Welcome to mirror list, hosted at ThFree Co, Russian Federation.

btCollisionWorld.cpp « CollisionDispatch « BulletCollision « src « bullet2 « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: d8674a320a7f6161f90c7c4f56b4581d79ec088a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/

#include "btCollisionWorld.h"
#include "btCollisionDispatcher.h"
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
#include "BulletCollision/CollisionShapes/btCollisionShape.h"
#include "BulletCollision/CollisionShapes/btConvexShape.h"
#include "BulletCollision/NarrowPhaseCollision/btGjkEpaPenetrationDepthSolver.h"
#include "BulletCollision/CollisionShapes/btSphereShape.h" //for raycasting
#include "BulletCollision/CollisionShapes/btBvhTriangleMeshShape.h" //for raycasting
#include "BulletCollision/NarrowPhaseCollision/btRaycastCallback.h"
#include "BulletCollision/CollisionShapes/btCompoundShape.h"
#include "BulletCollision/NarrowPhaseCollision/btSubSimplexConvexCast.h"
#include "BulletCollision/NarrowPhaseCollision/btGjkConvexCast.h"
#include "BulletCollision/NarrowPhaseCollision/btContinuousConvexCollision.h"

#include "BulletCollision/BroadphaseCollision/btBroadphaseInterface.h"
#include "LinearMath/btAabbUtil2.h"
#include "LinearMath/btQuickprof.h"
#include "LinearMath/btStackAlloc.h"


//When the user doesn't provide dispatcher or broadphase, create basic versions (and delete them in destructor)
#include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h"
#include "BulletCollision/BroadphaseCollision/btSimpleBroadphase.h"
#include "BulletCollision/CollisionDispatch/btCollisionConfiguration.h"


btCollisionWorld::btCollisionWorld(btDispatcher* dispatcher,btBroadphaseInterface* pairCache, btCollisionConfiguration* collisionConfiguration)
:m_dispatcher1(dispatcher),
m_broadphasePairCache(pairCache),
m_debugDrawer(0)
{
	m_stackAlloc = collisionConfiguration->getStackAllocator();
	m_dispatchInfo.m_stackAllocator = m_stackAlloc;
}


btCollisionWorld::~btCollisionWorld()
{

	//clean up remaining objects
	int i;
	for (i=0;i<m_collisionObjects.size();i++)
	{
		btCollisionObject* collisionObject= m_collisionObjects[i];

		btBroadphaseProxy* bp = collisionObject->getBroadphaseHandle();
		if (bp)
		{
			//
			// only clear the cached algorithms
			//
			getBroadphase()->getOverlappingPairCache()->cleanProxyFromPairs(bp,m_dispatcher1);
			getBroadphase()->destroyProxy(bp,m_dispatcher1);
		}
	}


}










void	btCollisionWorld::addCollisionObject(btCollisionObject* collisionObject,short int collisionFilterGroup,short int collisionFilterMask)
{

	//check that the object isn't already added
		btAssert( m_collisionObjects.findLinearSearch(collisionObject)  == m_collisionObjects.size());

		m_collisionObjects.push_back(collisionObject);

		//calculate new AABB
		btTransform trans = collisionObject->getWorldTransform();

		btVector3	minAabb;
		btVector3	maxAabb;
		collisionObject->getCollisionShape()->getAabb(trans,minAabb,maxAabb);

		int type = collisionObject->getCollisionShape()->getShapeType();
		collisionObject->setBroadphaseHandle( getBroadphase()->createProxy(
			minAabb,
			maxAabb,
			type,
			collisionObject,
			collisionFilterGroup,
			collisionFilterMask,
			m_dispatcher1,0
			))	;





}

void	btCollisionWorld::updateAabbs()
{
	BT_PROFILE("updateAabbs");

	btTransform predictedTrans;
	for ( int i=0;i<m_collisionObjects.size();i++)
	{
		btCollisionObject* colObj = m_collisionObjects[i];

