Welcome to mirror list, hosted at ThFree Co, Russian Federation.

btVector3.h « LinearMath « bullet2 « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 84446f2298a9f9b7c0143ed97ce83e9d7d8e87d5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
/*
Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans  http://continuousphysics.com/Bullet/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/



#ifndef SIMD__VECTOR3_H
#define SIMD__VECTOR3_H


#include "btScalar.h"
#include "btMinMax.h"

#ifdef BT_USE_DOUBLE_PRECISION
#define btVector3Data btVector3DoubleData
#define btVector3DataName "btVector3DoubleData"
#else
#define btVector3Data btVector3FloatData
#define btVector3DataName "btVector3FloatData"
#endif //BT_USE_DOUBLE_PRECISION




/**@brief btVector3 can be used to represent 3D points and vectors.
 * It has an un-used w component to suit 16-byte alignment when btVector3 is stored in containers. This extra component can be used by derived classes (Quaternion?) or by user
 * Ideally, this class should be replaced by a platform optimized SIMD version that keeps the data in registers
 */
ATTRIBUTE_ALIGNED16(class) btVector3
{
public:

#if defined (__SPU__) && defined (__CELLOS_LV2__)
		btScalar	m_floats[4];
public:
	SIMD_FORCE_INLINE const vec_float4&	get128() const
	{
		return *((const vec_float4*)&m_floats[0]);
	}
public:
#else //__CELLOS_LV2__ __SPU__
#ifdef BT_USE_SSE // _WIN32
	union {
		__m128 mVec128;
		btScalar	m_floats[4];
	};
	SIMD_FORCE_INLINE	__m128	get128() const
	{
		return mVec128;
	}
	SIMD_FORCE_INLINE	void	set128(__m128 v128)
	{
		mVec128 = v128;
	}
#else
	btScalar	m_floats[4];
#endif
#endif //__CELLOS_LV2__ __SPU__

	public:

  /**@brief No initialization constructor */
	SIMD_FORCE_INLINE btVector3() {}

 
	
  /**@brief Constructor from scalars 
   * @param x X value
   * @param y Y value 
   * @param z Z value 
   */
	SIMD_FORCE_INLINE btVector3(const btScalar& x, const btScalar& y, const btScalar& z)
	{
		m_floats[0] = x;
		m_floats[1] = y;
		m_floats[2] = z;
		m_floats[3] = btScalar(0.);
	}

	
/**@brief Add a vector to this one 
 * @param The vector to add to this one */
	SIMD_FORCE_INLINE btVector3& operator+=(const btVector3& v)
	{

		m_floats[0] += v.m_floats[0]; m_floats[1] += v.m_floats[1];m_floats[2] += v.m_floats[2];
		return *this;
	}


  /**@brief Subtract a vector from this one
   * @param The vector to subtract */
	SIMD_FORCE_INLINE btVector3& operator-=(const btVector3& v) 
	{
		m_floats[0] -= v.m_floats[0]; m_floats[1] -= v.m_floats[1];m_floats[2] -= v.m_floats[2];
		return *this;
	}
  /**@brief Scale the vector
   * @param s Scale factor */
	SIMD_FORCE_INLINE btVector3& operator*=(const btScalar& s)
	{
		m_floats[0] *= s; m_floats[1] *= s;m_floats[2] *= s;
		return *this;
	}

  /**@brief Inversely scale the vector 
   * @param s Scale factor to divide by */
	SIMD_FORCE_INLINE btVector3& operator/=(const btScalar& s) 
	{
		btFullAssert(s != btScalar(0.0));
		return *this *= btScalar(1.0) / s;
	}

  /**@brief Return the dot product
   * @param v The other vector in the dot product */
	SIMD_FORCE_INLINE btScalar dot(const btVector3& v) const
	{
		return m_floats[0] * v.m_floats[0] + m_floats[1] * v.m_floats[1] +m_floats[2] * v.m_floats[2];
	}

  /**@brief Return the length of the vector squared */
	SIMD_FORCE_INLINE btScalar length2() const
	{
		return dot(*this);
	}

  /**@brief Return the length of the vector */
	SIMD_FORCE_INLINE btScalar length() const
	{
		return btSqrt(length2());
	}

