Welcome to mirror list, hosted at ThFree Co, Russian Federation.

btAxisSweep3.h « BroadphaseCollision « BulletCollision « src « bullet2 « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: d0ad09a385a44d744a43991026eb4ddbb00249be (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
//Bullet Continuous Collision Detection and Physics Library
//Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/

//
// btAxisSweep3.h
//
// Copyright (c) 2006 Simon Hobbs
//
// This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
//
// 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
//
// 3. This notice may not be removed or altered from any source distribution.

#ifndef AXIS_SWEEP_3_H
#define AXIS_SWEEP_3_H

#include "LinearMath/btPoint3.h"
#include "LinearMath/btVector3.h"
#include "btOverlappingPairCache.h"
#include "btBroadphaseInterface.h"
#include "btBroadphaseProxy.h"
#include "btOverlappingPairCallback.h"

//#define DEBUG_BROADPHASE 1
#define USE_OVERLAP_TEST_ON_REMOVES 1

/// The internal templace class btAxisSweep3Internal implements the sweep and prune broadphase.
/// It uses quantized integers to represent the begin and end points for each of the 3 axis.
/// Dont use this class directly, use btAxisSweep3 or bt32BitAxisSweep3 instead.
template <typename BP_FP_INT_TYPE>
class btAxisSweep3Internal : public btBroadphaseInterface
{
protected:

	BP_FP_INT_TYPE	m_bpHandleMask;
	BP_FP_INT_TYPE	m_handleSentinel;

public:
	

	class Edge
	{
	public:
		BP_FP_INT_TYPE m_pos;			// low bit is min/max
		BP_FP_INT_TYPE m_handle;

		BP_FP_INT_TYPE IsMax() const {return static_cast<BP_FP_INT_TYPE>(m_pos & 1);}
	};

public:
	class	Handle : public btBroadphaseProxy
	{
	public:
	BT_DECLARE_ALIGNED_ALLOCATOR();
	
		// indexes into the edge arrays
		BP_FP_INT_TYPE m_minEdges[3], m_maxEdges[3];		// 6 * 2 = 12
//		BP_FP_INT_TYPE m_uniqueId;
		BP_FP_INT_TYPE m_pad;
		
		//void* m_pOwner; this is now in btBroadphaseProxy.m_clientObject
	
		SIMD_FORCE_INLINE void SetNextFree(BP_FP_INT_TYPE next) {m_minEdges[0] = next;}
		SIMD_FORCE_INLINE BP_FP_INT_TYPE GetNextFree() const {return m_minEdges[0];}
	};		// 24 bytes + 24 for Edge structures = 44 bytes total per entry

	
protected:
	btPoint3 m_worldAabbMin;						// overall system bounds
	btPoint3 m_worldAabbMax;						// overall system bounds

	btVector3 m_quantize;						// scaling factor for quantization

	BP_FP_INT_TYPE m_numHandles;						// number of active handles
	BP_FP_INT_TYPE m_maxHandles;						// max number of handles
	Handle* m_pHandles;						// handles pool
	
	BP_FP_INT_TYPE m_firstFreeHandle;		// free handles list

	Edge* m_pEdges[3];						// edge arrays for the 3 axes (each array has m_maxHandles * 2 + 2 sentinel entries)
	void* m_pEdgesRawPtr[3];

	btOverlappingPairCache* m_pairCache;

	///btOverlappingPairCallback is an additional optional user callback for adding/removing overlapping pairs, similar interface to btOverlappingPairCache.
	btOverlappingPairCallback* m_userPairCallback;
	
	bool	m_ownsPairCache;

	int	m_invalidPair;

	// allocation/deallocation
	BP_FP_INT_TYPE allocHandle();
	void freeHandle(BP_FP_INT_TYPE handle);
	

	bool testOverlap2D(const Handle* pHandleA, const Handle* pHandleB,int axis0,int axis1);

#ifdef DEBUG_BROADPHASE
	void debugPrintAxis(int axis,bool checkCardinality=true);
#endif //DEBUG_BROADPHASE

