Welcome to mirror list, hosted at ThFree Co, Russian Federation.

SimdQuaternion.h « LinearMath « bullet « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 86da693bab8d79ec17a7f71c2eb106c38676cd85 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
/*

Copyright (c) 2005 Gino van den Bergen / Erwin Coumans http://continuousphysics.com

Permission is hereby granted, free of charge, to any person or organization
obtaining a copy of the software and accompanying documentation covered by
this license (the "Software") to use, reproduce, display, distribute,
execute, and transmit the Software, and to prepare derivative works of the
Software, and to permit third-parties to whom the Software is furnished to
do so, all subject to the following:

The copyright notices in the Software and this entire statement, including
the above license grant, this restriction and the following disclaimer,
must be included in all copies of the Software, in whole or in part, and
all derivative works of the Software, unless such copies or derivative
works are solely in the form of machine-executable object code generated by
a source language processor.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
*/


#ifndef SIMD__QUATERNION_H_
#define SIMD__QUATERNION_H_

#include "SimdVector3.h"

class SimdQuaternion : public SimdQuadWord {
public:
	SimdQuaternion() {}

	//		template <typename SimdScalar>
	//		explicit Quaternion(const SimdScalar *v) : Tuple4<SimdScalar>(v) {}

	SimdQuaternion(const SimdScalar& x, const SimdScalar& y, const SimdScalar& z, const SimdScalar& w) 
		: SimdQuadWord(x, y, z, w) 
	{}

	SimdQuaternion(const SimdVector3& axis, const SimdScalar& angle) 
	{ 
		setRotation(axis, angle); 
	}

	SimdQuaternion(const SimdScalar& yaw, const SimdScalar& pitch, const SimdScalar& roll)
	{ 
		setEuler(yaw, pitch, roll); 
	}

	void setRotation(const SimdVector3& axis, const SimdScalar& angle)
	{
		SimdScalar d = axis.length();
		assert(d != SimdScalar(0.0));
		SimdScalar s = SimdSin(angle * SimdScalar(0.5)) / d;
		setValue(axis.x() * s, axis.y() * s, axis.z() * s, 
			SimdCos(angle * SimdScalar(0.5)));
	}

	void setEuler(const SimdScalar& yaw, const SimdScalar& pitch, const SimdScalar& roll)
	{
		SimdScalar halfYaw = SimdScalar(yaw) * SimdScalar(0.5);  
		SimdScalar halfPitch = SimdScalar(pitch) * SimdScalar(0.5);  
		SimdScalar halfRoll = SimdScalar(roll) * SimdScalar(0.5);  
		SimdScalar cosYaw = SimdCos(halfYaw);
		SimdScalar sinYaw = SimdSin(halfYaw);
		SimdScalar cosPitch = SimdCos(halfPitch);
		SimdScalar sinPitch = SimdSin(halfPitch);
		SimdScalar cosRoll = SimdCos(halfRoll);
		SimdScalar sinRoll = SimdSin(halfRoll);
		setValue(cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw,
			cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw,
			sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw,
			cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw);
	}

	SimdQuaternion& operator+=(const SimdQuaternion& q)
	{
		m_x += q.x(); m_y += q.y(); m_z += q.z(); m_unusedW += q[3];
		return *this;
	}

	SimdQuaternion& operator-=(const SimdQuaternion& q) 
	{
		m_x -= q.x(); m_y -= q.y(); m_z -= q.z(); m_unusedW -= q[3];
		return *this;
	}

	SimdQuaternion& operator*=(const SimdScalar& s)
	{
		m_x *= s; m_y *= s; m_z *= s; m_unusedW *= s;
		return *this;
	}


	SimdQuaternion& operator*=(const SimdQuaternion& q)
	{
		setValue(m_unusedW * q.x() + m_x * q[3] + m_y * q.z() - m_z * q.y(),
			m_unusedW * q.y() + m_y * q[3] + m_z * q.x() - m_x * q.z(),
			m_unusedW * q.z() + m_z * q[3] + m_x * q.y() - m_y * q.x(),
			m_unusedW * q[3] - m_x * q.x() - m_y * q.y() - m_z * q.z());
		return *this;
	}

	SimdScalar dot(const SimdQuaternion& q) const
	{
		return m_x * q.x() + m_y * q.y() + m_z * q.z() + m_unusedW * q[3];
	}

	SimdScalar length2() const
	{
		return dot(*this);
	}

	SimdScalar length() const
	{
		return SimdSqrt(length2());
	}

	SimdQuaternion& normalize() 
	{
		return *this /= length();
	}

	SIMD_FORCE_INLINE SimdQuaternion
	operator*(const SimdScalar& s) const
	{
		return SimdQuaternion(x() * s, y() * s, z() * s, m_unusedW * s);
	}



	SimdQuaternion operator/(const SimdScalar& s) const
	{
		assert(s != SimdScalar(0.0));
		return *this * (SimdScalar(1.0) / s);
	}


	SimdQuaternion& operator/=(const SimdScalar& s) 
	{
		assert(s != SimdScalar(0.0));
		return *this *= SimdScalar(1.0) / s;
	}