		//only update aabb of active objects
		if (colObj->isActive())
		{
			btPoint3 minAabb,maxAabb;
			colObj->getCollisionShape()->getAabb(colObj->getWorldTransform(), minAabb,maxAabb);
			//need to increase the aabb for contact thresholds
			btVector3 contactThreshold(gContactBreakingThreshold,gContactBreakingThreshold,gContactBreakingThreshold);
			minAabb -= contactThreshold;
			maxAabb += contactThreshold;

			btBroadphaseInterface* bp = (btBroadphaseInterface*)m_broadphasePairCache;

			//moving objects should be moderately sized, probably something wrong if not
			if ( colObj->isStaticObject() || ((maxAabb-minAabb).length2() < btScalar(1e12)))
			{
				bp->setAabb(colObj->getBroadphaseHandle(),minAabb,maxAabb, m_dispatcher1);
			} else
			{
				//something went wrong, investigate
				//this assert is unwanted in 3D modelers (danger of loosing work)
				colObj->setActivationState(DISABLE_SIMULATION);

				static bool reportMe = true;
				if (reportMe && m_debugDrawer)
				{
					reportMe = false;
					m_debugDrawer->reportErrorWarning("Overflow in AABB, object removed from simulation");
					m_debugDrawer->reportErrorWarning("If you can reproduce this, please email bugs@continuousphysics.com\n");
					m_debugDrawer->reportErrorWarning("Please include above information, your Platform, version of OS.\n");
					m_debugDrawer->reportErrorWarning("Thanks.\n");
				}
			}
		}
	}

}



void	btCollisionWorld::performDiscreteCollisionDetection()
{
	BT_PROFILE("performDiscreteCollisionDetection");

	btDispatcherInfo& dispatchInfo = getDispatchInfo();

	updateAabbs();

	{
		BT_PROFILE("calculateOverlappingPairs");
		m_broadphasePairCache->calculateOverlappingPairs(m_dispatcher1);
	}


	btDispatcher* dispatcher = getDispatcher();
	{
		BT_PROFILE("dispatchAllCollisionPairs");
		if (dispatcher)
			dispatcher->dispatchAllCollisionPairs(m_broadphasePairCache->getOverlappingPairCache(),dispatchInfo,m_dispatcher1);
	}

}



void	btCollisionWorld::removeCollisionObject(btCollisionObject* collisionObject)
{


	//bool removeFromBroadphase = false;

	{

		btBroadphaseProxy* bp = collisionObject->getBroadphaseHandle();
		if (bp)
		{
			//
			// only clear the cached algorithms
			//
			getBroadphase()->getOverlappingPairCache()->cleanProxyFromPairs(bp,m_dispatcher1);
			getBroadphase()->destroyProxy(bp,m_dispatcher1);
			collisionObject->setBroadphaseHandle(0);
		}
	}


	//swapremove
	m_collisionObjects.remove(collisionObject);

}



void	btCollisionWorld::rayTestSingle(const btTransform& rayFromTrans,const btTransform& rayToTrans,
					  btCollisionObject* collisionObject,
					  const btCollisionShape* collisionShape,
					  const btTransform& colObjWorldTransform,
					  RayResultCallback& resultCallback)
{
	btSphereShape pointShape(btScalar(0.0));
	pointShape.setMargin(0.f);
	const btConvexShape* castShape = &pointShape;

	if (collisionShape->isConvex())
	{
		btConvexCast::CastResult castResult;
		castResult.m_fraction = resultCallback.m_closestHitFraction;

		btConvexShape* convexShape = (btConvexShape*) collisionShape;
		btVoronoiSimplexSolver	simplexSolver;
#define USE_SUBSIMPLEX_CONVEX_CAST 1
#ifdef USE_SUBSIMPLEX_CONVEX_CAST
		btSubsimplexConvexCast convexCaster(castShape,convexShape,&simplexSolver);
#else
		//btGjkConvexCast	convexCaster(castShape,convexShape,&simplexSolver);
		//btContinuousConvexCollision convexCaster(castShape,convexShape,&simplexSolver,0);
#endif //#USE_SUBSIMPLEX_CONVEX_CAST

