Welcome to mirror list, hosted at ThFree Co, Russian Federation.

SphereTriangleDetector.cpp « CollisionDispatch « BulletCollision « src « bullet2 « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: f6c1e32ac7ccbb016a3988e506cce83c6f4ea6aa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/

#include "LinearMath/btScalar.h"
#include "SphereTriangleDetector.h"
#include "BulletCollision/CollisionShapes/btTriangleShape.h"
#include "BulletCollision/CollisionShapes/btSphereShape.h"


SphereTriangleDetector::SphereTriangleDetector(btSphereShape* sphere,btTriangleShape* triangle)
:m_sphere(sphere),
m_triangle(triangle)
{

}

void	SphereTriangleDetector::getClosestPoints(const ClosestPointInput& input,Result& output,class btIDebugDraw* debugDraw,bool swapResults)
{

	(void)debugDraw;
	const btTransform& transformA = input.m_transformA;
	const btTransform& transformB = input.m_transformB;

	btVector3 point,normal;
	btScalar timeOfImpact = btScalar(1.);
	btScalar depth = btScalar(0.);
//	output.m_distance = btScalar(1e30);
	//move sphere into triangle space
	btTransform	sphereInTr = transformB.inverseTimes(transformA);

	if (collide(sphereInTr.getOrigin(),point,normal,depth,timeOfImpact))
	{
		if (swapResults)
		{
			btVector3 normalOnB = transformB.getBasis()*normal;
			btVector3 normalOnA = -normalOnB;
			btVector3 pointOnA = transformB*point+normalOnB*depth;
			output.addContactPoint(normalOnA,pointOnA,depth);
		} else
		{
			output.addContactPoint(transformB.getBasis()*normal,transformB*point,depth);
		}
	}

}

#define MAX_OVERLAP btScalar(0.)



// See also geometrictools.com
// Basic idea: D = |p - (lo + t0*lv)| where t0 = lv . (p - lo) / lv . lv
btScalar SegmentSqrDistance(const btVector3& from, const btVector3& to,const btVector3 &p, btVector3 &nearest);

btScalar SegmentSqrDistance(const btVector3& from, const btVector3& to,const btVector3 &p, btVector3 &nearest) {
	btVector3 diff = p - from;
	btVector3 v = to - from;
	btScalar t = v.dot(diff);
	
	if (t > 0) {
		btScalar dotVV = v.dot(v);
		if (t < dotVV) {
			t /= dotVV;
			diff -= t*v;
		} else {
			t = 1;
			diff -= v;
		}
	} else
		t = 0;

	nearest = from + t*v;
	return diff.dot(diff);	
}

bool SphereTriangleDetector::facecontains(const btVector3 &p,const btVector3* vertices,btVector3& normal)  {
	btVector3 lp(p);
	btVector3 lnormal(normal);
	
	return pointInTriangle(vertices, lnormal, &lp);
}

///combined discrete/continuous sphere-triangle
bool SphereTriangleDetector::collide(const btVector3& sphereCenter,btVector3 &point, btVector3& resultNormal, btScalar& depth, btScalar &timeOfImpact)
{

	const btVector3* vertices = &m_triangle->getVertexPtr(0);
	const btVector3& c = sphereCenter;
	btScalar r = m_sphere->getRadius();

	btVector3 delta (0,0,0);

	btVector3 normal = (vertices[1]-vertices[0]).cross(vertices[2]-vertices[0]);
	normal.normalize();
	btVector3 p1ToCentre = c - vertices[0];
	btScalar distanceFromPlane = p1ToCentre.dot(normal);

	if (distanceFromPlane < btScalar(0.))
	{
		//triangle facing the other way
	
		distanceFromPlane *= btScalar(-1.);
		normal *= btScalar(-1.);
	}

	///todo: move this gContactBreakingThreshold into a proper structure
	extern btScalar gContactBreakingThreshold;

	btScalar contactMargin = gContactBreakingThreshold;
	bool isInsideContactPlane = distanceFromPlane < r + contactMargin;
	bool isInsideShellPlane = distanceFromPlane < r;
	
	btScalar deltaDotNormal = delta.dot(normal);
	if (!isInsideShellPlane && deltaDotNormal >= btScalar(0.0))
		return false;

	// Check for contact / intersection
	bool hasContact = false;
	btVector3 contactPoint;
	if (isInsideContactPlane) {
		if (facecontains(c,vertices,normal)) {
			// Inside the contact wedge - touches a point on the shell plane
			hasContact = true;
			contactPoint = c - normal*distanceFromPlane;
		} else {
			// Could be inside one of the contact capsules
			btScalar contactCapsuleRadiusSqr = (r + contactMargin) * (r + contactMargin);
			btVector3 nearestOnEdge;
			for (int i = 0; i < m_triangle->getNumEdges(); i++) {
				
				btPoint3 pa;
				btPoint3 pb;
				
				m_triangle->getEdge(i,pa,pb);

				btScalar distanceSqr = SegmentSqrDistance(pa,pb,c, nearestOnEdge);
				if (distanceSqr < contactCapsuleRadiusSqr) {
					// Yep, we're inside a capsule
					hasContact = true;
					contactPoint = nearestOnEdge;
				}
				
			}
		}
	}

	if (hasContact) {
		btVector3 contactToCentre = c - contactPoint;
		btScalar distanceSqr = contactToCentre.length2();
		if (distanceSqr < (r - MAX_OVERLAP)*(r - MAX_OVERLAP)) {
			btScalar distance = btSqrt(distanceSqr);
			resultNormal = contactToCentre;
			resultNormal.normalize();
			point = contactPoint;
			depth = -(r-distance);
			return true;
		}

		if (delta.dot(contactToCentre) >= btScalar(0.0)) 
			return false;
		
		// Moving towards the contact point -> collision
		point = contactPoint;
		timeOfImpact = btScalar(0.0);
		return true;
	}
	
	return false;
}


bool SphereTriangleDetector::pointInTriangle(const btVector3 vertices[], const btVector3 &normal, btVector3 *p )
{
	const btVector3* p1 = &vertices[0];
	const btVector3* p2 = &vertices[1];
	const btVector3* p3 = &vertices[2];

	btVector3 edge1( *p2 - *p1 );
	btVector3 edge2( *p3 - *p2 );
	btVector3 edge3( *p1 - *p3 );

	btVector3 p1_to_p( *p - *p1 );
	btVector3 p2_to_p( *p - *p2 );
	btVector3 p3_to_p( *p - *p3 );

	btVector3 edge1_normal( edge1.cross(normal));
	btVector3 edge2_normal( edge2.cross(normal));
	btVector3 edge3_normal( edge3.cross(normal));
	
	btScalar r1, r2, r3;
	r1 = edge1_normal.dot( p1_to_p );
	r2 = edge2_normal.dot( p2_to_p );
	r3 = edge3_normal.dot( p3_to_p );
	if ( ( r1 > 0 && r2 > 0 && r3 > 0 ) ||
	     ( r1 <= 0 && r2 <= 0 && r3 <= 0 ) )
		return true;
	return false;

}