Welcome to mirror list, hosted at ThFree Co, Russian Federation.

btInternalEdgeUtility.cpp « CollisionDispatch « BulletCollision « src « bullet2 « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 73fa4e87ea42f2f6bd9358fe18d705e92e93ccbc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
#include "btInternalEdgeUtility.h"

#include "BulletCollision/CollisionShapes/btBvhTriangleMeshShape.h"
#include "BulletCollision/CollisionShapes/btScaledBvhTriangleMeshShape.h"
#include "BulletCollision/CollisionShapes/btTriangleShape.h"
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
#include "BulletCollision/NarrowPhaseCollision/btManifoldPoint.h"
#include "LinearMath/btIDebugDraw.h"
#include "BulletCollision/CollisionDispatch/btCollisionObjectWrapper.h"

//#define DEBUG_INTERNAL_EDGE

#ifdef DEBUG_INTERNAL_EDGE
#include <stdio.h>
#endif //DEBUG_INTERNAL_EDGE


#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
static btIDebugDraw* gDebugDrawer = 0;

void	btSetDebugDrawer(btIDebugDraw* debugDrawer)
{
	gDebugDrawer = debugDrawer;
}

static void    btDebugDrawLine(const btVector3& from,const btVector3& to, const btVector3& color)
{
	if (gDebugDrawer)
		gDebugDrawer->drawLine(from,to,color);
}
#endif //BT_INTERNAL_EDGE_DEBUG_DRAW


static int	btGetHash(int partId, int triangleIndex)
{
	int hash = (partId<<(31-MAX_NUM_PARTS_IN_BITS)) | triangleIndex;
	return hash;
}



static btScalar btGetAngle(const btVector3& edgeA, const btVector3& normalA,const btVector3& normalB)
{
	const btVector3 refAxis0  = edgeA;
	const btVector3 refAxis1  = normalA;
	const btVector3 swingAxis = normalB;
	btScalar angle = btAtan2(swingAxis.dot(refAxis0), swingAxis.dot(refAxis1));
	return  angle;
}


struct btConnectivityProcessor : public btTriangleCallback
{
	int				m_partIdA;
	int				m_triangleIndexA;
	btVector3*		m_triangleVerticesA;
	btTriangleInfoMap*	m_triangleInfoMap;


	virtual void processTriangle(btVector3* triangle, int partId, int triangleIndex)
	{
		//skip self-collisions
		if ((m_partIdA == partId) && (m_triangleIndexA == triangleIndex))
			return;

		//skip duplicates (disabled for now)
		//if ((m_partIdA <= partId) && (m_triangleIndexA <= triangleIndex))
		//	return;

		//search for shared vertices and edges
		int numshared = 0;
		int sharedVertsA[3]={-1,-1,-1};
		int sharedVertsB[3]={-1,-1,-1};

		///skip degenerate triangles
		btScalar crossBSqr = ((triangle[1]-triangle[0]).cross(triangle[2]-triangle[0])).length2();
		if (crossBSqr < m_triangleInfoMap->m_equalVertexThreshold)
			return;


		btScalar crossASqr = ((m_triangleVerticesA[1]-m_triangleVerticesA[0]).cross(m_triangleVerticesA[2]-m_triangleVerticesA[0])).length2();
		///skip degenerate triangles
		if (crossASqr< m_triangleInfoMap->m_equalVertexThreshold)
			return;

#if 0
		printf("triangle A[0]	=	(%f,%f,%f)\ntriangle A[1]	=	(%f,%f,%f)\ntriangle A[2]	=	(%f,%f,%f)\n",
			m_triangleVerticesA[0].getX(),m_triangleVerticesA[0].getY(),m_triangleVerticesA[0].getZ(),
			m_triangleVerticesA[1].getX(),m_triangleVerticesA[1].getY(),m_triangleVerticesA[1].getZ(),
			m_triangleVerticesA[2].getX(),m_triangleVerticesA[2].getY(),m_triangleVerticesA[2].getZ());

		printf("partId=%d, triangleIndex=%d\n",partId,triangleIndex);
		printf("triangle B[0]	=	(%f,%f,%f)\ntriangle B[1]	=	(%f,%f,%f)\ntriangle B[2]	=	(%f,%f,%f)\n",
			triangle[0].getX(),triangle[0].getY(),triangle[0].getZ(),
			triangle[1].getX(),triangle[1].getY(),triangle[1].getZ(),
			triangle[2].getX(),triangle[2].getY(),triangle[2].getZ());
#endif