		if (convexCaster.calcTimeOfImpact(rayFromTrans,rayToTrans,colObjWorldTransform,colObjWorldTransform,castResult))
		{
			//add hit
			if (castResult.m_normal.length2() > btScalar(0.0001))
			{
				if (castResult.m_fraction < resultCallback.m_closestHitFraction)
				{
#ifdef USE_SUBSIMPLEX_CONVEX_CAST
					//rotate normal into worldspace
					castResult.m_normal = rayFromTrans.getBasis() * castResult.m_normal;
#endif //USE_SUBSIMPLEX_CONVEX_CAST

					castResult.m_normal.normalize();
					btCollisionWorld::LocalRayResult localRayResult
						(
							collisionObject,
							0,
							castResult.m_normal,
							castResult.m_fraction
						);

					bool normalInWorldSpace = true;
					resultCallback.addSingleResult(localRayResult, normalInWorldSpace);

				}
			}
		}
	} else {
		if (collisionShape->isConcave())
		{
			if (collisionShape->getShapeType()==TRIANGLE_MESH_SHAPE_PROXYTYPE)
			{
				///optimized version for btBvhTriangleMeshShape
				btBvhTriangleMeshShape* triangleMesh = (btBvhTriangleMeshShape*)collisionShape;
				btTransform worldTocollisionObject = colObjWorldTransform.inverse();
				btVector3 rayFromLocal = worldTocollisionObject * rayFromTrans.getOrigin();
				btVector3 rayToLocal = worldTocollisionObject * rayToTrans.getOrigin();

				//ConvexCast::CastResult
				struct BridgeTriangleRaycastCallback : public btTriangleRaycastCallback
				{
					btCollisionWorld::RayResultCallback* m_resultCallback;
					btCollisionObject*	m_collisionObject;
					btTriangleMeshShape*	m_triangleMesh;

					BridgeTriangleRaycastCallback( const btVector3& from,const btVector3& to,
						btCollisionWorld::RayResultCallback* resultCallback, btCollisionObject* collisionObject,btTriangleMeshShape*	triangleMesh):
						btTriangleRaycastCallback(from,to),
							m_resultCallback(resultCallback),
							m_collisionObject(collisionObject),
							m_triangleMesh(triangleMesh)
						{
						}


					virtual btScalar reportHit(const btVector3& hitNormalLocal, btScalar hitFraction, int partId, int triangleIndex )
					{
						btCollisionWorld::LocalShapeInfo	shapeInfo;
						shapeInfo.m_shapePart = partId;
						shapeInfo.m_triangleIndex = triangleIndex;

						btCollisionWorld::LocalRayResult rayResult
						(m_collisionObject,
							&shapeInfo,
							hitNormalLocal,
							hitFraction);

						bool	normalInWorldSpace = false;
						return m_resultCallback->addSingleResult(rayResult,normalInWorldSpace);
					}

				};

				BridgeTriangleRaycastCallback rcb(rayFromLocal,rayToLocal,&resultCallback,collisionObject,triangleMesh);
				rcb.m_hitFraction = resultCallback.m_closestHitFraction;
				triangleMesh->performRaycast(&rcb,rayFromLocal,rayToLocal);
			} else
			{
				btTriangleMeshShape* triangleMesh = (btTriangleMeshShape*)collisionShape;

				btTransform worldTocollisionObject = colObjWorldTransform.inverse();

				btVector3 rayFromLocal = worldTocollisionObject * rayFromTrans.getOrigin();
				btVector3 rayToLocal = worldTocollisionObject * rayToTrans.getOrigin();

				//ConvexCast::CastResult

				struct BridgeTriangleRaycastCallback : public btTriangleRaycastCallback
				{
					btCollisionWorld::RayResultCallback* m_resultCallback;
					btCollisionObject*	m_collisionObject;
					btTriangleMeshShape*	m_triangleMesh;

