Welcome to mirror list, hosted at ThFree Co, Russian Federation.

btCompoundCollisionAlgorithm.cpp « CollisionDispatch « BulletCollision « src « bullet2 « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 535b61992b08438214243072d8b83fff5c7bf942 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/

#include "BulletCollision/CollisionDispatch/btCompoundCollisionAlgorithm.h"
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
#include "BulletCollision/CollisionShapes/btCompoundShape.h"
#include "BulletCollision/BroadphaseCollision/btDbvt.h"
#include "LinearMath/btIDebugDraw.h"
#include "LinearMath/btAabbUtil2.h"

btCompoundCollisionAlgorithm::btCompoundCollisionAlgorithm( const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* body0,btCollisionObject* body1,bool isSwapped)
:btCollisionAlgorithm(ci),
m_isSwapped(isSwapped),
m_sharedManifold(ci.m_manifold)
{
	m_ownsManifold = false;

	btCollisionObject* colObj = m_isSwapped? body1 : body0;
	btCollisionObject* otherObj = m_isSwapped? body0 : body1;
	assert (colObj->getCollisionShape()->isCompound());
	
	btCompoundShape* compoundShape = static_cast<btCompoundShape*>(colObj->getCollisionShape());
	int numChildren = compoundShape->getNumChildShapes();
	int i;
	
	m_childCollisionAlgorithms.resize(numChildren);
	for (i=0;i<numChildren;i++)
	{
		if (compoundShape->getDynamicAabbTree())
		{
			m_childCollisionAlgorithms[i] = 0;
		} else
		{
			btCollisionShape* tmpShape = colObj->getCollisionShape();
			btCollisionShape* childShape = compoundShape->getChildShape(i);
			colObj->internalSetTemporaryCollisionShape( childShape );
			m_childCollisionAlgorithms[i] = ci.m_dispatcher1->findAlgorithm(colObj,otherObj,m_sharedManifold);
			colObj->internalSetTemporaryCollisionShape( tmpShape );
		}
	}
}


btCompoundCollisionAlgorithm::~btCompoundCollisionAlgorithm()
{
	int numChildren = m_childCollisionAlgorithms.size();
	int i;
	for (i=0;i<numChildren;i++)
	{
		if (m_childCollisionAlgorithms[i])
		{
			m_childCollisionAlgorithms[i]->~btCollisionAlgorithm();
			m_dispatcher->freeCollisionAlgorithm(m_childCollisionAlgorithms[i]);
		}
	}
}




struct	btCompoundLeafCallback : btDbvt::ICollide
{

public:

	btCollisionObject* m_compoundColObj;
	btCollisionObject* m_otherObj;
	btDispatcher* m_dispatcher;
	const btDispatcherInfo& m_dispatchInfo;
	btManifoldResult*	m_resultOut;
	btCollisionAlgorithm**	m_childCollisionAlgorithms;
	btPersistentManifold*	m_sharedManifold;




	btCompoundLeafCallback (btCollisionObject* compoundObj,btCollisionObject* otherObj,btDispatcher* dispatcher,const btDispatcherInfo& dispatchInfo,btManifoldResult*	resultOut,btCollisionAlgorithm**	childCollisionAlgorithms,btPersistentManifold*	sharedManifold)
		:m_compoundColObj(compoundObj),m_otherObj(otherObj),m_dispatcher(dispatcher),m_dispatchInfo(dispatchInfo),m_resultOut(resultOut),
		m_childCollisionAlgorithms(childCollisionAlgorithms),
		m_sharedManifold(sharedManifold)
	{

	}


	void	ProcessChildShape(btCollisionShape* childShape,int index)
	{
		
		btCompoundShape* compoundShape = static_cast<btCompoundShape*>(m_compoundColObj->getCollisionShape());


		//backup
		btTransform	orgTrans = m_compoundColObj->getWorldTransform();
		btTransform	orgInterpolationTrans = m_compoundColObj->getInterpolationWorldTransform();
		const btTransform& childTrans = compoundShape->getChildTransform(index);
		btTransform	newChildWorldTrans = orgTrans*childTrans ;

