Welcome to mirror list, hosted at ThFree Co, Russian Federation.

gim_basic_geometry_operations.h « Gimpact « BulletCollision « src « bullet2 « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 915277404d611ec0bbd55293e17bf58b0c6c1a1c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
#ifndef GIM_BASIC_GEOMETRY_OPERATIONS_H_INCLUDED
#define GIM_BASIC_GEOMETRY_OPERATIONS_H_INCLUDED

/*! \file gim_basic_geometry_operations.h
*\author Francisco Leon Najera
type independant geometry routines

*/
/*
-----------------------------------------------------------------------------
This source file is part of GIMPACT Library.

For the latest info, see http://gimpact.sourceforge.net/

Copyright (c) 2006 Francisco Leon Najera. C.C. 80087371.
email: projectileman@yahoo.com

 This library is free software; you can redistribute it and/or
 modify it under the terms of EITHER:
   (1) The GNU Lesser General Public License as published by the Free
       Software Foundation; either version 2.1 of the License, or (at
       your option) any later version. The text of the GNU Lesser
       General Public License is included with this library in the
       file GIMPACT-LICENSE-LGPL.TXT.
   (2) The BSD-style license that is included with this library in
       the file GIMPACT-LICENSE-BSD.TXT.
   (3) The zlib/libpng license that is included with this library in
       the file GIMPACT-LICENSE-ZLIB.TXT.

 This library is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files
 GIMPACT-LICENSE-LGPL.TXT, GIMPACT-LICENSE-ZLIB.TXT and GIMPACT-LICENSE-BSD.TXT for more details.

-----------------------------------------------------------------------------
*/


#include "gim_linear_math.h"





#define PLANEDIREPSILON 0.0000001f
#define PARALELENORMALS 0.000001f


#define TRIANGLE_NORMAL(v1,v2,v3,n)\
{\
	vec3f _dif1,_dif2;\
    VEC_DIFF(_dif1,v2,v1);\
    VEC_DIFF(_dif2,v3,v1);\
    VEC_CROSS(n,_dif1,_dif2);\
    VEC_NORMALIZE(n);\
}\

#define TRIANGLE_NORMAL_FAST(v1,v2,v3,n){\
    vec3f _dif1,_dif2; \
    VEC_DIFF(_dif1,v2,v1); \
    VEC_DIFF(_dif2,v3,v1); \
    VEC_CROSS(n,_dif1,_dif2); \
}\

/// plane is a vec4f
#define TRIANGLE_PLANE(v1,v2,v3,plane) {\
    TRIANGLE_NORMAL(v1,v2,v3,plane);\
    plane[3] = VEC_DOT(v1,plane);\
}\

/// plane is a vec4f
#define TRIANGLE_PLANE_FAST(v1,v2,v3,plane) {\
    TRIANGLE_NORMAL_FAST(v1,v2,v3,plane);\
    plane[3] = VEC_DOT(v1,plane);\
}\

/// Calc a plane from an edge an a normal. plane is a vec4f
#define EDGE_PLANE(e1,e2,n,plane) {\
    vec3f _dif; \
    VEC_DIFF(_dif,e2,e1); \
    VEC_CROSS(plane,_dif,n); \
    VEC_NORMALIZE(plane); \
    plane[3] = VEC_DOT(e1,plane);\
}\

#define DISTANCE_PLANE_POINT(plane,point) (VEC_DOT(plane,point) - plane[3])

#define PROJECT_POINT_PLANE(point,plane,projected) {\
	GREAL _dis;\
	_dis = DISTANCE_PLANE_POINT(plane,point);\
	VEC_SCALE(projected,-_dis,plane);\
	VEC_SUM(projected,projected,point);	\
}\