	//Overlap* AddOverlap(BP_FP_INT_TYPE handleA, BP_FP_INT_TYPE handleB);
	//void RemoveOverlap(BP_FP_INT_TYPE handleA, BP_FP_INT_TYPE handleB);

	void quantize(BP_FP_INT_TYPE* out, const btPoint3& point, int isMax) const;

	void sortMinDown(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps );
	void sortMinUp(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps );
	void sortMaxDown(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps );
	void sortMaxUp(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps );

public:

	btAxisSweep3Internal(const btPoint3& worldAabbMin,const btPoint3& worldAabbMax, BP_FP_INT_TYPE handleMask, BP_FP_INT_TYPE handleSentinel, BP_FP_INT_TYPE maxHandles = 16384, btOverlappingPairCache* pairCache=0);

	virtual	~btAxisSweep3Internal();

	BP_FP_INT_TYPE getNumHandles() const
	{
		return m_numHandles;
	}

	virtual void	calculateOverlappingPairs(btDispatcher* dispatcher);
	
	BP_FP_INT_TYPE addHandle(const btPoint3& aabbMin,const btPoint3& aabbMax, void* pOwner,short int collisionFilterGroup,short int collisionFilterMask,btDispatcher* dispatcher,void* multiSapProxy);
	void removeHandle(BP_FP_INT_TYPE handle,btDispatcher* dispatcher);
	void updateHandle(BP_FP_INT_TYPE handle, const btPoint3& aabbMin,const btPoint3& aabbMax,btDispatcher* dispatcher);
	SIMD_FORCE_INLINE Handle* getHandle(BP_FP_INT_TYPE index) const {return m_pHandles + index;}

	void	processAllOverlappingPairs(btOverlapCallback* callback);

	//Broadphase Interface
	virtual btBroadphaseProxy*	createProxy(  const btVector3& aabbMin,  const btVector3& aabbMax,int shapeType,void* userPtr ,short int collisionFilterGroup,short int collisionFilterMask,btDispatcher* dispatcher,void* multiSapProxy);
	virtual void	destroyProxy(btBroadphaseProxy* proxy,btDispatcher* dispatcher);
	virtual void	setAabb(btBroadphaseProxy* proxy,const btVector3& aabbMin,const btVector3& aabbMax,btDispatcher* dispatcher);
	
	bool	testAabbOverlap(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1);

	btOverlappingPairCache*	getOverlappingPairCache()
	{
		return m_pairCache;
	}
	const btOverlappingPairCache*	getOverlappingPairCache() const
	{
		return m_pairCache;
	}

	void	setOverlappingPairUserCallback(btOverlappingPairCallback* pairCallback)
	{
		m_userPairCallback = pairCallback;
	}
	const btOverlappingPairCallback*	getOverlappingPairUserCallback() const
	{
		return m_userPairCallback;
	}

	///getAabb returns the axis aligned bounding box in the 'global' coordinate frame
	///will add some transform later
	virtual void getBroadphaseAabb(btVector3& aabbMin,btVector3& aabbMax) const
	{
		aabbMin = m_worldAabbMin;
		aabbMax = m_worldAabbMax;
	}

	virtual void	printStats()
	{
/*		printf("btAxisSweep3.h\n");
		printf("numHandles = %d, maxHandles = %d\n",m_numHandles,m_maxHandles);
		printf("aabbMin=%f,%f,%f,aabbMax=%f,%f,%f\n",m_worldAabbMin.getX(),m_worldAabbMin.getY(),m_worldAabbMin.getZ(),
			m_worldAabbMax.getX(),m_worldAabbMax.getY(),m_worldAabbMax.getZ());
			*/

	}

};

////////////////////////////////////////////////////////////////////




#ifdef DEBUG_BROADPHASE
#include <stdio.h>

template <typename BP_FP_INT_TYPE>
void btAxisSweep3<BP_FP_INT_TYPE>::debugPrintAxis(int axis, bool checkCardinality)
{
	int numEdges = m_pHandles[0].m_maxEdges[axis];
	printf("SAP Axis %d, numEdges=%d\n",axis,numEdges);

	int i;
	for (i=0;i<numEdges+1;i++)
	{
		Edge* pEdge = m_pEdges[axis] + i;
		Handle* pHandlePrev = getHandle(pEdge->m_handle);
		int handleIndex = pEdge->IsMax()? pHandlePrev->m_maxEdges[axis] : pHandlePrev->m_minEdges[axis];
		char beginOrEnd;
		beginOrEnd=pEdge->IsMax()?'E':'B';
		printf("	[%c,h=%d,p=%x,i=%d]\n",beginOrEnd,pEdge->m_handle,pEdge->m_pos,handleIndex);
	}