		//perform an AABB check first
		btVector3 aabbMin0,aabbMax0,aabbMin1,aabbMax1;
		childShape->getAabb(newChildWorldTrans,aabbMin0,aabbMax0);
		m_otherObj->getCollisionShape()->getAabb(m_otherObj->getWorldTransform(),aabbMin1,aabbMax1);

		if (TestAabbAgainstAabb2(aabbMin0,aabbMax0,aabbMin1,aabbMax1))
		{

			m_compoundColObj->setWorldTransform( newChildWorldTrans);
			m_compoundColObj->setInterpolationWorldTransform(newChildWorldTrans);

			//the contactpoint is still projected back using the original inverted worldtrans
			btCollisionShape* tmpShape = m_compoundColObj->getCollisionShape();
			m_compoundColObj->internalSetTemporaryCollisionShape( childShape );

			if (!m_childCollisionAlgorithms[index])
				m_childCollisionAlgorithms[index] = m_dispatcher->findAlgorithm(m_compoundColObj,m_otherObj,m_sharedManifold);

			m_childCollisionAlgorithms[index]->processCollision(m_compoundColObj,m_otherObj,m_dispatchInfo,m_resultOut);
			if (m_dispatchInfo.m_debugDraw && (m_dispatchInfo.m_debugDraw->getDebugMode() & btIDebugDraw::DBG_DrawAabb))
			{
				btVector3 worldAabbMin,worldAabbMax;
				m_dispatchInfo.m_debugDraw->drawAabb(aabbMin0,aabbMax0,btVector3(1,1,1));
				m_dispatchInfo.m_debugDraw->drawAabb(aabbMin1,aabbMax1,btVector3(1,1,1));
			}
			
			//revert back transform
			m_compoundColObj->internalSetTemporaryCollisionShape( tmpShape);
			m_compoundColObj->setWorldTransform(  orgTrans );
			m_compoundColObj->setInterpolationWorldTransform(orgInterpolationTrans);
		}
	}
	void		Process(const btDbvtNode* leaf)
	{
		int index = leaf->dataAsInt;

		btCompoundShape* compoundShape = static_cast<btCompoundShape*>(m_compoundColObj->getCollisionShape());
		btCollisionShape* childShape = compoundShape->getChildShape(index);
		if (m_dispatchInfo.m_debugDraw && (m_dispatchInfo.m_debugDraw->getDebugMode() & btIDebugDraw::DBG_DrawAabb))
		{
			btVector3 worldAabbMin,worldAabbMax;
			btTransform	orgTrans = m_compoundColObj->getWorldTransform();
			btTransformAabb(leaf->volume.Mins(),leaf->volume.Maxs(),0.,orgTrans,worldAabbMin,worldAabbMax);
			m_dispatchInfo.m_debugDraw->drawAabb(worldAabbMin,worldAabbMax,btVector3(1,0,0));
		}
		ProcessChildShape(childShape,index);

	}
};






void btCompoundCollisionAlgorithm::processCollision (btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
{
	btCollisionObject* colObj = m_isSwapped? body1 : body0;
	btCollisionObject* otherObj = m_isSwapped? body0 : body1;

	assert (colObj->getCollisionShape()->isCompound());
	btCompoundShape* compoundShape = static_cast<btCompoundShape*>(colObj->getCollisionShape());

	btDbvt* tree = compoundShape->getDynamicAabbTree();
	//use a dynamic aabb tree to cull potential child-overlaps
	btCompoundLeafCallback  callback(colObj,otherObj,m_dispatcher,dispatchInfo,resultOut,&m_childCollisionAlgorithms[0],m_sharedManifold);


	if (tree)
	{

		btVector3 localAabbMin,localAabbMax;
		btTransform otherInCompoundSpace;
		otherInCompoundSpace = colObj->getWorldTransform().inverse() * otherObj->getWorldTransform();
		otherObj->getCollisionShape()->getAabb(otherInCompoundSpace,localAabbMin,localAabbMax);

		const ATTRIBUTE_ALIGNED16(btDbvtVolume)	bounds=btDbvtVolume::FromMM(localAabbMin,localAabbMax);
		//process all children, that overlap with  the given AABB bounds
		tree->collideTV(tree->m_root,bounds,callback);