		for (int i=0;i<3;i++)
		{
			for (int j=0;j<3;j++)
			{
				if ( (m_triangleVerticesA[i]-triangle[j]).length2() < m_triangleInfoMap->m_equalVertexThreshold)
				{
					sharedVertsA[numshared] = i;
					sharedVertsB[numshared] = j;
					numshared++;
					///degenerate case
					if(numshared >= 3)
						return;
				}
			}
			///degenerate case
			if(numshared >= 3)
				return;
		}
		switch (numshared)
		{
		case 0:
			{
				break;
			}
		case 1:
			{
				//shared vertex
				break;
			}
		case 2:
			{
				//shared edge
				//we need to make sure the edge is in the order V2V0 and not V0V2 so that the signs are correct
				if (sharedVertsA[0] == 0 && sharedVertsA[1] == 2)
				{
					sharedVertsA[0] = 2;
					sharedVertsA[1] = 0;
					int tmp = sharedVertsB[1];
					sharedVertsB[1] = sharedVertsB[0];
					sharedVertsB[0] = tmp;
				}

				int hash = btGetHash(m_partIdA,m_triangleIndexA);

				btTriangleInfo* info = m_triangleInfoMap->find(hash);
				if (!info)
				{
					btTriangleInfo tmp;
					m_triangleInfoMap->insert(hash,tmp);
					info = m_triangleInfoMap->find(hash);
				}

				int sumvertsA = sharedVertsA[0]+sharedVertsA[1];
				int otherIndexA = 3-sumvertsA;

				
				btVector3 edge(m_triangleVerticesA[sharedVertsA[1]]-m_triangleVerticesA[sharedVertsA[0]]);

				btTriangleShape tA(m_triangleVerticesA[0],m_triangleVerticesA[1],m_triangleVerticesA[2]);
				int otherIndexB = 3-(sharedVertsB[0]+sharedVertsB[1]);

				btTriangleShape tB(triangle[sharedVertsB[1]],triangle[sharedVertsB[0]],triangle[otherIndexB]);
				//btTriangleShape tB(triangle[0],triangle[1],triangle[2]);

				btVector3 normalA;
				btVector3 normalB;
				tA.calcNormal(normalA);
				tB.calcNormal(normalB);
				edge.normalize();
				btVector3 edgeCrossA = edge.cross(normalA).normalize();

				{
					btVector3 tmp = m_triangleVerticesA[otherIndexA]-m_triangleVerticesA[sharedVertsA[0]];
					if (edgeCrossA.dot(tmp) < 0)
					{
						edgeCrossA*=-1;
					}
				}

				btVector3 edgeCrossB = edge.cross(normalB).normalize();

				{
					btVector3 tmp = triangle[otherIndexB]-triangle[sharedVertsB[0]];
					if (edgeCrossB.dot(tmp) < 0)
					{
						edgeCrossB*=-1;
					}
				}

				btScalar	angle2 = 0;
				btScalar	ang4 = 0.f;


				btVector3 calculatedEdge = edgeCrossA.cross(edgeCrossB);
				btScalar len2 = calculatedEdge.length2();

				btScalar correctedAngle(0);
				btVector3 calculatedNormalB = normalA;
				bool isConvex = false;

				if (len2<m_triangleInfoMap->m_planarEpsilon)
				{
					angle2 = 0.f;
					ang4 = 0.f;
				} else
				{

					calculatedEdge.normalize();
					btVector3 calculatedNormalA = calculatedEdge.cross(edgeCrossA);
					calculatedNormalA.normalize();
					angle2 = btGetAngle(calculatedNormalA,edgeCrossA,edgeCrossB);
					ang4 = SIMD_PI-angle2;
					btScalar dotA = normalA.dot(edgeCrossB);
					///@todo: check if we need some epsilon, due to floating point imprecision
					isConvex = (dotA<0.);

					correctedAngle = isConvex ? ang4 : -ang4;
					btQuaternion orn2(calculatedEdge,-correctedAngle);
					calculatedNormalB = btMatrix3x3(orn2)*normalA;


				}

				

				
							