  /**@brief Return the distance squared between the ends of this and another vector
   * This is symantically treating the vector like a point */
	SIMD_FORCE_INLINE btScalar distance2(const btVector3& v) const;

  /**@brief Return the distance between the ends of this and another vector
   * This is symantically treating the vector like a point */
	SIMD_FORCE_INLINE btScalar distance(const btVector3& v) const;

  /**@brief Normalize this vector 
   * x^2 + y^2 + z^2 = 1 */
	SIMD_FORCE_INLINE btVector3& normalize() 
	{
		return *this /= length();
	}

  /**@brief Return a normalized version of this vector */
	SIMD_FORCE_INLINE btVector3 normalized() const;

  /**@brief Rotate this vector 
   * @param wAxis The axis to rotate about 
   * @param angle The angle to rotate by */
	SIMD_FORCE_INLINE btVector3 rotate( const btVector3& wAxis, const btScalar angle );

  /**@brief Return the angle between this and another vector
   * @param v The other vector */
	SIMD_FORCE_INLINE btScalar angle(const btVector3& v) const 
	{
		btScalar s = btSqrt(length2() * v.length2());
		btFullAssert(s != btScalar(0.0));
		return btAcos(dot(v) / s);
	}
  /**@brief Return a vector will the absolute values of each element */
	SIMD_FORCE_INLINE btVector3 absolute() const 
	{
		return btVector3(
			btFabs(m_floats[0]), 
			btFabs(m_floats[1]), 
			btFabs(m_floats[2]));
	}
  /**@brief Return the cross product between this and another vector 
   * @param v The other vector */
	SIMD_FORCE_INLINE btVector3 cross(const btVector3& v) const
	{
		return btVector3(
			m_floats[1] * v.m_floats[2] -m_floats[2] * v.m_floats[1],
			m_floats[2] * v.m_floats[0] - m_floats[0] * v.m_floats[2],
			m_floats[0] * v.m_floats[1] - m_floats[1] * v.m_floats[0]);
	}

	SIMD_FORCE_INLINE btScalar triple(const btVector3& v1, const btVector3& v2) const
	{
		return m_floats[0] * (v1.m_floats[1] * v2.m_floats[2] - v1.m_floats[2] * v2.m_floats[1]) + 
			m_floats[1] * (v1.m_floats[2] * v2.m_floats[0] - v1.m_floats[0] * v2.m_floats[2]) + 
			m_floats[2] * (v1.m_floats[0] * v2.m_floats[1] - v1.m_floats[1] * v2.m_floats[0]);
	}

  /**@brief Return the axis with the smallest value 
   * Note return values are 0,1,2 for x, y, or z */
	SIMD_FORCE_INLINE int minAxis() const
	{
		return m_floats[0] < m_floats[1] ? (m_floats[0] <m_floats[2] ? 0 : 2) : (m_floats[1] <m_floats[2] ? 1 : 2);
	}

  /**@brief Return the axis with the largest value 
   * Note return values are 0,1,2 for x, y, or z */
	SIMD_FORCE_INLINE int maxAxis() const 
	{
		return m_floats[0] < m_floats[1] ? (m_floats[1] <m_floats[2] ? 2 : 1) : (m_floats[0] <m_floats[2] ? 2 : 0);
	}

	SIMD_FORCE_INLINE int furthestAxis() const
	{
		return absolute().minAxis();
	}

	SIMD_FORCE_INLINE int closestAxis() const 
	{
		return absolute().maxAxis();
	}

	SIMD_FORCE_INLINE void setInterpolate3(const btVector3& v0, const btVector3& v1, btScalar rt)
	{
		btScalar s = btScalar(1.0) - rt;
		m_floats[0] = s * v0.m_floats[0] + rt * v1.m_floats[0];
		m_floats[1] = s * v0.m_floats[1] + rt * v1.m_floats[1];
		m_floats[2] = s * v0.m_floats[2] + rt * v1.m_floats[2];
		//don't do the unused w component
		//		m_co[3] = s * v0[3] + rt * v1[3];
	}

  /**@brief Return the linear interpolation between this and another vector 
   * @param v The other vector 
   * @param t The ration of this to v (t = 0 => return this, t=1 => return other) */
	SIMD_FORCE_INLINE btVector3 lerp(const btVector3& v, const btScalar& t) const 
	{
		return btVector3(m_floats[0] + (v.m_floats[0] - m_floats[0]) * t,
			m_floats[1] + (v.m_floats[1] - m_floats[1]) * t,
			m_floats[2] + (v.m_floats[2] -m_floats[2]) * t);
	}