//! Verifies if a point is in the plane hull
template<typename CLASS_POINT,typename CLASS_PLANE>
SIMD_FORCE_INLINE bool POINT_IN_HULL(
	const CLASS_POINT& point,const CLASS_PLANE * planes,GUINT plane_count)
{
	GREAL _dis;
	for (GUINT _i = 0;_i< plane_count;++_i)
	{
		_dis = DISTANCE_PLANE_POINT(planes[_i],point);
	    if(_dis>0.0f) return false;
	}
	return true;
}

template<typename CLASS_POINT,typename CLASS_PLANE>
SIMD_FORCE_INLINE void PLANE_CLIP_SEGMENT(
	const CLASS_POINT& s1,
	const CLASS_POINT &s2,const CLASS_PLANE &plane,CLASS_POINT &clipped)
{
	GREAL _dis1,_dis2;
	_dis1 = DISTANCE_PLANE_POINT(plane,s1);
	VEC_DIFF(clipped,s2,s1);
	_dis2 = VEC_DOT(clipped,plane);
	VEC_SCALE(clipped,-_dis1/_dis2,clipped);
	VEC_SUM(clipped,clipped,s1);
}

enum ePLANE_INTERSECTION_TYPE
{
	G_BACK_PLANE = 0,
	G_COLLIDE_PLANE,
	G_FRONT_PLANE
};

enum eLINE_PLANE_INTERSECTION_TYPE
{
	G_FRONT_PLANE_S1 = 0,
	G_FRONT_PLANE_S2,
	G_BACK_PLANE_S1,
	G_BACK_PLANE_S2,
	G_COLLIDE_PLANE_S1,
	G_COLLIDE_PLANE_S2
};

//! Confirms if the plane intersect the edge or nor
/*!
intersection type must have the following values
<ul>
<li> 0 : Segment in front of plane, s1 closest
<li> 1 : Segment in front of plane, s2 closest
<li> 2 : Segment in back of plane, s1 closest
<li> 3 : Segment in back of plane, s2 closest
<li> 4 : Segment collides plane, s1 in back
<li> 5 : Segment collides plane, s2 in back
</ul>
*/

template<typename CLASS_POINT,typename CLASS_PLANE>
SIMD_FORCE_INLINE eLINE_PLANE_INTERSECTION_TYPE PLANE_CLIP_SEGMENT2(
	const CLASS_POINT& s1,
	const CLASS_POINT &s2,
	const CLASS_PLANE &plane,CLASS_POINT &clipped)
{
	GREAL _dis1 = DISTANCE_PLANE_POINT(plane,s1);
	GREAL _dis2 = DISTANCE_PLANE_POINT(plane,s2);
	if(_dis1 >-G_EPSILON && _dis2 >-G_EPSILON)
	{
	    if(_dis1<_dis2) return G_FRONT_PLANE_S1;
	    return G_FRONT_PLANE_S2;
	}
	else if(_dis1 <G_EPSILON && _dis2 <G_EPSILON)
	{
	    if(_dis1>_dis2) return G_BACK_PLANE_S1;
	    return G_BACK_PLANE_S2;
	}

	VEC_DIFF(clipped,s2,s1);
	_dis2 = VEC_DOT(clipped,plane);
	VEC_SCALE(clipped,-_dis1/_dis2,clipped);
	VEC_SUM(clipped,clipped,s1);
	if(_dis1<_dis2) return G_COLLIDE_PLANE_S1;
	return G_COLLIDE_PLANE_S2;
}

//! Confirms if the plane intersect the edge or not
/*!
clipped1 and clipped2 are the vertices behind the plane.
clipped1 is the closest