				//alternatively use 
				//btVector3 calculatedNormalB2 = quatRotate(orn,normalA);


				switch (sumvertsA)
				{
				case 1:
					{
						btVector3 edge = m_triangleVerticesA[0]-m_triangleVerticesA[1];
						btQuaternion orn(edge,-correctedAngle);
						btVector3 computedNormalB = quatRotate(orn,normalA);
						btScalar bla = computedNormalB.dot(normalB);
						if (bla<0)
						{
							computedNormalB*=-1;
							info->m_flags |= TRI_INFO_V0V1_SWAP_NORMALB;
						}
#ifdef DEBUG_INTERNAL_EDGE
						if ((computedNormalB-normalB).length()>0.0001)
						{
							printf("warning: normals not identical\n");
						}
#endif//DEBUG_INTERNAL_EDGE

						info->m_edgeV0V1Angle = -correctedAngle;

						if (isConvex)
							info->m_flags |= TRI_INFO_V0V1_CONVEX;
						break;
					}
				case 2:
					{
						btVector3 edge = m_triangleVerticesA[2]-m_triangleVerticesA[0];
						btQuaternion orn(edge,-correctedAngle);
						btVector3 computedNormalB = quatRotate(orn,normalA);
						if (computedNormalB.dot(normalB)<0)
						{
							computedNormalB*=-1;
							info->m_flags |= TRI_INFO_V2V0_SWAP_NORMALB;
						}

#ifdef DEBUG_INTERNAL_EDGE
						if ((computedNormalB-normalB).length()>0.0001)
						{
							printf("warning: normals not identical\n");
						}
#endif //DEBUG_INTERNAL_EDGE
						info->m_edgeV2V0Angle = -correctedAngle;
						if (isConvex)
							info->m_flags |= TRI_INFO_V2V0_CONVEX;
						break;	
					}
				case 3:
					{
						btVector3 edge = m_triangleVerticesA[1]-m_triangleVerticesA[2];
						btQuaternion orn(edge,-correctedAngle);
						btVector3 computedNormalB = quatRotate(orn,normalA);
						if (computedNormalB.dot(normalB)<0)
						{
							info->m_flags |= TRI_INFO_V1V2_SWAP_NORMALB;
							computedNormalB*=-1;
						}
#ifdef DEBUG_INTERNAL_EDGE
						if ((computedNormalB-normalB).length()>0.0001)
						{
							printf("warning: normals not identical\n");
						}
#endif //DEBUG_INTERNAL_EDGE
						info->m_edgeV1V2Angle = -correctedAngle;

						if (isConvex)
							info->m_flags |= TRI_INFO_V1V2_CONVEX;
						break;
					}
				}

				break;
			}
		default:
			{
				//				printf("warning: duplicate triangle\n");
			}

		}
	}
};
/////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////

void btGenerateInternalEdgeInfo (btBvhTriangleMeshShape*trimeshShape, btTriangleInfoMap* triangleInfoMap)
{
	//the user pointer shouldn't already be used for other purposes, we intend to store connectivity info there!
	if (trimeshShape->getTriangleInfoMap())
		return;

	trimeshShape->setTriangleInfoMap(triangleInfoMap);

	btStridingMeshInterface* meshInterface = trimeshShape->getMeshInterface();
	const btVector3& meshScaling = meshInterface->getScaling();

	for (int partId = 0; partId< meshInterface->getNumSubParts();partId++)
	{
		const unsigned char *vertexbase = 0;
		int numverts = 0;
		PHY_ScalarType type = PHY_INTEGER;
		int stride = 0;
		const unsigned char *indexbase = 0;
		int indexstride = 0;
		int numfaces = 0;
		PHY_ScalarType indicestype = PHY_INTEGER;
		//PHY_ScalarType indexType=0;

		btVector3 triangleVerts[3];
		meshInterface->getLockedReadOnlyVertexIndexBase(&vertexbase,numverts,	type,stride,&indexbase,indexstride,numfaces,indicestype,partId);
		btVector3 aabbMin,aabbMax;

		for (int triangleIndex = 0 ; triangleIndex < numfaces;triangleIndex++)
		{
			unsigned int* gfxbase = (unsigned int*)(indexbase+triangleIndex*indexstride);