					BridgeTriangleRaycastCallback( const btVector3& from,const btVector3& to,
						btCollisionWorld::RayResultCallback* resultCallback, btCollisionObject* collisionObject,btTriangleMeshShape*	triangleMesh):
						btTriangleRaycastCallback(from,to),
							m_resultCallback(resultCallback),
							m_collisionObject(collisionObject),
							m_triangleMesh(triangleMesh)
						{
						}


					virtual btScalar reportHit(const btVector3& hitNormalLocal, btScalar hitFraction, int partId, int triangleIndex )
					{
						btCollisionWorld::LocalShapeInfo	shapeInfo;
						shapeInfo.m_shapePart = partId;
						shapeInfo.m_triangleIndex = triangleIndex;

						btCollisionWorld::LocalRayResult rayResult
						(m_collisionObject,
							&shapeInfo,
							hitNormalLocal,
							hitFraction);

						bool	normalInWorldSpace = false;
						return m_resultCallback->addSingleResult(rayResult,normalInWorldSpace);


					}

				};


				BridgeTriangleRaycastCallback	rcb(rayFromLocal,rayToLocal,&resultCallback,collisionObject,triangleMesh);
				rcb.m_hitFraction = resultCallback.m_closestHitFraction;

				btVector3 rayAabbMinLocal = rayFromLocal;
				rayAabbMinLocal.setMin(rayToLocal);
				btVector3 rayAabbMaxLocal = rayFromLocal;
				rayAabbMaxLocal.setMax(rayToLocal);

				triangleMesh->processAllTriangles(&rcb,rayAabbMinLocal,rayAabbMaxLocal);
			}
		} else {
			//todo: use AABB tree or other BVH acceleration structure!
			if (collisionShape->isCompound())
			{
				const btCompoundShape* compoundShape = static_cast<const btCompoundShape*>(collisionShape);
				int i=0;
				for (i=0;i<compoundShape->getNumChildShapes();i++)
				{
					btTransform childTrans = compoundShape->getChildTransform(i);
					const btCollisionShape* childCollisionShape = compoundShape->getChildShape(i);
					btTransform childWorldTrans = colObjWorldTransform * childTrans;
					// replace collision shape so that callback can determine the triangle
					btCollisionShape* saveCollisionShape = collisionObject->getCollisionShape();
					collisionObject->internalSetTemporaryCollisionShape((btCollisionShape*)childCollisionShape);
					rayTestSingle(rayFromTrans,rayToTrans,
						collisionObject,
						childCollisionShape,
						childWorldTrans,
						resultCallback);
					// restore
					collisionObject->internalSetTemporaryCollisionShape(saveCollisionShape);
				}
			}
		}
	}
}

void	btCollisionWorld::objectQuerySingle(const btConvexShape* castShape,const btTransform& convexFromTrans,const btTransform& convexToTrans,
					  btCollisionObject* collisionObject,
					  const btCollisionShape* collisionShape,
					  const btTransform& colObjWorldTransform,
					  ConvexResultCallback& resultCallback, btScalar allowedPenetration)
{
	if (collisionShape->isConvex())
	{
		btConvexCast::CastResult castResult;
		castResult.m_allowedPenetration = allowedPenetration;
		castResult.m_fraction = btScalar(1.);//??

		btConvexShape* convexShape = (btConvexShape*) collisionShape;
		btVoronoiSimplexSolver	simplexSolver;
		btGjkEpaPenetrationDepthSolver	gjkEpaPenetrationSolver;
		
		btContinuousConvexCollision convexCaster1(castShape,convexShape,&simplexSolver,&gjkEpaPenetrationSolver);
		//btGjkConvexCast convexCaster2(castShape,convexShape,&simplexSolver);
		//btSubsimplexConvexCast convexCaster3(castShape,convexShape,&simplexSolver);

		btConvexCast* castPtr = &convexCaster1;
	