intersection_type must have the following values
<ul>
<li> 0 : Segment in front of plane, s1 closest
<li> 1 : Segment in front of plane, s2 closest
<li> 2 : Segment in back of plane, s1 closest
<li> 3 : Segment in back of plane, s2 closest
<li> 4 : Segment collides plane, s1 in back
<li> 5 : Segment collides plane, s2 in back
</ul>
*/
template<typename CLASS_POINT,typename CLASS_PLANE>
SIMD_FORCE_INLINE eLINE_PLANE_INTERSECTION_TYPE PLANE_CLIP_SEGMENT_CLOSEST(
	const CLASS_POINT& s1,
	const CLASS_POINT &s2,
	const CLASS_PLANE &plane,
	CLASS_POINT &clipped1,CLASS_POINT &clipped2)
{
	eLINE_PLANE_INTERSECTION_TYPE intersection_type = PLANE_CLIP_SEGMENT2(s1,s2,plane,clipped1);
	switch(intersection_type)
	{
	case G_FRONT_PLANE_S1:
		VEC_COPY(clipped1,s1);
	    VEC_COPY(clipped2,s2);
		break;
	case G_FRONT_PLANE_S2:
		VEC_COPY(clipped1,s2);
	    VEC_COPY(clipped2,s1);
		break;
	case G_BACK_PLANE_S1:
		VEC_COPY(clipped1,s1);
	    VEC_COPY(clipped2,s2);
		break;
	case G_BACK_PLANE_S2:
		VEC_COPY(clipped1,s2);
	    VEC_COPY(clipped2,s1);
		break;
	case G_COLLIDE_PLANE_S1:
		VEC_COPY(clipped2,s1);
		break;
	case G_COLLIDE_PLANE_S2:
		VEC_COPY(clipped2,s2);
		break;
	}
	return intersection_type;
}


//! Finds the 2 smallest cartesian coordinates of a plane normal
#define PLANE_MINOR_AXES(plane, i0, i1) VEC_MINOR_AXES(plane, i0, i1)

//! Ray plane collision in one way
/*!
Intersects plane in one way only. The ray must face the plane (normals must be in opossite directions).<br/>
It uses the PLANEDIREPSILON constant.
*/
template<typename T,typename CLASS_POINT,typename CLASS_PLANE>
SIMD_FORCE_INLINE bool RAY_PLANE_COLLISION(
	const CLASS_PLANE & plane,
	const CLASS_POINT & vDir,
	const CLASS_POINT & vPoint,
	CLASS_POINT & pout,T &tparam)
{
	GREAL _dis,_dotdir;
	_dotdir = VEC_DOT(plane,vDir);
	if(_dotdir<PLANEDIREPSILON)
	{
	    return false;
	}
	_dis = DISTANCE_PLANE_POINT(plane,vPoint);
	tparam = -_dis/_dotdir;
	VEC_SCALE(pout,tparam,vDir);
	VEC_SUM(pout,vPoint,pout);
	return true;
}

//! line collision
/*!
*\return
	-0  if the ray never intersects
	-1 if the ray collides in front
	-2 if the ray collides in back
*/
template<typename T,typename CLASS_POINT,typename CLASS_PLANE>
SIMD_FORCE_INLINE GUINT LINE_PLANE_COLLISION(
	const CLASS_PLANE & plane,
	const CLASS_POINT & vDir,
	const CLASS_POINT & vPoint,
	CLASS_POINT & pout,
	T &tparam,
	T tmin, T tmax)
{
	GREAL _dis,_dotdir;
	_dotdir = VEC_DOT(plane,vDir);
	if(btFabs(_dotdir)<PLANEDIREPSILON)
	{
		tparam = tmax;
	    return 0;
	}
	_dis = DISTANCE_PLANE_POINT(plane,vPoint);
	char returnvalue = _dis<0.0f?2:1;
	tparam = -_dis/_dotdir;

	if(tparam<tmin)
	{
		returnvalue = 0;
		tparam = tmin;
	}
	else if(tparam>tmax)
	{
		returnvalue = 0;
		tparam = tmax;
	}

	VEC_SCALE(pout,tparam,vDir);
	VEC_SUM(pout,vPoint,pout);
	return returnvalue;
}

/*! \brief Returns the Ray on which 2 planes intersect if they do.
    Written by Rodrigo Hernandez on ODE convex collision

  \param p1 Plane 1
  \param p2 Plane 2
  \param p Contains the origin of the ray upon returning if planes intersect
  \param d Contains the direction of the ray upon returning if planes intersect
  \return true if the planes intersect, 0 if paralell.