			for (int j=2;j>=0;j--)
			{

				int graphicsindex = indicestype==PHY_SHORT?((unsigned short*)gfxbase)[j]:gfxbase[j];
				if (type == PHY_FLOAT)
				{
					float* graphicsbase = (float*)(vertexbase+graphicsindex*stride);
					triangleVerts[j] = btVector3(
						graphicsbase[0]*meshScaling.getX(),
						graphicsbase[1]*meshScaling.getY(),
						graphicsbase[2]*meshScaling.getZ());
				}
				else
				{
					double* graphicsbase = (double*)(vertexbase+graphicsindex*stride);
					triangleVerts[j] = btVector3( btScalar(graphicsbase[0]*meshScaling.getX()), btScalar(graphicsbase[1]*meshScaling.getY()), btScalar(graphicsbase[2]*meshScaling.getZ()));
				}
			}
			aabbMin.setValue(btScalar(BT_LARGE_FLOAT),btScalar(BT_LARGE_FLOAT),btScalar(BT_LARGE_FLOAT));
			aabbMax.setValue(btScalar(-BT_LARGE_FLOAT),btScalar(-BT_LARGE_FLOAT),btScalar(-BT_LARGE_FLOAT)); 
			aabbMin.setMin(triangleVerts[0]);
			aabbMax.setMax(triangleVerts[0]);
			aabbMin.setMin(triangleVerts[1]);
			aabbMax.setMax(triangleVerts[1]);
			aabbMin.setMin(triangleVerts[2]);
			aabbMax.setMax(triangleVerts[2]);

			btConnectivityProcessor connectivityProcessor;
			connectivityProcessor.m_partIdA = partId;
			connectivityProcessor.m_triangleIndexA = triangleIndex;
			connectivityProcessor.m_triangleVerticesA = &triangleVerts[0];
			connectivityProcessor.m_triangleInfoMap  = triangleInfoMap;

			trimeshShape->processAllTriangles(&connectivityProcessor,aabbMin,aabbMax);
		}

	}

}




// Given a point and a line segment (defined by two points), compute the closest point
// in the line.  Cap the point at the endpoints of the line segment.
void btNearestPointInLineSegment(const btVector3 &point, const btVector3& line0, const btVector3& line1, btVector3& nearestPoint)
{
	btVector3 lineDelta     = line1 - line0;

	// Handle degenerate lines
	if ( lineDelta.fuzzyZero())
	{
		nearestPoint = line0;
	}
	else
	{
		btScalar delta = (point-line0).dot(lineDelta) / (lineDelta).dot(lineDelta);

		// Clamp the point to conform to the segment's endpoints
		if ( delta < 0 )
			delta = 0;
		else if ( delta > 1 )
			delta = 1;

		nearestPoint = line0 + lineDelta*delta;
	}
}




bool	btClampNormal(const btVector3& edge,const btVector3& tri_normal_org,const btVector3& localContactNormalOnB, btScalar correctedEdgeAngle, btVector3 & clampedLocalNormal)
{
	btVector3 tri_normal = tri_normal_org;
	//we only have a local triangle normal, not a local contact normal -> only normal in world space...
	//either compute the current angle all in local space, or all in world space

	btVector3 edgeCross = edge.cross(tri_normal).normalize();
	btScalar curAngle = btGetAngle(edgeCross,tri_normal,localContactNormalOnB);

	if (correctedEdgeAngle<0)
	{
		if (curAngle < correctedEdgeAngle)
		{
			btScalar diffAngle = correctedEdgeAngle-curAngle;
			btQuaternion rotation(edge,diffAngle );
			clampedLocalNormal = btMatrix3x3(rotation)*localContactNormalOnB;
			return true;
		}
	}

	if (correctedEdgeAngle>=0)
	{
		if (curAngle > correctedEdgeAngle)
		{
			btScalar diffAngle = correctedEdgeAngle-curAngle;
			btQuaternion rotation(edge,diffAngle );
			clampedLocalNormal = btMatrix3x3(rotation)*localContactNormalOnB;
			return true;
		}
	}
	return false;
}