	
		
		if (castPtr->calcTimeOfImpact(convexFromTrans,convexToTrans,colObjWorldTransform,colObjWorldTransform,castResult))
		{
			//add hit
			if (castResult.m_normal.length2() > btScalar(0.0001))
			{
				if (castResult.m_fraction < resultCallback.m_closestHitFraction)
				{
					castResult.m_normal.normalize();
					btCollisionWorld::LocalConvexResult localConvexResult
								(
									collisionObject,
									0,
									castResult.m_normal,
									castResult.m_hitPoint,
									castResult.m_fraction
								);

					bool normalInWorldSpace = true;
					resultCallback.addSingleResult(localConvexResult, normalInWorldSpace);

				}
			}
		}
	} else {
		if (collisionShape->isConcave())
		{
			if (collisionShape->getShapeType()==TRIANGLE_MESH_SHAPE_PROXYTYPE)
			{
				btBvhTriangleMeshShape* triangleMesh = (btBvhTriangleMeshShape*)collisionShape;
				btTransform worldTocollisionObject = colObjWorldTransform.inverse();
				btVector3 convexFromLocal = worldTocollisionObject * convexFromTrans.getOrigin();
				btVector3 convexToLocal = worldTocollisionObject * convexToTrans.getOrigin();
				// rotation of box in local mesh space = MeshRotation^-1 * ConvexToRotation
				btTransform rotationXform = btTransform(worldTocollisionObject.getBasis() * convexToTrans.getBasis());

				//ConvexCast::CastResult
				struct BridgeTriangleConvexcastCallback : public btTriangleConvexcastCallback
				{
					btCollisionWorld::ConvexResultCallback* m_resultCallback;
					btCollisionObject*	m_collisionObject;
					btTriangleMeshShape*	m_triangleMesh;

					BridgeTriangleConvexcastCallback(const btConvexShape* castShape, const btTransform& from,const btTransform& to,
						btCollisionWorld::ConvexResultCallback* resultCallback, btCollisionObject* collisionObject,btTriangleMeshShape*	triangleMesh, const btTransform& triangleToWorld):
						btTriangleConvexcastCallback(castShape, from,to, triangleToWorld, triangleMesh->getMargin()),
							m_resultCallback(resultCallback),
							m_collisionObject(collisionObject),
							m_triangleMesh(triangleMesh)
						{
						}


					virtual btScalar reportHit(const btVector3& hitNormalLocal, const btVector3& hitPointLocal, btScalar hitFraction, int partId, int triangleIndex )
					{
						btCollisionWorld::LocalShapeInfo	shapeInfo;
						shapeInfo.m_shapePart = partId;
						shapeInfo.m_triangleIndex = triangleIndex;
						if (hitFraction <= m_resultCallback->m_closestHitFraction)
						{

							btCollisionWorld::LocalConvexResult convexResult
							(m_collisionObject,
								&shapeInfo,
								hitNormalLocal,
								hitPointLocal,
								hitFraction);

							bool	normalInWorldSpace = true;


							return m_resultCallback->addSingleResult(convexResult,normalInWorldSpace);
						}
						return hitFraction;
					}

				};

				BridgeTriangleConvexcastCallback tccb(castShape, convexFromTrans,convexToTrans,&resultCallback,collisionObject,triangleMesh, colObjWorldTransform);
				tccb.m_hitFraction = resultCallback.m_closestHitFraction;
				btVector3 boxMinLocal, boxMaxLocal;
				castShape->getAabb(rotationXform, boxMinLocal, boxMaxLocal);
				triangleMesh->performConvexcast(&tccb,convexFromLocal,convexToLocal,boxMinLocal, boxMaxLocal);
			} else
			{
				btBvhTriangleMeshShape* triangleMesh = (btBvhTriangleMeshShape*)collisionShape;
				btTransform worldTocollisionObject = colObjWorldTransform.inverse();
				btVector3 convexFromLocal = worldTocollisionObject * convexFromTrans.getOrigin();
				btVector3 convexToLocal = worldTocollisionObject * convexToTrans.getOrigin();
				// rotation of box in local mesh space = MeshRotation^-1 * ConvexToRotation
				btTransform rotationXform = btTransform(worldTocollisionObject.getBasis() * convexToTrans.getBasis());