	} else
	{
		//iterate over all children, perform an AABB check inside ProcessChildShape
		int numChildren = m_childCollisionAlgorithms.size();
		int i;
		for (i=0;i<numChildren;i++)
		{
			callback.ProcessChildShape(compoundShape->getChildShape(i),i);
		}
	}

	{
				//iterate over all children, perform an AABB check inside ProcessChildShape
		int numChildren = m_childCollisionAlgorithms.size();
		int i;
		btManifoldArray	manifoldArray;

		for (i=0;i<numChildren;i++)
		{
			if (m_childCollisionAlgorithms[i])
			{
				btCollisionShape* childShape = compoundShape->getChildShape(i);
			//if not longer overlapping, remove the algorithm
				btTransform	orgTrans = colObj->getWorldTransform();
				btTransform	orgInterpolationTrans = colObj->getInterpolationWorldTransform();
				const btTransform& childTrans = compoundShape->getChildTransform(i);
				btTransform	newChildWorldTrans = orgTrans*childTrans ;

				//perform an AABB check first
				btVector3 aabbMin0,aabbMax0,aabbMin1,aabbMax1;
				childShape->getAabb(newChildWorldTrans,aabbMin0,aabbMax0);
				otherObj->getCollisionShape()->getAabb(otherObj->getWorldTransform(),aabbMin1,aabbMax1);

				if (!TestAabbAgainstAabb2(aabbMin0,aabbMax0,aabbMin1,aabbMax1))
				{
					m_childCollisionAlgorithms[i]->~btCollisionAlgorithm();
					m_dispatcher->freeCollisionAlgorithm(m_childCollisionAlgorithms[i]);
					m_childCollisionAlgorithms[i] = 0;
				}

			}
			
		}

		

	}
}

btScalar	btCompoundCollisionAlgorithm::calculateTimeOfImpact(btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
{

	btCollisionObject* colObj = m_isSwapped? body1 : body0;
	btCollisionObject* otherObj = m_isSwapped? body0 : body1;

	assert (colObj->getCollisionShape()->isCompound());
	
	btCompoundShape* compoundShape = static_cast<btCompoundShape*>(colObj->getCollisionShape());

	//We will use the OptimizedBVH, AABB tree to cull potential child-overlaps
	//If both proxies are Compound, we will deal with that directly, by performing sequential/parallel tree traversals
	//given Proxy0 and Proxy1, if both have a tree, Tree0 and Tree1, this means:
	//determine overlapping nodes of Proxy1 using Proxy0 AABB against Tree1
	//then use each overlapping node AABB against Tree0
	//and vise versa.

	btScalar hitFraction = btScalar(1.);

	int numChildren = m_childCollisionAlgorithms.size();
	int i;
	for (i=0;i<numChildren;i++)
	{
		//temporarily exchange parent btCollisionShape with childShape, and recurse
		btCollisionShape* childShape = compoundShape->getChildShape(i);

		//backup
		btTransform	orgTrans = colObj->getWorldTransform();
	
		const btTransform& childTrans = compoundShape->getChildTransform(i);
		//btTransform	newChildWorldTrans = orgTrans*childTrans ;
		colObj->setWorldTransform( orgTrans*childTrans );

		btCollisionShape* tmpShape = colObj->getCollisionShape();
		colObj->internalSetTemporaryCollisionShape( childShape );
		btScalar frac = m_childCollisionAlgorithms[i]->calculateTimeOfImpact(colObj,otherObj,dispatchInfo,resultOut);
		if (frac<hitFraction)
		{
			hitFraction = frac;
		}
		//revert back
		colObj->internalSetTemporaryCollisionShape( tmpShape);
		colObj->setWorldTransform( orgTrans);
	}
	return hitFraction;

}