/// Changes a btManifoldPoint collision normal to the normal from the mesh.
void btAdjustInternalEdgeContacts(btManifoldPoint& cp, const btCollisionObjectWrapper* colObj0Wrap,const btCollisionObjectWrapper* colObj1Wrap, int partId0, int index0, int normalAdjustFlags)
{
	//btAssert(colObj0->getCollisionShape()->getShapeType() == TRIANGLE_SHAPE_PROXYTYPE);
	if (colObj0Wrap->getCollisionShape()->getShapeType() != TRIANGLE_SHAPE_PROXYTYPE)
		return;

	btBvhTriangleMeshShape* trimesh = 0;
	
	if( colObj0Wrap->getCollisionObject()->getCollisionShape()->getShapeType() == SCALED_TRIANGLE_MESH_SHAPE_PROXYTYPE )
	   trimesh = ((btScaledBvhTriangleMeshShape*)colObj0Wrap->getCollisionObject()->getCollisionShape())->getChildShape();
   else	   
	   trimesh = (btBvhTriangleMeshShape*)colObj0Wrap->getCollisionObject()->getCollisionShape();
	   
   	btTriangleInfoMap* triangleInfoMapPtr = (btTriangleInfoMap*) trimesh->getTriangleInfoMap();
	if (!triangleInfoMapPtr)
		return;

	int hash = btGetHash(partId0,index0);


	btTriangleInfo* info = triangleInfoMapPtr->find(hash);
	if (!info)
		return;

	btScalar frontFacing = (normalAdjustFlags & BT_TRIANGLE_CONVEX_BACKFACE_MODE)==0? 1.f : -1.f;
	
	const btTriangleShape* tri_shape = static_cast<const btTriangleShape*>(colObj0Wrap->getCollisionShape());
	btVector3 v0,v1,v2;
	tri_shape->getVertex(0,v0);
	tri_shape->getVertex(1,v1);
	tri_shape->getVertex(2,v2);

	//btVector3 center = (v0+v1+v2)*btScalar(1./3.);

	btVector3 red(1,0,0), green(0,1,0),blue(0,0,1),white(1,1,1),black(0,0,0);
	btVector3 tri_normal;
	tri_shape->calcNormal(tri_normal);

	//btScalar dot = tri_normal.dot(cp.m_normalWorldOnB);
	btVector3 nearest;
	btNearestPointInLineSegment(cp.m_localPointB,v0,v1,nearest);

	btVector3 contact = cp.m_localPointB;
#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
	const btTransform& tr = colObj0->getWorldTransform();
	btDebugDrawLine(tr*nearest,tr*cp.m_localPointB,red);
#endif //BT_INTERNAL_EDGE_DEBUG_DRAW



	bool isNearEdge = false;

	int numConcaveEdgeHits = 0;
	int numConvexEdgeHits = 0;

	btVector3 localContactNormalOnB = colObj0Wrap->getWorldTransform().getBasis().transpose() * cp.m_normalWorldOnB;
	localContactNormalOnB.normalize();//is this necessary?
	
	// Get closest edge
	int      bestedge=-1;
	btScalar    disttobestedge=BT_LARGE_FLOAT;
	//
	// Edge 0 -> 1
	if (btFabs(info->m_edgeV0V1Angle)< triangleInfoMapPtr->m_maxEdgeAngleThreshold)
	{	
	   btVector3 nearest;
	   btNearestPointInLineSegment( cp.m_localPointB, v0, v1, nearest );
	   btScalar     len=(contact-nearest).length();
	   //
	   if( len < disttobestedge )
	   {
	      bestedge=0;
	      disttobestedge=len;
      }	      
   }	   
	// Edge 1 -> 2
	if (btFabs(info->m_edgeV1V2Angle)< triangleInfoMapPtr->m_maxEdgeAngleThreshold)
	{	
	   btVector3 nearest;
	   btNearestPointInLineSegment( cp.m_localPointB, v1, v2, nearest );
	   btScalar     len=(contact-nearest).length();
	   //
	   if( len < disttobestedge )
	   {
	      bestedge=1;
	      disttobestedge=len;
      }	      
   }	   
	// Edge 2 -> 0
	if (btFabs(info->m_edgeV2V0Angle)< triangleInfoMapPtr->m_maxEdgeAngleThreshold)
	{	
	   btVector3 nearest;
	   btNearestPointInLineSegment( cp.m_localPointB, v2, v0, nearest );
	   btScalar     len=(contact-nearest).length();
	   //
	   if( len < disttobestedge )
	   {
	      bestedge=2;
	      disttobestedge=len;
      }	      
   }   	      	
	