*/
template<typename CLASS_POINT,typename CLASS_PLANE>
SIMD_FORCE_INLINE bool INTERSECT_PLANES(
		const CLASS_PLANE &p1,
		const CLASS_PLANE &p2,
		CLASS_POINT &p,
		CLASS_POINT &d)
{
	VEC_CROSS(d,p1,p2);
  	GREAL denom = VEC_DOT(d, d);
  	if(GIM_IS_ZERO(denom)) return false;
	vec3f _n;
	_n[0]=p1[3]*p2[0] - p2[3]*p1[0];
	_n[1]=p1[3]*p2[1] - p2[3]*p1[1];
	_n[2]=p1[3]*p2[2] - p2[3]*p1[2];
	VEC_CROSS(p,_n,d);
	p[0]/=denom;
	p[1]/=denom;
	p[2]/=denom;
	return true;
}

//***************** SEGMENT and LINE FUNCTIONS **********************************///

/*! Finds the closest point(cp) to (v) on a segment (e1,e2)
 */
template<typename CLASS_POINT>
SIMD_FORCE_INLINE void CLOSEST_POINT_ON_SEGMENT(
	CLASS_POINT & cp, const CLASS_POINT & v,
	const CLASS_POINT &e1,const CLASS_POINT &e2)
{
    vec3f _n;
    VEC_DIFF(_n,e2,e1);
    VEC_DIFF(cp,v,e1);
	GREAL _scalar = VEC_DOT(cp, _n);
	_scalar/= VEC_DOT(_n, _n);
	if(_scalar <0.0f)
	{
	    VEC_COPY(cp,e1);
	}
	else if(_scalar >1.0f)
	{
	    VEC_COPY(cp,e2);
	}
	else
	{
        VEC_SCALE(cp,_scalar,_n);
        VEC_SUM(cp,cp,e1);
	}
}


/*! \brief Finds the line params where these lines intersect.

\param dir1 Direction of line 1
\param point1 Point of line 1
\param dir2 Direction of line 2
\param point2 Point of line 2
\param t1 Result Parameter for line 1
\param t2 Result Parameter for line 2
\param dointersect  0  if the lines won't intersect, else 1

*/
template<typename T,typename CLASS_POINT>
SIMD_FORCE_INLINE bool LINE_INTERSECTION_PARAMS(
	const CLASS_POINT & dir1,
	CLASS_POINT & point1,
	const CLASS_POINT & dir2,
	CLASS_POINT &  point2,
	T& t1,T& t2)
{
    GREAL det;
	GREAL e1e1 = VEC_DOT(dir1,dir1);
	GREAL e1e2 = VEC_DOT(dir1,dir2);
	GREAL e2e2 = VEC_DOT(dir2,dir2);
	vec3f p1p2;
    VEC_DIFF(p1p2,point1,point2);
    GREAL p1p2e1 = VEC_DOT(p1p2,dir1);
	GREAL p1p2e2 = VEC_DOT(p1p2,dir2);
	det = e1e2*e1e2 - e1e1*e2e2;
	if(GIM_IS_ZERO(det)) return false;
	t1 = (e1e2*p1p2e2 - e2e2*p1p2e1)/det;
	t2 = (e1e1*p1p2e2 - e1e2*p1p2e1)/det;
	return true;
}

//! Find closest points on segments
template<typename CLASS_POINT>
SIMD_FORCE_INLINE void SEGMENT_COLLISION(
	const CLASS_POINT & vA1,
	const CLASS_POINT & vA2,
	const CLASS_POINT & vB1,
	const CLASS_POINT & vB2,
	CLASS_POINT & vPointA,
	CLASS_POINT & vPointB)
{
    CLASS_POINT _AD,_BD,_N;
    vec4f _M;//plane
    VEC_DIFF(_AD,vA2,vA1);
    VEC_DIFF(_BD,vB2,vB1);
    VEC_CROSS(_N,_AD,_BD);
    GREAL _tp = VEC_DOT(_N,_N);
    if(_tp<G_EPSILON)//ARE PARALELE
    {
    	//project B over A
    	bool invert_b_order = false;
    	_M[0] = VEC_DOT(vB1,_AD);
    	_M[1] = VEC_DOT(vB2,_AD);
    	if(_M[0]>_M[1])
    	{
    		invert_b_order  = true;
    		GIM_SWAP_NUMBERS(_M[0],_M[1]);
    	}
    	_M[2] = VEC_DOT(vA1,_AD);
    	_M[3] = VEC_DOT(vA2,_AD);
    	//mid points
    	_N[0] = (_M[0]+_M[1])*0.5f;
    	_N[1] = (_M[2]+_M[3])*0.5f;