  /**@brief Elementwise multiply this vector by the other 
   * @param v The other vector */
	SIMD_FORCE_INLINE btVector3& operator*=(const btVector3& v)
	{
		m_floats[0] *= v.m_floats[0]; m_floats[1] *= v.m_floats[1];m_floats[2] *= v.m_floats[2];
		return *this;
	}

	 /**@brief Return the x value */
		SIMD_FORCE_INLINE const btScalar& getX() const { return m_floats[0]; }
  /**@brief Return the y value */
		SIMD_FORCE_INLINE const btScalar& getY() const { return m_floats[1]; }
  /**@brief Return the z value */
		SIMD_FORCE_INLINE const btScalar& getZ() const { return m_floats[2]; }
  /**@brief Set the x value */
		SIMD_FORCE_INLINE void	setX(btScalar x) { m_floats[0] = x;};
  /**@brief Set the y value */
		SIMD_FORCE_INLINE void	setY(btScalar y) { m_floats[1] = y;};
  /**@brief Set the z value */
		SIMD_FORCE_INLINE void	setZ(btScalar z) {m_floats[2] = z;};
  /**@brief Set the w value */
		SIMD_FORCE_INLINE void	setW(btScalar w) { m_floats[3] = w;};
  /**@brief Return the x value */
		SIMD_FORCE_INLINE const btScalar& x() const { return m_floats[0]; }
  /**@brief Return the y value */
		SIMD_FORCE_INLINE const btScalar& y() const { return m_floats[1]; }
  /**@brief Return the z value */
		SIMD_FORCE_INLINE const btScalar& z() const { return m_floats[2]; }
  /**@brief Return the w value */
		SIMD_FORCE_INLINE const btScalar& w() const { return m_floats[3]; }

	//SIMD_FORCE_INLINE btScalar&       operator[](int i)       { return (&m_floats[0])[i];	}      
	//SIMD_FORCE_INLINE const btScalar& operator[](int i) const { return (&m_floats[0])[i]; }
	///operator btScalar*() replaces operator[], using implicit conversion. We added operator != and operator == to avoid pointer comparisons.
	SIMD_FORCE_INLINE	operator       btScalar *()       { return &m_floats[0]; }
	SIMD_FORCE_INLINE	operator const btScalar *() const { return &m_floats[0]; }

	SIMD_FORCE_INLINE	bool	operator==(const btVector3& other) const
	{
		return ((m_floats[3]==other.m_floats[3]) && (m_floats[2]==other.m_floats[2]) && (m_floats[1]==other.m_floats[1]) && (m_floats[0]==other.m_floats[0]));
	}

	SIMD_FORCE_INLINE	bool	operator!=(const btVector3& other) const
	{
		return !(*this == other);
	}

	 /**@brief Set each element to the max of the current values and the values of another btVector3
   * @param other The other btVector3 to compare with 
   */
		SIMD_FORCE_INLINE void	setMax(const btVector3& other)
		{
			btSetMax(m_floats[0], other.m_floats[0]);
			btSetMax(m_floats[1], other.m_floats[1]);
			btSetMax(m_floats[2], other.m_floats[2]);
			btSetMax(m_floats[3], other.w());
		}
  /**@brief Set each element to the min of the current values and the values of another btVector3
   * @param other The other btVector3 to compare with 
   */
		SIMD_FORCE_INLINE void	setMin(const btVector3& other)
		{
			btSetMin(m_floats[0], other.m_floats[0]);
			btSetMin(m_floats[1], other.m_floats[1]);
			btSetMin(m_floats[2], other.m_floats[2]);
			btSetMin(m_floats[3], other.w());
		}