#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
   btVector3 upfix=tri_normal * btVector3(0.1f,0.1f,0.1f);
   btDebugDrawLine(tr * v0 + upfix, tr * v1 + upfix, red );
#endif   
	if (btFabs(info->m_edgeV0V1Angle)< triangleInfoMapPtr->m_maxEdgeAngleThreshold)
	{
#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
		btDebugDrawLine(tr*contact,tr*(contact+cp.m_normalWorldOnB*10),black);
#endif
		btScalar len = (contact-nearest).length();
		if(len<triangleInfoMapPtr->m_edgeDistanceThreshold)
		if( bestedge==0 )
		{
			btVector3 edge(v0-v1);
			isNearEdge = true;

			if (info->m_edgeV0V1Angle==btScalar(0))
			{
				numConcaveEdgeHits++;
			} else
			{

				bool isEdgeConvex = (info->m_flags & TRI_INFO_V0V1_CONVEX);
				btScalar swapFactor = isEdgeConvex ? btScalar(1) : btScalar(-1);
	#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
				btDebugDrawLine(tr*nearest,tr*(nearest+swapFactor*tri_normal*10),white);
	#endif //BT_INTERNAL_EDGE_DEBUG_DRAW

				btVector3 nA = swapFactor * tri_normal;

				btQuaternion orn(edge,info->m_edgeV0V1Angle);
				btVector3 computedNormalB = quatRotate(orn,tri_normal);
				if (info->m_flags & TRI_INFO_V0V1_SWAP_NORMALB)
					computedNormalB*=-1;
				btVector3 nB = swapFactor*computedNormalB;

				btScalar	NdotA = localContactNormalOnB.dot(nA);
				btScalar	NdotB = localContactNormalOnB.dot(nB);
				bool backFacingNormal = (NdotA< triangleInfoMapPtr->m_convexEpsilon) && (NdotB<triangleInfoMapPtr->m_convexEpsilon);

#ifdef DEBUG_INTERNAL_EDGE
				{
					
					btDebugDrawLine(cp.getPositionWorldOnB(),cp.getPositionWorldOnB()+tr.getBasis()*(nB*20),red);
				}
#endif //DEBUG_INTERNAL_EDGE


				if (backFacingNormal)
				{
					numConcaveEdgeHits++;
				}
				else
				{
					numConvexEdgeHits++;
					btVector3 clampedLocalNormal;
					bool isClamped = btClampNormal(edge,swapFactor*tri_normal,localContactNormalOnB, info->m_edgeV0V1Angle,clampedLocalNormal);
					if (isClamped)
					{
						if (((normalAdjustFlags & BT_TRIANGLE_CONVEX_DOUBLE_SIDED)!=0) || (clampedLocalNormal.dot(frontFacing*tri_normal)>0))
						{
							btVector3 newNormal = colObj0Wrap->getWorldTransform().getBasis() * clampedLocalNormal;
							//					cp.m_distance1 = cp.m_distance1 * newNormal.dot(cp.m_normalWorldOnB);
							cp.m_normalWorldOnB = newNormal;
							// Reproject collision point along normal. (what about cp.m_distance1?)
							cp.m_positionWorldOnB = cp.m_positionWorldOnA - cp.m_normalWorldOnB * cp.m_distance1;
							cp.m_localPointB = colObj0Wrap->getWorldTransform().invXform(cp.m_positionWorldOnB);
							
						}
					}
				}
			}
		}
	}

	btNearestPointInLineSegment(contact,v1,v2,nearest);
#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
	btDebugDrawLine(tr*nearest,tr*cp.m_localPointB,green);
#endif //BT_INTERNAL_EDGE_DEBUG_DRAW

#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
   btDebugDrawLine(tr * v1 + upfix, tr * v2 + upfix , green );
#endif   

	if (btFabs(info->m_edgeV1V2Angle)< triangleInfoMapPtr->m_maxEdgeAngleThreshold)
	{
#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
		btDebugDrawLine(tr*contact,tr*(contact+cp.m_normalWorldOnB*10),black);
#endif //BT_INTERNAL_EDGE_DEBUG_DRAW



		btScalar len = (contact-nearest).length();
		if(len<triangleInfoMapPtr->m_edgeDistanceThreshold)
		if( bestedge==1 )
		{
			isNearEdge = true;
#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
			btDebugDrawLine(tr*nearest,tr*(nearest+tri_normal*10),white);
#endif //BT_INTERNAL_EDGE_DEBUG_DRAW