	if (checkCardinality)
		assert(numEdges == m_numHandles*2+1);
}
#endif //DEBUG_BROADPHASE

template <typename BP_FP_INT_TYPE>
btBroadphaseProxy*	btAxisSweep3Internal<BP_FP_INT_TYPE>::createProxy(  const btVector3& aabbMin,  const btVector3& aabbMax,int shapeType,void* userPtr,short int collisionFilterGroup,short int collisionFilterMask,btDispatcher* dispatcher,void* multiSapProxy)
{
		(void)shapeType;
		BP_FP_INT_TYPE handleId = addHandle(aabbMin,aabbMax, userPtr,collisionFilterGroup,collisionFilterMask,dispatcher,multiSapProxy);
		
		Handle* handle = getHandle(handleId);
				
		return handle;
}



template <typename BP_FP_INT_TYPE>
void	btAxisSweep3Internal<BP_FP_INT_TYPE>::destroyProxy(btBroadphaseProxy* proxy,btDispatcher* dispatcher)
{
	Handle* handle = static_cast<Handle*>(proxy);
	removeHandle(static_cast<BP_FP_INT_TYPE>(handle->m_uniqueId), dispatcher);
}

template <typename BP_FP_INT_TYPE>
void	btAxisSweep3Internal<BP_FP_INT_TYPE>::setAabb(btBroadphaseProxy* proxy,const btVector3& aabbMin,const btVector3& aabbMax,btDispatcher* dispatcher)
{
	Handle* handle = static_cast<Handle*>(proxy);
	updateHandle(static_cast<BP_FP_INT_TYPE>(handle->m_uniqueId), aabbMin, aabbMax,dispatcher);

}





template <typename BP_FP_INT_TYPE>
btAxisSweep3Internal<BP_FP_INT_TYPE>::btAxisSweep3Internal(const btPoint3& worldAabbMin,const btPoint3& worldAabbMax, BP_FP_INT_TYPE handleMask, BP_FP_INT_TYPE handleSentinel,BP_FP_INT_TYPE userMaxHandles, btOverlappingPairCache* pairCache )
:m_bpHandleMask(handleMask),
m_handleSentinel(handleSentinel),
m_pairCache(pairCache),
m_userPairCallback(0),
m_ownsPairCache(false),
m_invalidPair(0)
{
	BP_FP_INT_TYPE maxHandles = static_cast<BP_FP_INT_TYPE>(userMaxHandles+1);//need to add one sentinel handle

	if (!m_pairCache)
	{
		void* ptr = btAlignedAlloc(sizeof(btHashedOverlappingPairCache),16);
		m_pairCache = new(ptr) btHashedOverlappingPairCache();
		m_ownsPairCache = true;
	}

	//assert(bounds.HasVolume());

	// init bounds
	m_worldAabbMin = worldAabbMin;
	m_worldAabbMax = worldAabbMax;

	btVector3 aabbSize = m_worldAabbMax - m_worldAabbMin;

	BP_FP_INT_TYPE	maxInt = m_handleSentinel;

	m_quantize = btVector3(btScalar(maxInt),btScalar(maxInt),btScalar(maxInt)) / aabbSize;

	// allocate handles buffer, using btAlignedAlloc, and put all handles on free list
	m_pHandles = new Handle[maxHandles];
	
	m_maxHandles = maxHandles;
	m_numHandles = 0;

	// handle 0 is reserved as the null index, and is also used as the sentinel
	m_firstFreeHandle = 1;
	{
		for (BP_FP_INT_TYPE i = m_firstFreeHandle; i < maxHandles; i++)
			m_pHandles[i].SetNextFree(static_cast<BP_FP_INT_TYPE>(i + 1));
		m_pHandles[maxHandles - 1].SetNextFree(0);
	}

	{
		// allocate edge buffers
		for (int i = 0; i < 3; i++)
		{
			m_pEdgesRawPtr[i] = btAlignedAlloc(sizeof(Edge)*maxHandles*2,16);
			m_pEdges[i] = new(m_pEdgesRawPtr[i]) Edge[maxHandles * 2];
		}
	}
	//removed overlap management