		SIMD_FORCE_INLINE void 	setValue(const btScalar& x, const btScalar& y, const btScalar& z)
		{
			m_floats[0]=x;
			m_floats[1]=y;
			m_floats[2]=z;
			m_floats[3] = btScalar(0.);
		}

		void	getSkewSymmetricMatrix(btVector3* v0,btVector3* v1,btVector3* v2) const
		{
			v0->setValue(0.		,-z()		,y());
			v1->setValue(z()	,0.			,-x());
			v2->setValue(-y()	,x()	,0.);
		}

		void	setZero()
		{
			setValue(btScalar(0.),btScalar(0.),btScalar(0.));
		}

		SIMD_FORCE_INLINE bool isZero() const 
		{
			return m_floats[0] == btScalar(0) && m_floats[1] == btScalar(0) && m_floats[2] == btScalar(0);
		}

		SIMD_FORCE_INLINE bool fuzzyZero() const 
		{
			return length2() < SIMD_EPSILON;
		}

		SIMD_FORCE_INLINE	void	serialize(struct	btVector3Data& dataOut) const;

		SIMD_FORCE_INLINE	void	deSerialize(const struct	btVector3Data& dataIn);

		SIMD_FORCE_INLINE	void	serializeFloat(struct	btVector3FloatData& dataOut) const;

		SIMD_FORCE_INLINE	void	deSerializeFloat(const struct	btVector3FloatData& dataIn);

		SIMD_FORCE_INLINE	void	serializeDouble(struct	btVector3DoubleData& dataOut) const;

		SIMD_FORCE_INLINE	void	deSerializeDouble(const struct	btVector3DoubleData& dataIn);

};

/**@brief Return the sum of two vectors (Point symantics)*/
SIMD_FORCE_INLINE btVector3 
operator+(const btVector3& v1, const btVector3& v2) 
{
	return btVector3(v1.m_floats[0] + v2.m_floats[0], v1.m_floats[1] + v2.m_floats[1], v1.m_floats[2] + v2.m_floats[2]);
}

/**@brief Return the elementwise product of two vectors */
SIMD_FORCE_INLINE btVector3 
operator*(const btVector3& v1, const btVector3& v2) 
{
	return btVector3(v1.m_floats[0] * v2.m_floats[0], v1.m_floats[1] * v2.m_floats[1], v1.m_floats[2] * v2.m_floats[2]);
}

/**@brief Return the difference between two vectors */
SIMD_FORCE_INLINE btVector3 
operator-(const btVector3& v1, const btVector3& v2)
{
	return btVector3(v1.m_floats[0] - v2.m_floats[0], v1.m_floats[1] - v2.m_floats[1], v1.m_floats[2] - v2.m_floats[2]);
}
/**@brief Return the negative of the vector */
SIMD_FORCE_INLINE btVector3 
operator-(const btVector3& v)
{
	return btVector3(-v.m_floats[0], -v.m_floats[1], -v.m_floats[2]);
}

/**@brief Return the vector scaled by s */
SIMD_FORCE_INLINE btVector3 
operator*(const btVector3& v, const btScalar& s)
{
	return btVector3(v.m_floats[0] * s, v.m_floats[1] * s, v.m_floats[2] * s);
}

/**@brief Return the vector scaled by s */
SIMD_FORCE_INLINE btVector3 
operator*(const btScalar& s, const btVector3& v)
{ 
	return v * s; 
}

/**@brief Return the vector inversely scaled by s */
SIMD_FORCE_INLINE btVector3
operator/(const btVector3& v, const btScalar& s)
{
	btFullAssert(s != btScalar(0.0));
	return v * (btScalar(1.0) / s);
}

/**@brief Return the vector inversely scaled by s */
SIMD_FORCE_INLINE btVector3
operator/(const btVector3& v1, const btVector3& v2)
{
	return btVector3(v1.m_floats[0] / v2.m_floats[0],v1.m_floats[1] / v2.m_floats[1],v1.m_floats[2] / v2.m_floats[2]);
}

/**@brief Return the dot product between two vectors */
SIMD_FORCE_INLINE btScalar 
btDot(const btVector3& v1, const btVector3& v2) 
{ 
	return v1.dot(v2); 
}


/**@brief Return the distance squared between two vectors */
SIMD_FORCE_INLINE btScalar
btDistance2(const btVector3& v1, const btVector3& v2) 
{ 
	return v1.distance2(v2); 
}


/**@brief Return the distance between two vectors */
SIMD_FORCE_INLINE btScalar
btDistance(const btVector3& v1, const btVector3& v2) 
{ 
	return v1.distance(v2); 
}