	SimdQuaternion normalized() const 
	{
		return *this / length();
	} 

	SimdScalar angle(const SimdQuaternion& q) const 
	{
		SimdScalar s = SimdSqrt(length2() * q.length2());
		assert(s != SimdScalar(0.0));
		return SimdAcos(dot(q) / s);
	}

	SimdScalar getAngle() const 
	{
		SimdScalar s = 2.f * SimdAcos(m_unusedW);
		return s;
	}



	SimdQuaternion inverse() const
	{
		return SimdQuaternion(m_x, m_y, m_z, -m_unusedW);
	}

	SIMD_FORCE_INLINE SimdQuaternion
	operator+(const SimdQuaternion& q2) const
	{
		const SimdQuaternion& q1 = *this;
		return SimdQuaternion(q1.x() + q2.x(), q1.y() + q2.y(), q1.z() + q2.z(), q1[3] + q2[3]);
	}

	SIMD_FORCE_INLINE SimdQuaternion
	operator-(const SimdQuaternion& q2) const
	{
		const SimdQuaternion& q1 = *this;
		return SimdQuaternion(q1.x() - q2.x(), q1.y() - q2.y(), q1.z() - q2.z(), q1[3] - q2[3]);
	}

	SIMD_FORCE_INLINE SimdQuaternion operator-() const
	{
		const SimdQuaternion& q2 = *this;
		return SimdQuaternion( - q2.x(), - q2.y(),  - q2.z(),  - q2[3]);
	}

	SIMD_FORCE_INLINE SimdQuaternion farthest( const SimdQuaternion& qd) const 
	{
		SimdQuaternion diff,sum;
		diff = *this - qd;
		sum = *this + qd;
		if( diff.dot(diff) > sum.dot(sum) )
			return qd;
		return (-qd);
	}

	SimdQuaternion slerp(const SimdQuaternion& q, const SimdScalar& t) const
	{
		SimdScalar theta = angle(q);
		if (theta != SimdScalar(0.0))
		{
			SimdScalar d = SimdScalar(1.0) / SimdSin(theta);
			SimdScalar s0 = SimdSin((SimdScalar(1.0) - t) * theta);
			SimdScalar s1 = SimdSin(t * theta);   
			return SimdQuaternion((m_x * s0 + q.x() * s1) * d,
				(m_y * s0 + q.y() * s1) * d,
				(m_z * s0 + q.z() * s1) * d,
				(m_unusedW * s0 + q[3] * s1) * d);
		}
		else
		{
			return *this;
		}
	}

	

};



SIMD_FORCE_INLINE SimdQuaternion
operator-(const SimdQuaternion& q)
{
	return SimdQuaternion(-q.x(), -q.y(), -q.z(), -q[3]);
}




SIMD_FORCE_INLINE SimdQuaternion
operator*(const SimdQuaternion& q1, const SimdQuaternion& q2) {
	return SimdQuaternion(q1[3] * q2.x() + q1.x() * q2[3] + q1.y() * q2.z() - q1.z() * q2.y(),
		q1[3] * q2.y() + q1.y() * q2[3] + q1.z() * q2.x() - q1.x() * q2.z(),
		q1[3] * q2.z() + q1.z() * q2[3] + q1.x() * q2.y() - q1.y() * q2.x(),
		q1[3] * q2[3] - q1.x() * q2.x() - q1.y() * q2.y() - q1.z() * q2.z()); 
}

SIMD_FORCE_INLINE SimdQuaternion
operator*(const SimdQuaternion& q, const SimdVector3& w)
{
	return SimdQuaternion( q[3] * w.x() + q.y() * w.z() - q.z() * w.y(),
		q[3] * w.y() + q.z() * w.x() - q.x() * w.z(),
		q[3] * w.z() + q.x() * w.y() - q.y() * w.x(),
		-q.x() * w.x() - q.y() * w.y() - q.z() * w.z()); 
}

SIMD_FORCE_INLINE SimdQuaternion
operator*(const SimdVector3& w, const SimdQuaternion& q)
{
	return SimdQuaternion( w.x() * q[3] + w.y() * q.z() - w.z() * q.y(),
		w.y() * q[3] + w.z() * q.x() - w.x() * q.z(),
		w.z() * q[3] + w.x() * q.y() - w.y() * q.x(),
		-w.x() * q.x() - w.y() * q.y() - w.z() * q.z()); 
}

SIMD_FORCE_INLINE SimdScalar 
dot(const SimdQuaternion& q1, const SimdQuaternion& q2) 
{ 
	return q1.dot(q2); 
}


SIMD_FORCE_INLINE SimdScalar
length(const SimdQuaternion& q) 
{ 
	return q.length(); 
}

SIMD_FORCE_INLINE SimdScalar
angle(const SimdQuaternion& q1, const SimdQuaternion& q2) 
{ 
	return q1.angle(q2); 
}


SIMD_FORCE_INLINE SimdQuaternion
inverse(const SimdQuaternion& q) 
{
	return q.inverse();
}

SIMD_FORCE_INLINE SimdQuaternion
slerp(const SimdQuaternion& q1, const SimdQuaternion& q2, const SimdScalar& t) 
{
	return q1.slerp(q2, t);
}


#endif