	// make boundary sentinels
	
	m_pHandles[0].m_clientObject = 0;

	for (int axis = 0; axis < 3; axis++)
	{
		m_pHandles[0].m_minEdges[axis] = 0;
		m_pHandles[0].m_maxEdges[axis] = 1;

		m_pEdges[axis][0].m_pos = 0;
		m_pEdges[axis][0].m_handle = 0;
		m_pEdges[axis][1].m_pos = m_handleSentinel;
		m_pEdges[axis][1].m_handle = 0;
#ifdef DEBUG_BROADPHASE
		debugPrintAxis(axis);
#endif //DEBUG_BROADPHASE

	}

}

template <typename BP_FP_INT_TYPE>
btAxisSweep3Internal<BP_FP_INT_TYPE>::~btAxisSweep3Internal()
{
	
	for (int i = 2; i >= 0; i--)
	{
		btAlignedFree(m_pEdgesRawPtr[i]);
	}
	delete [] m_pHandles;

	if (m_ownsPairCache)
	{
		m_pairCache->~btOverlappingPairCache();
		btAlignedFree(m_pairCache);
	}
}

template <typename BP_FP_INT_TYPE>
void btAxisSweep3Internal<BP_FP_INT_TYPE>::quantize(BP_FP_INT_TYPE* out, const btPoint3& point, int isMax) const
{
	btPoint3 clampedPoint(point);
	


	clampedPoint.setMax(m_worldAabbMin);
	clampedPoint.setMin(m_worldAabbMax);

	btVector3 v = (clampedPoint - m_worldAabbMin) * m_quantize;
	out[0] = (BP_FP_INT_TYPE)(((BP_FP_INT_TYPE)v.getX() & m_bpHandleMask) | isMax);
	out[1] = (BP_FP_INT_TYPE)(((BP_FP_INT_TYPE)v.getY() & m_bpHandleMask) | isMax);
	out[2] = (BP_FP_INT_TYPE)(((BP_FP_INT_TYPE)v.getZ() & m_bpHandleMask) | isMax);
	
}


template <typename BP_FP_INT_TYPE>
BP_FP_INT_TYPE btAxisSweep3Internal<BP_FP_INT_TYPE>::allocHandle()
{
	assert(m_firstFreeHandle);

	BP_FP_INT_TYPE handle = m_firstFreeHandle;
	m_firstFreeHandle = getHandle(handle)->GetNextFree();
	m_numHandles++;

	return handle;
}

template <typename BP_FP_INT_TYPE>
void btAxisSweep3Internal<BP_FP_INT_TYPE>::freeHandle(BP_FP_INT_TYPE handle)
{
	assert(handle > 0 && handle < m_maxHandles);

	getHandle(handle)->SetNextFree(m_firstFreeHandle);
	m_firstFreeHandle = handle;

	m_numHandles--;
}


template <typename BP_FP_INT_TYPE>
BP_FP_INT_TYPE btAxisSweep3Internal<BP_FP_INT_TYPE>::addHandle(const btPoint3& aabbMin,const btPoint3& aabbMax, void* pOwner,short int collisionFilterGroup,short int collisionFilterMask,btDispatcher* dispatcher,void* multiSapProxy)
{
	// quantize the bounds
	BP_FP_INT_TYPE min[3], max[3];
	quantize(min, aabbMin, 0);
	quantize(max, aabbMax, 1);

	// allocate a handle
	BP_FP_INT_TYPE handle = allocHandle();
	

	Handle* pHandle = getHandle(handle);
	
	pHandle->m_uniqueId = static_cast<int>(handle);
	//pHandle->m_pOverlaps = 0;
	pHandle->m_clientObject = pOwner;
	pHandle->m_collisionFilterGroup = collisionFilterGroup;
	pHandle->m_collisionFilterMask = collisionFilterMask;
	pHandle->m_multiSapParentProxy = multiSapProxy;

	// compute current limit of edge arrays
	BP_FP_INT_TYPE limit = static_cast<BP_FP_INT_TYPE>(m_numHandles * 2);