				//ConvexCast::CastResult
				struct BridgeTriangleConvexcastCallback : public btTriangleConvexcastCallback
				{
					btCollisionWorld::ConvexResultCallback* m_resultCallback;
					btCollisionObject*	m_collisionObject;
					btTriangleMeshShape*	m_triangleMesh;

					BridgeTriangleConvexcastCallback(const btConvexShape* castShape, const btTransform& from,const btTransform& to,
						btCollisionWorld::ConvexResultCallback* resultCallback, btCollisionObject* collisionObject,btTriangleMeshShape*	triangleMesh, const btTransform& triangleToWorld):
						btTriangleConvexcastCallback(castShape, from,to, triangleToWorld, triangleMesh->getMargin()),
							m_resultCallback(resultCallback),
							m_collisionObject(collisionObject),
							m_triangleMesh(triangleMesh)
						{
						}


					virtual btScalar reportHit(const btVector3& hitNormalLocal, const btVector3& hitPointLocal, btScalar hitFraction, int partId, int triangleIndex )
					{
						btCollisionWorld::LocalShapeInfo	shapeInfo;
						shapeInfo.m_shapePart = partId;
						shapeInfo.m_triangleIndex = triangleIndex;
						if (hitFraction <= m_resultCallback->m_closestHitFraction)
						{

							btCollisionWorld::LocalConvexResult convexResult
							(m_collisionObject,
								&shapeInfo,
								hitNormalLocal,
								hitPointLocal,
								hitFraction);

							bool	normalInWorldSpace = false;

							return m_resultCallback->addSingleResult(convexResult,normalInWorldSpace);
						}
						return hitFraction;
					}

				};

				BridgeTriangleConvexcastCallback tccb(castShape, convexFromTrans,convexToTrans,&resultCallback,collisionObject,triangleMesh, colObjWorldTransform);
				tccb.m_hitFraction = resultCallback.m_closestHitFraction;
				btVector3 boxMinLocal, boxMaxLocal;
				castShape->getAabb(rotationXform, boxMinLocal, boxMaxLocal);

				btVector3 rayAabbMinLocal = convexFromLocal;
				rayAabbMinLocal.setMin(convexToLocal);
				btVector3 rayAabbMaxLocal = convexFromLocal;
				rayAabbMaxLocal.setMax(convexToLocal);
				rayAabbMinLocal += boxMinLocal;
				rayAabbMaxLocal += boxMaxLocal;
				triangleMesh->processAllTriangles(&tccb,rayAabbMinLocal,rayAabbMaxLocal);
			}
		} else {
			//todo: use AABB tree or other BVH acceleration structure!
			if (collisionShape->isCompound())
			{
				const btCompoundShape* compoundShape = static_cast<const btCompoundShape*>(collisionShape);
				int i=0;
				for (i=0;i<compoundShape->getNumChildShapes();i++)
				{
					btTransform childTrans = compoundShape->getChildTransform(i);
					const btCollisionShape* childCollisionShape = compoundShape->getChildShape(i);
					btTransform childWorldTrans = colObjWorldTransform * childTrans;
					// replace collision shape so that callback can determine the triangle
					btCollisionShape* saveCollisionShape = collisionObject->getCollisionShape();
					collisionObject->internalSetTemporaryCollisionShape((btCollisionShape*)childCollisionShape);
					objectQuerySingle(castShape, convexFromTrans,convexToTrans,
						collisionObject,
						childCollisionShape,
						childWorldTrans,
						resultCallback, allowedPenetration);
					// restore
					collisionObject->internalSetTemporaryCollisionShape(saveCollisionShape);
				}
			}
		}
	}
}

void	btCollisionWorld::rayTest(const btVector3& rayFromWorld, const btVector3& rayToWorld, RayResultCallback& resultCallback) const
{


	btTransform	rayFromTrans,rayToTrans;
	rayFromTrans.setIdentity();
	rayFromTrans.setOrigin(rayFromWorld);
	rayToTrans.setIdentity();

	rayToTrans.setOrigin(rayToWorld);

