector3& linvelB,const SimdVector3& angvelB,
											const SimdVector3& rel_posA2,

											SimdScalar depthA, const SimdVector3& normalA, 
											const SimdVector3& rel_posB1,const SimdVector3& rel_posB2,
											SimdScalar depthB, const SimdVector3& normalB, 
											SimdScalar& imp0,SimdScalar& imp1)
{

}