	
	// insert new edges just inside the max boundary edge
	for (BP_FP_INT_TYPE axis = 0; axis < 3; axis++)
	{

		m_pHandles[0].m_maxEdges[axis] += 2;

		m_pEdges[axis][limit + 1] = m_pEdges[axis][limit - 1];

		m_pEdges[axis][limit - 1].m_pos = min[axis];
		m_pEdges[axis][limit - 1].m_handle = handle;

		m_pEdges[axis][limit].m_pos = max[axis];
		m_pEdges[axis][limit].m_handle = handle;

		pHandle->m_minEdges[axis] = static_cast<BP_FP_INT_TYPE>(limit - 1);
		pHandle->m_maxEdges[axis] = limit;
	}

	// now sort the new edges to their correct position
	sortMinDown(0, pHandle->m_minEdges[0], dispatcher,false);
	sortMaxDown(0, pHandle->m_maxEdges[0], dispatcher,false);
	sortMinDown(1, pHandle->m_minEdges[1], dispatcher,false);
	sortMaxDown(1, pHandle->m_maxEdges[1], dispatcher,false);
	sortMinDown(2, pHandle->m_minEdges[2], dispatcher,true);
	sortMaxDown(2, pHandle->m_maxEdges[2], dispatcher,true);


	return handle;
}


template <typename BP_FP_INT_TYPE>
void btAxisSweep3Internal<BP_FP_INT_TYPE>::removeHandle(BP_FP_INT_TYPE handle,btDispatcher* dispatcher)
{

	Handle* pHandle = getHandle(handle);

	//explicitly remove the pairs containing the proxy
	//we could do it also in the sortMinUp (passing true)
	//todo: compare performance
	if (!m_pairCache->hasDeferredRemoval())
	{
		m_pairCache->removeOverlappingPairsContainingProxy(pHandle,dispatcher);
	}

	// compute current limit of edge arrays
	int limit = static_cast<int>(m_numHandles * 2);
	
	int axis;

	for (axis = 0;axis<3;axis++)
	{
		m_pHandles[0].m_maxEdges[axis] -= 2;
	}

	// remove the edges by sorting them up to the end of the list
	for ( axis = 0; axis < 3; axis++)
	{
		Edge* pEdges = m_pEdges[axis];
		BP_FP_INT_TYPE max = pHandle->m_maxEdges[axis];
		pEdges[max].m_pos = m_handleSentinel;

		sortMaxUp(axis,max,dispatcher,false);


		BP_FP_INT_TYPE i = pHandle->m_minEdges[axis];
		pEdges[i].m_pos = m_handleSentinel;


		sortMinUp(axis,i,dispatcher,false);

		pEdges[limit-1].m_handle = 0;
		pEdges[limit-1].m_pos = m_handleSentinel;
		
#ifdef DEBUG_BROADPHASE
			debugPrintAxis(axis,false);
#endif //DEBUG_BROADPHASE


	}


	// free the handle
	freeHandle(handle);

	
}

extern int gOverlappingPairs;
//#include <stdio.h>

template <typename BP_FP_INT_TYPE>
void	btAxisSweep3Internal<BP_FP_INT_TYPE>::calculateOverlappingPairs(btDispatcher* dispatcher)
{

	if (m_pairCache->hasDeferredRemoval())
	{
	
		btBroadphasePairArray&	overlappingPairArray = m_pairCache->getOverlappingPairArray();

		//perform a sort, to find duplicates and to sort 'invalid' pairs to the end
		overlappingPairArray.quickSort(btBroadphasePairSortPredicate());

		overlappingPairArray.resize(overlappingPairArray.size() - m_invalidPair);
		m_invalidPair = 0;

		
		int i;

		btBroadphasePair previousPair;
		previousPair.m_pProxy0 = 0;
		previousPair.m_pProxy1 = 0;
		previousPair.m_algorithm = 0;
		
		
		for (i=0;i<overlappingPairArray.size();i++)
		{
		
			btBroadphasePair& pair = overlappingPairArray[i];

			bool isDuplicate = (pair == previousPair);

			previousPair = pair;

			bool needsRemoval = false;

			if (!isDuplicate)
			{
				bool hasOverlap = testAabbOverlap(pair.m_pProxy0,pair.m_pProxy1);

				if (hasOverlap)
				{
					needsRemoval = false;//callback->processOverlap(pair);
				} else
				{
					needsRemoval = true;
				}
			} else
			{
				//remove duplicate
				needsRemoval = true;
				//should have no algorithm
				btAssert(!pair.m_algorithm);
			}
			
			if (needsRemoval)
			{
				m_pairCache->cleanOverlappingPair(pair,dispatcher);