/**@brief Return the angle between two vectors */
SIMD_FORCE_INLINE btScalar
btAngle(const btVector3& v1, const btVector3& v2) 
{ 
	return v1.angle(v2); 
}

/**@brief Return the cross product of two vectors */
SIMD_FORCE_INLINE btVector3 
btCross(const btVector3& v1, const btVector3& v2) 
{ 
	return v1.cross(v2); 
}

SIMD_FORCE_INLINE btScalar
btTriple(const btVector3& v1, const btVector3& v2, const btVector3& v3)
{
	return v1.triple(v2, v3);
}

/**@brief Return the linear interpolation between two vectors
 * @param v1 One vector 
 * @param v2 The other vector 
 * @param t The ration of this to v (t = 0 => return v1, t=1 => return v2) */
SIMD_FORCE_INLINE btVector3 
lerp(const btVector3& v1, const btVector3& v2, const btScalar& t)
{
	return v1.lerp(v2, t);
}



SIMD_FORCE_INLINE btScalar btVector3::distance2(const btVector3& v) const
{
	return (v - *this).length2();
}

SIMD_FORCE_INLINE btScalar btVector3::distance(const btVector3& v) const
{
	return (v - *this).length();
}

SIMD_FORCE_INLINE btVector3 btVector3::normalized() const
{
	return *this / length();
} 

SIMD_FORCE_INLINE btVector3 btVector3::rotate( const btVector3& wAxis, const btScalar angle )
{
	// wAxis must be a unit lenght vector

	btVector3 o = wAxis * wAxis.dot( *this );
	btVector3 x = *this - o;
	btVector3 y;

	y = wAxis.cross( *this );

	return ( o + x * btCos( angle ) + y * btSin( angle ) );
}

class btVector4 : public btVector3
{
public:

	SIMD_FORCE_INLINE btVector4() {}


	SIMD_FORCE_INLINE btVector4(const btScalar& x, const btScalar& y, const btScalar& z,const btScalar& w) 
		: btVector3(x,y,z)
	{
		m_floats[3] = w;
	}


	SIMD_FORCE_INLINE btVector4 absolute4() const 
	{
		return btVector4(
			btFabs(m_floats[0]), 
			btFabs(m_floats[1]), 
			btFabs(m_floats[2]),
			btFabs(m_floats[3]));
	}



	btScalar	getW() const { return m_floats[3];}


		SIMD_FORCE_INLINE int maxAxis4() const
	{
		int maxIndex = -1;
		btScalar maxVal = btScalar(-BT_LARGE_FLOAT);
		if (m_floats[0] > maxVal)
		{
			maxIndex = 0;
			maxVal = m_floats[0];
		}
		if (m_floats[1] > maxVal)
		{
			maxIndex = 1;
			maxVal = m_floats[1];
		}
		if (m_floats[2] > maxVal)
		{
			maxIndex = 2;
			maxVal =m_floats[2];
		}
		if (m_floats[3] > maxVal)
		{
			maxIndex = 3;
			maxVal = m_floats[3];
		}
		
		
		

		return maxIndex;

	}


	SIMD_FORCE_INLINE int minAxis4() const
	{
		int minIndex = -1;
		btScalar minVal = btScalar(BT_LARGE_FLOAT);
		if (m_floats[0] < minVal)
		{
			minIndex = 0;
			minVal = m_floats[0];
		}
		if (m_floats[1] < minVal)
		{
			minIndex = 1;
			minVal = m_floats[1];
		}
		if (m_floats[2] < minVal)
		{
			minIndex = 2;
			minVal =m_floats[2];
		}
		if (m_floats[3] < minVal)
		{
			minIndex = 3;
			minVal = m_floats[3];
		}
		
		return minIndex;

	}


	SIMD_FORCE_INLINE int closestAxis4() const 
	{
		return absolute4().maxAxis4();
	}

	
 

  /**@brief Set x,y,z and zero w 
   * @param x Value of x
   * @param y Value of y
   * @param z Value of z
   */
		

/*		void getValue(btScalar *m) const 
		{
			m[0] = m_floats[0];
			m[1] = m_floats[1];
			m[2] =m_floats[2];
		}
*/
/**@brief Set the values 
   * @param x Value of x
   * @param y Value of y
   * @param z Value of z
   * @param w Value of w
   */
		SIMD_FORCE_INLINE void	setValue(const btScalar& x, const btScalar& y, const btScalar& z,const btScalar& w)
		{
			m_floats[0]=x;
			m_floats[1]=y;
			m_floats[2]=z;
			m_floats[3]=w;
		}