			btVector3 edge(v1-v2);

			isNearEdge = true;

			if (info->m_edgeV1V2Angle == btScalar(0))
			{
				numConcaveEdgeHits++;
			} else
			{
				bool isEdgeConvex = (info->m_flags & TRI_INFO_V1V2_CONVEX)!=0;
				btScalar swapFactor = isEdgeConvex ? btScalar(1) : btScalar(-1);
	#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
				btDebugDrawLine(tr*nearest,tr*(nearest+swapFactor*tri_normal*10),white);
	#endif //BT_INTERNAL_EDGE_DEBUG_DRAW

				btVector3 nA = swapFactor * tri_normal;
				
				btQuaternion orn(edge,info->m_edgeV1V2Angle);
				btVector3 computedNormalB = quatRotate(orn,tri_normal);
				if (info->m_flags & TRI_INFO_V1V2_SWAP_NORMALB)
					computedNormalB*=-1;
				btVector3 nB = swapFactor*computedNormalB;

#ifdef DEBUG_INTERNAL_EDGE
				{
					btDebugDrawLine(cp.getPositionWorldOnB(),cp.getPositionWorldOnB()+tr.getBasis()*(nB*20),red);
				}
#endif //DEBUG_INTERNAL_EDGE


				btScalar	NdotA = localContactNormalOnB.dot(nA);
				btScalar	NdotB = localContactNormalOnB.dot(nB);
				bool backFacingNormal = (NdotA< triangleInfoMapPtr->m_convexEpsilon) && (NdotB<triangleInfoMapPtr->m_convexEpsilon);

				if (backFacingNormal)
				{
					numConcaveEdgeHits++;
				}
				else
				{
					numConvexEdgeHits++;
					btVector3 localContactNormalOnB = colObj0Wrap->getWorldTransform().getBasis().transpose() * cp.m_normalWorldOnB;
					btVector3 clampedLocalNormal;
					bool isClamped = btClampNormal(edge,swapFactor*tri_normal,localContactNormalOnB, info->m_edgeV1V2Angle,clampedLocalNormal);
					if (isClamped)
					{
						if (((normalAdjustFlags & BT_TRIANGLE_CONVEX_DOUBLE_SIDED)!=0) || (clampedLocalNormal.dot(frontFacing*tri_normal)>0))
						{
							btVector3 newNormal = colObj0Wrap->getWorldTransform().getBasis() * clampedLocalNormal;
							//					cp.m_distance1 = cp.m_distance1 * newNormal.dot(cp.m_normalWorldOnB);
							cp.m_normalWorldOnB = newNormal;
							// Reproject collision point along normal.
							cp.m_positionWorldOnB = cp.m_positionWorldOnA - cp.m_normalWorldOnB * cp.m_distance1;
							cp.m_localPointB = colObj0Wrap->getWorldTransform().invXform(cp.m_positionWorldOnB);
						}
					}
				}
			}
		}
	}

	btNearestPointInLineSegment(contact,v2,v0,nearest);
#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
	btDebugDrawLine(tr*nearest,tr*cp.m_localPointB,blue);
#endif //BT_INTERNAL_EDGE_DEBUG_DRAW
#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
   btDebugDrawLine(tr * v2 + upfix, tr * v0 + upfix , blue );
#endif   

	if (btFabs(info->m_edgeV2V0Angle)< triangleInfoMapPtr->m_maxEdgeAngleThreshold)
	{

#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
		btDebugDrawLine(tr*contact,tr*(contact+cp.m_normalWorldOnB*10),black);
#endif //BT_INTERNAL_EDGE_DEBUG_DRAW

		btScalar len = (contact-nearest).length();
		if(len<triangleInfoMapPtr->m_edgeDistanceThreshold)
		if( bestedge==2 )
		{
			isNearEdge = true;
#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
			btDebugDrawLine(tr*nearest,tr*(nearest+tri_normal*10),white);
#endif //BT_INTERNAL_EDGE_DEBUG_DRAW

			btVector3 edge(v2-v0);

			if (info->m_edgeV2V0Angle==btScalar(0))
			{
				numConcaveEdgeHits++;
			} else
			{