		//		m_overlappingPairArray.swap(i,m_overlappingPairArray.size()-1);
		//		m_overlappingPairArray.pop_back();
				pair.m_pProxy0 = 0;
				pair.m_pProxy1 = 0;
				m_invalidPair++;
				gOverlappingPairs--;
			} 
			
		}

	///if you don't like to skip the invalid pairs in the array, execute following code:
	#define CLEAN_INVALID_PAIRS 1
	#ifdef CLEAN_INVALID_PAIRS

		//perform a sort, to sort 'invalid' pairs to the end
		overlappingPairArray.quickSort(btBroadphasePairSortPredicate());

		overlappingPairArray.resize(overlappingPairArray.size() - m_invalidPair);
		m_invalidPair = 0;
	#endif//CLEAN_INVALID_PAIRS
		
		//printf("overlappingPairArray.size()=%d\n",overlappingPairArray.size());
	}



	

}


template <typename BP_FP_INT_TYPE>
bool btAxisSweep3Internal<BP_FP_INT_TYPE>::testAabbOverlap(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1)
{
	const Handle* pHandleA = static_cast<Handle*>(proxy0);
	const Handle* pHandleB = static_cast<Handle*>(proxy1);
	
	//optimization 1: check the array index (memory address), instead of the m_pos

	for (int axis = 0; axis < 3; axis++)
	{ 
		if (pHandleA->m_maxEdges[axis] < pHandleB->m_minEdges[axis] || 
			pHandleB->m_maxEdges[axis] < pHandleA->m_minEdges[axis]) 
		{ 
			return false; 
		} 
	} 
	return true;
}

template <typename BP_FP_INT_TYPE>
bool btAxisSweep3Internal<BP_FP_INT_TYPE>::testOverlap2D(const Handle* pHandleA, const Handle* pHandleB,int axis0,int axis1)
{
	//optimization 1: check the array index (memory address), instead of the m_pos

	if (pHandleA->m_maxEdges[axis0] < pHandleB->m_minEdges[axis0] || 
		pHandleB->m_maxEdges[axis0] < pHandleA->m_minEdges[axis0] ||
		pHandleA->m_maxEdges[axis1] < pHandleB->m_minEdges[axis1] ||
		pHandleB->m_maxEdges[axis1] < pHandleA->m_minEdges[axis1]) 
	{ 
		return false; 
	} 
	return true;
}

template <typename BP_FP_INT_TYPE>
void btAxisSweep3Internal<BP_FP_INT_TYPE>::updateHandle(BP_FP_INT_TYPE handle, const btPoint3& aabbMin,const btPoint3& aabbMax,btDispatcher* dispatcher)
{
//	assert(bounds.IsFinite());
	//assert(bounds.HasVolume());

	Handle* pHandle = getHandle(handle);

	// quantize the new bounds
	BP_FP_INT_TYPE min[3], max[3];
	quantize(min, aabbMin, 0);
	quantize(max, aabbMax, 1);

	// update changed edges
	for (int axis = 0; axis < 3; axis++)
	{
		BP_FP_INT_TYPE emin = pHandle->m_minEdges[axis];
		BP_FP_INT_TYPE emax = pHandle->m_maxEdges[axis];

		int dmin = (int)min[axis] - (int)m_pEdges[axis][emin].m_pos;
		int dmax = (int)max[axis] - (int)m_pEdges[axis][emax].m_pos;

		m_pEdges[axis][emin].m_pos = min[axis];
		m_pEdges[axis][emax].m_pos = max[axis];

		// expand (only adds overlaps)
		if (dmin < 0)
			sortMinDown(axis, emin,dispatcher,true);

		if (dmax > 0)
			sortMaxUp(axis, emax,dispatcher,true);

		// shrink (only removes overlaps)
		if (dmin > 0)
			sortMinUp(axis, emin,dispatcher,true);

		if (dmax < 0)
			sortMaxDown(axis, emax,dispatcher,true);