};


///btSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization
SIMD_FORCE_INLINE void	btSwapScalarEndian(const btScalar& sourceVal, btScalar& destVal)
{
	#ifdef BT_USE_DOUBLE_PRECISION
	unsigned char* dest = (unsigned char*) &destVal;
	unsigned char* src  = (unsigned char*) &sourceVal;
	dest[0] = src[7];
    dest[1] = src[6];
    dest[2] = src[5];
    dest[3] = src[4];
    dest[4] = src[3];
    dest[5] = src[2];
    dest[6] = src[1];
    dest[7] = src[0];
#else
	unsigned char* dest = (unsigned char*) &destVal;
	unsigned char* src  = (unsigned char*) &sourceVal;
	dest[0] = src[3];
    dest[1] = src[2];
    dest[2] = src[1];
    dest[3] = src[0];
#endif //BT_USE_DOUBLE_PRECISION
}
///btSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization
SIMD_FORCE_INLINE void	btSwapVector3Endian(const btVector3& sourceVec, btVector3& destVec)
{
	for (int i=0;i<4;i++)
	{
		btSwapScalarEndian(sourceVec[i],destVec[i]);
	}

}

///btUnSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization
SIMD_FORCE_INLINE void	btUnSwapVector3Endian(btVector3& vector)
{

	btVector3	swappedVec;
	for (int i=0;i<4;i++)
	{
		btSwapScalarEndian(vector[i],swappedVec[i]);
	}
	vector = swappedVec;
}

SIMD_FORCE_INLINE void btPlaneSpace1 (const btVector3& n, btVector3& p, btVector3& q)
{
  if (btFabs(n.z()) > SIMDSQRT12) {
    // choose p in y-z plane
    btScalar a = n[1]*n[1] + n[2]*n[2];
    btScalar k = btRecipSqrt (a);
    p.setValue(0,-n[2]*k,n[1]*k);
    // set q = n x p
    q.setValue(a*k,-n[0]*p[2],n[0]*p[1]);
  }
  else {
    // choose p in x-y plane
    btScalar a = n.x()*n.x() + n.y()*n.y();
    btScalar k = btRecipSqrt (a);
    p.setValue(-n.y()*k,n.x()*k,0);
    // set q = n x p
    q.setValue(-n.z()*p.y(),n.z()*p.x(),a*k);
  }
}


struct	btVector3FloatData
{
	float	m_floats[4];
};

struct	btVector3DoubleData
{
	double	m_floats[4];

};

SIMD_FORCE_INLINE	void	btVector3::serializeFloat(struct	btVector3FloatData& dataOut) const
{
	///could also do a memcpy, check if it is worth it
	for (int i=0;i<4;i++)
		dataOut.m_floats[i] = float(m_floats[i]);
}

SIMD_FORCE_INLINE void	btVector3::deSerializeFloat(const struct	btVector3FloatData& dataIn)
{
	for (int i=0;i<4;i++)
		m_floats[i] = btScalar(dataIn.m_floats[i]);
}


SIMD_FORCE_INLINE	void	btVector3::serializeDouble(struct	btVector3DoubleData& dataOut) const
{
	///could also do a memcpy, check if it is worth it
	for (int i=0;i<4;i++)
		dataOut.m_floats[i] = double(m_floats[i]);
}

SIMD_FORCE_INLINE void	btVector3::deSerializeDouble(const struct	btVector3DoubleData& dataIn)
{
	for (int i=0;i<4;i++)
		m_floats[i] = btScalar(dataIn.m_floats[i]);
}


SIMD_FORCE_INLINE	void	btVector3::serialize(struct	btVector3Data& dataOut) const
{
	///could also do a memcpy, check if it is worth it
	for (int i=0;i<4;i++)
		dataOut.m_floats[i] = m_floats[i];
}

SIMD_FORCE_INLINE void	btVector3::deSerialize(const struct	btVector3Data& dataIn)
{
	for (int i=0;i<4;i++)
		m_floats[i] = dataIn.m_floats[i];
}


#endif //SIMD__VECTOR3_H