	/// go over all objects, and if the ray intersects their aabb, do a ray-shape query using convexCaster (CCD)

	int i;
	for (i=0;i<m_collisionObjects.size();i++)
	{
		///terminate further ray tests, once the closestHitFraction reached zero
		if (resultCallback.m_closestHitFraction == btScalar(0.f))
			break;

		btCollisionObject*	collisionObject= m_collisionObjects[i];
		//only perform raycast if filterMask matches
		if(resultCallback.needsCollision(collisionObject->getBroadphaseHandle())) {
			//RigidcollisionObject* collisionObject = ctrl->GetRigidcollisionObject();
			btVector3 collisionObjectAabbMin,collisionObjectAabbMax;
			collisionObject->getCollisionShape()->getAabb(collisionObject->getWorldTransform(),collisionObjectAabbMin,collisionObjectAabbMax);

			btScalar hitLambda = resultCallback.m_closestHitFraction;
			btVector3 hitNormal;
			if (btRayAabb(rayFromWorld,rayToWorld,collisionObjectAabbMin,collisionObjectAabbMax,hitLambda,hitNormal))
			{
				rayTestSingle(rayFromTrans,rayToTrans,
					collisionObject,
						collisionObject->getCollisionShape(),
						collisionObject->getWorldTransform(),
						resultCallback);
			}
		}

	}

}

void	btCollisionWorld::convexSweepTest(const btConvexShape* castShape, const btTransform& convexFromWorld, const btTransform& convexToWorld, ConvexResultCallback& resultCallback) const
{
	btTransform	convexFromTrans,convexToTrans;
	convexFromTrans = convexFromWorld;
	convexToTrans = convexToWorld;
	btVector3 castShapeAabbMin, castShapeAabbMax;
	/* Compute AABB that encompasses angular movement */
	{
		btVector3 linVel, angVel;
		btTransformUtil::calculateVelocity (convexFromTrans, convexToTrans, 1.0, linVel, angVel);
		btTransform R;
		R.setIdentity ();
		R.setRotation (convexFromTrans.getRotation());
		castShape->calculateTemporalAabb (R, linVel, angVel, 1.0, castShapeAabbMin, castShapeAabbMax);
	}

	/// go over all objects, and if the ray intersects their aabb + cast shape aabb,
	// do a ray-shape query using convexCaster (CCD)
	int i;
	for (i=0;i<m_collisionObjects.size();i++)
	{
		btCollisionObject*	collisionObject= m_collisionObjects[i];
		//only perform raycast if filterMask matches
		if(resultCallback.needsCollision(collisionObject->getBroadphaseHandle())) {
			//RigidcollisionObject* collisionObject = ctrl->GetRigidcollisionObject();
			btVector3 collisionObjectAabbMin,collisionObjectAabbMax;
			collisionObject->getCollisionShape()->getAabb(collisionObject->getWorldTransform(),collisionObjectAabbMin,collisionObjectAabbMax);
			AabbExpand (collisionObjectAabbMin, collisionObjectAabbMax, castShapeAabbMin, castShapeAabbMax);
			btScalar hitLambda = btScalar(1.); //could use resultCallback.m_closestHitFraction, but needs testing
			btVector3 hitNormal;
			if (btRayAabb(convexFromWorld.getOrigin(),convexToWorld.getOrigin(),collisionObjectAabbMin,collisionObjectAabbMax,hitLambda,hitNormal))
			{
				objectQuerySingle(castShape, convexFromTrans,convexToTrans,
					collisionObject,
						collisionObject->getCollisionShape(),
						collisionObject->getWorldTransform(),
						resultCallback,
						getDispatchInfo().m_allowedCcdPenetration);
			}
		}
	}

}