#ifdef DEBUG_BROADPHASE
	debugPrintAxis(axis);
#endif //DEBUG_BROADPHASE
	}

	
}




// sorting a min edge downwards can only ever *add* overlaps
template <typename BP_FP_INT_TYPE>
void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMinDown(int axis, BP_FP_INT_TYPE edge, btDispatcher* /* dispatcher */, bool updateOverlaps)
{

	Edge* pEdge = m_pEdges[axis] + edge;
	Edge* pPrev = pEdge - 1;
	Handle* pHandleEdge = getHandle(pEdge->m_handle);

	while (pEdge->m_pos < pPrev->m_pos)
	{
		Handle* pHandlePrev = getHandle(pPrev->m_handle);

		if (pPrev->IsMax())
		{
			// if previous edge is a maximum check the bounds and add an overlap if necessary
			const int axis1 = (1  << axis) & 3;
			const int axis2 = (1  << axis1) & 3;
			if (updateOverlaps && testOverlap2D(pHandleEdge, pHandlePrev,axis1,axis2))
			{
				m_pairCache->addOverlappingPair(pHandleEdge,pHandlePrev);
				if (m_userPairCallback)
					m_userPairCallback->addOverlappingPair(pHandleEdge,pHandlePrev);

				//AddOverlap(pEdge->m_handle, pPrev->m_handle);

			}

			// update edge reference in other handle
			pHandlePrev->m_maxEdges[axis]++;
		}
		else
			pHandlePrev->m_minEdges[axis]++;

		pHandleEdge->m_minEdges[axis]--;

		// swap the edges
		Edge swap = *pEdge;
		*pEdge = *pPrev;
		*pPrev = swap;

		// decrement
		pEdge--;
		pPrev--;
	}

#ifdef DEBUG_BROADPHASE
	debugPrintAxis(axis);
#endif //DEBUG_BROADPHASE

}

// sorting a min edge upwards can only ever *remove* overlaps
template <typename BP_FP_INT_TYPE>
void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMinUp(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps)
{
	Edge* pEdge = m_pEdges[axis] + edge;
	Edge* pNext = pEdge + 1;
	Handle* pHandleEdge = getHandle(pEdge->m_handle);

	while (pNext->m_handle && (pEdge->m_pos >= pNext->m_pos))
	{
		Handle* pHandleNext = getHandle(pNext->m_handle);

		if (pNext->IsMax())
		{
			Handle* handle0 = getHandle(pEdge->m_handle);
			Handle* handle1 = getHandle(pNext->m_handle);
			const int axis1 = (1  << axis) & 3;
			const int axis2 = (1  << axis1) & 3;
			
			// if next edge is maximum remove any overlap between the two handles
			if (updateOverlaps 
#ifdef USE_OVERLAP_TEST_ON_REMOVES
				&& testOverlap2D(handle0,handle1,axis1,axis2)
#endif //USE_OVERLAP_TEST_ON_REMOVES
				)
			{
				

				m_pairCache->removeOverlappingPair(handle0,handle1,dispatcher);	
				if (m_userPairCallback)
					m_userPairCallback->removeOverlappingPair(handle0,handle1,dispatcher);
				
			}


			// update edge reference in other handle
			pHandleNext->m_maxEdges[axis]--;
		}
		else
			pHandleNext->m_minEdges[axis]--;

		pHandleEdge->m_minEdges[axis]++;

		// swap the edges
		Edge swap = *pEdge;
		*pEdge = *pNext;
		*pNext = swap;

		// increment
		pEdge++;
		pNext++;
	}


}

// sorting a max edge downwards can only ever *remove* overlaps
template <typename BP_FP_INT_TYPE>
void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMaxDown(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps)
{