				bool isEdgeConvex = (info->m_flags & TRI_INFO_V2V0_CONVEX)!=0;
				btScalar swapFactor = isEdgeConvex ? btScalar(1) : btScalar(-1);
	#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
				btDebugDrawLine(tr*nearest,tr*(nearest+swapFactor*tri_normal*10),white);
	#endif //BT_INTERNAL_EDGE_DEBUG_DRAW

				btVector3 nA = swapFactor * tri_normal;
				btQuaternion orn(edge,info->m_edgeV2V0Angle);
				btVector3 computedNormalB = quatRotate(orn,tri_normal);
				if (info->m_flags & TRI_INFO_V2V0_SWAP_NORMALB)
					computedNormalB*=-1;
				btVector3 nB = swapFactor*computedNormalB;

#ifdef DEBUG_INTERNAL_EDGE
				{
					btDebugDrawLine(cp.getPositionWorldOnB(),cp.getPositionWorldOnB()+tr.getBasis()*(nB*20),red);
				}
#endif //DEBUG_INTERNAL_EDGE

				btScalar	NdotA = localContactNormalOnB.dot(nA);
				btScalar	NdotB = localContactNormalOnB.dot(nB);
				bool backFacingNormal = (NdotA< triangleInfoMapPtr->m_convexEpsilon) && (NdotB<triangleInfoMapPtr->m_convexEpsilon);

				if (backFacingNormal)
				{
					numConcaveEdgeHits++;
				}
				else
				{
					numConvexEdgeHits++;
					//				printf("hitting convex edge\n");


					btVector3 localContactNormalOnB = colObj0Wrap->getWorldTransform().getBasis().transpose() * cp.m_normalWorldOnB;
					btVector3 clampedLocalNormal;
					bool isClamped = btClampNormal(edge,swapFactor*tri_normal,localContactNormalOnB,info->m_edgeV2V0Angle,clampedLocalNormal);
					if (isClamped)
					{
						if (((normalAdjustFlags & BT_TRIANGLE_CONVEX_DOUBLE_SIDED)!=0) || (clampedLocalNormal.dot(frontFacing*tri_normal)>0))
						{
							btVector3 newNormal = colObj0Wrap->getWorldTransform().getBasis() * clampedLocalNormal;
							//					cp.m_distance1 = cp.m_distance1 * newNormal.dot(cp.m_normalWorldOnB);
							cp.m_normalWorldOnB = newNormal;
							// Reproject collision point along normal.
							cp.m_positionWorldOnB = cp.m_positionWorldOnA - cp.m_normalWorldOnB * cp.m_distance1;
							cp.m_localPointB = colObj0Wrap->getWorldTransform().invXform(cp.m_positionWorldOnB);
						}
					}
				} 
			}
			

		}
	}

#ifdef DEBUG_INTERNAL_EDGE
	{
		btVector3 color(0,1,1);
		btDebugDrawLine(cp.getPositionWorldOnB(),cp.getPositionWorldOnB()+cp.m_normalWorldOnB*10,color);
	}
#endif //DEBUG_INTERNAL_EDGE

	if (isNearEdge)
	{

		if (numConcaveEdgeHits>0)
		{
			if ((normalAdjustFlags & BT_TRIANGLE_CONCAVE_DOUBLE_SIDED)!=0)
			{
				//fix tri_normal so it pointing the same direction as the current local contact normal
				if (tri_normal.dot(localContactNormalOnB) < 0)
				{
					tri_normal *= -1;
				}
				cp.m_normalWorldOnB = colObj0Wrap->getWorldTransform().getBasis()*tri_normal;
			} else
			{
				btVector3 newNormal = tri_normal *frontFacing;
				//if the tri_normal is pointing opposite direction as the current local contact normal, skip it
				btScalar d = newNormal.dot(localContactNormalOnB) ;
				if (d< 0)
				{
					return;
				}
				//modify the normal to be the triangle normal (or backfacing normal)
				cp.m_normalWorldOnB = colObj0Wrap->getWorldTransform().getBasis() *newNormal;
			}
						
			// Reproject collision point along normal.
			cp.m_positionWorldOnB = cp.m_positionWorldOnA - cp.m_normalWorldOnB * cp.m_distance1;
			cp.m_localPointB = colObj0Wrap->getWorldTransform().invXform(cp.m_positionWorldOnB);
		}
	}
}