	Edge* pEdge = m_pEdges[axis] + edge;
	Edge* pPrev = pEdge - 1;
	Handle* pHandleEdge = getHandle(pEdge->m_handle);

	while (pEdge->m_pos < pPrev->m_pos)
	{
		Handle* pHandlePrev = getHandle(pPrev->m_handle);

		if (!pPrev->IsMax())
		{
			// if previous edge was a minimum remove any overlap between the two handles
			Handle* handle0 = getHandle(pEdge->m_handle);
			Handle* handle1 = getHandle(pPrev->m_handle);
			const int axis1 = (1  << axis) & 3;
			const int axis2 = (1  << axis1) & 3;

			if (updateOverlaps  
#ifdef USE_OVERLAP_TEST_ON_REMOVES
				&& testOverlap2D(handle0,handle1,axis1,axis2)
#endif //USE_OVERLAP_TEST_ON_REMOVES
				)
			{
				//this is done during the overlappingpairarray iteration/narrowphase collision

				
				m_pairCache->removeOverlappingPair(handle0,handle1,dispatcher);
				if (m_userPairCallback)
					m_userPairCallback->removeOverlappingPair(handle0,handle1,dispatcher);
			


			}

			// update edge reference in other handle
			pHandlePrev->m_minEdges[axis]++;;
		}
		else
			pHandlePrev->m_maxEdges[axis]++;

		pHandleEdge->m_maxEdges[axis]--;

		// swap the edges
		Edge swap = *pEdge;
		*pEdge = *pPrev;
		*pPrev = swap;

		// decrement
		pEdge--;
		pPrev--;
	}

	
#ifdef DEBUG_BROADPHASE
	debugPrintAxis(axis);
#endif //DEBUG_BROADPHASE

}

// sorting a max edge upwards can only ever *add* overlaps
template <typename BP_FP_INT_TYPE>
void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMaxUp(int axis, BP_FP_INT_TYPE edge, btDispatcher* /* dispatcher */, bool updateOverlaps)
{
	Edge* pEdge = m_pEdges[axis] + edge;
	Edge* pNext = pEdge + 1;
	Handle* pHandleEdge = getHandle(pEdge->m_handle);

	while (pNext->m_handle && (pEdge->m_pos >= pNext->m_pos))
	{
		Handle* pHandleNext = getHandle(pNext->m_handle);

		const int axis1 = (1  << axis) & 3;
		const int axis2 = (1  << axis1) & 3;

		if (!pNext->IsMax())
		{
			// if next edge is a minimum check the bounds and add an overlap if necessary
			if (updateOverlaps && testOverlap2D(pHandleEdge, pHandleNext,axis1,axis2))
			{
				Handle* handle0 = getHandle(pEdge->m_handle);
				Handle* handle1 = getHandle(pNext->m_handle);
				m_pairCache->addOverlappingPair(handle0,handle1);
				if (m_userPairCallback)
					m_userPairCallback->addOverlappingPair(handle0,handle1);
			}

			// update edge reference in other handle
			pHandleNext->m_minEdges[axis]--;
		}
		else
			pHandleNext->m_maxEdges[axis]--;

		pHandleEdge->m_maxEdges[axis]++;

		// swap the edges
		Edge swap = *pEdge;
		*pEdge = *pNext;
		*pNext = swap;

		// increment
		pEdge++;
		pNext++;
	}
	
}



////////////////////////////////////////////////////////////////////


/// The btAxisSweep3 is an efficient implementation of the 3d axis sweep and prune broadphase.
/// It uses arrays rather then lists for storage of the 3 axis. Also it operates using 16 bit integer coordinates instead of floats.
/// For large worlds and many objects, use bt32BitAxisSweep3 or btDbvtBroadphase instead. bt32BitAxisSweep3 has higher precision and allows more then 16384 objects at the cost of more memory and bit of performance.
class btAxisSweep3 : public btAxisSweep3Internal<unsigned short int>
{
public:

	btAxisSweep3(const btPoint3& worldAabbMin,const btPoint3& worldAabbMax, unsigned short int maxHandles = 16384, btOverlappingPairCache* pairCache = 0);

};

/// The bt32BitAxisSweep3 allows higher precision quantization and more objects compared to the btAxisSweep3 sweep and prune.
/// This comes at the cost of more memory per handle, and a bit slower performance.
/// It uses arrays rather then lists for storage of the 3 axis.
class bt32BitAxisSweep3 : public btAxisSweep3Internal<unsigned int>
{
public:

	bt32BitAxisSweep3(const btPoint3& worldAabbMin,const btPoint3& worldAabbMax, unsigned int maxHandles = 1500000, btOverlappingPairCache* pairCache = 0);

};

#endif