    	if(_N[0]<_N[1])
    	{
    		if(_M[1]<_M[2])
    		{
    			vPointB = invert_b_order?vB1:vB2;
    			vPointA = vA1;
    		}
    		else if(_M[1]<_M[3])
    		{
    			vPointB = invert_b_order?vB1:vB2;
    			CLOSEST_POINT_ON_SEGMENT(vPointA,vPointB,vA1,vA2);
    		}
    		else
    		{
    			vPointA = vA2;
    			CLOSEST_POINT_ON_SEGMENT(vPointB,vPointA,vB1,vB2);
    		}
    	}
    	else
    	{
    		if(_M[3]<_M[0])
    		{
    			vPointB = invert_b_order?vB2:vB1;
    			vPointA = vA2;
    		}
    		else if(_M[3]<_M[1])
    		{
    			vPointA = vA2;
    			CLOSEST_POINT_ON_SEGMENT(vPointB,vPointA,vB1,vB2);
    		}
    		else
    		{
    			vPointB = invert_b_order?vB1:vB2;
    			CLOSEST_POINT_ON_SEGMENT(vPointA,vPointB,vA1,vA2);
    		}
    	}
    	return;
    }


    VEC_CROSS(_M,_N,_BD);
    _M[3] = VEC_DOT(_M,vB1);

    LINE_PLANE_COLLISION(_M,_AD,vA1,vPointA,_tp,btScalar(0), btScalar(1));
    /*Closest point on segment*/
    VEC_DIFF(vPointB,vPointA,vB1);
	_tp = VEC_DOT(vPointB, _BD);
	_tp/= VEC_DOT(_BD, _BD);
	_tp = GIM_CLAMP(_tp,0.0f,1.0f);
    VEC_SCALE(vPointB,_tp,_BD);
    VEC_SUM(vPointB,vPointB,vB1);
}




//! Line box intersection in one dimension
/*!

*\param pos Position of the ray
*\param dir Projection of the Direction of the ray
*\param bmin Minimum bound of the box
*\param bmax Maximum bound of the box
*\param tfirst the minimum projection. Assign to 0 at first.
*\param tlast the maximum projection. Assign to INFINITY at first.
*\return true if there is an intersection.
*/
template<typename T>
SIMD_FORCE_INLINE bool BOX_AXIS_INTERSECT(T pos, T dir,T bmin, T bmax, T & tfirst, T & tlast)
{
	if(GIM_IS_ZERO(dir))
	{
        return !(pos < bmin || pos > bmax);
	}
	GREAL a0 = (bmin - pos) / dir;
	GREAL a1 = (bmax - pos) / dir;
	if(a0 > a1)   GIM_SWAP_NUMBERS(a0, a1);
	tfirst = GIM_MAX(a0, tfirst);
	tlast = GIM_MIN(a1, tlast);
	if (tlast < tfirst) return false;
	return true;
}


//! Sorts 3 componets
template<typename T>
SIMD_FORCE_INLINE void SORT_3_INDICES(
		const T * values,
		GUINT * order_indices)
{
	//get minimum
	order_indices[0] = values[0] < values[1] ? (values[0] < values[2] ? 0 : 2) : (values[1] < values[2] ? 1 : 2);

	//get second and third
	GUINT i0 = (order_indices[0] + 1)%3;
	GUINT i1 = (i0 + 1)%3;

	if(values[i0] < values[i1])
	{
		order_indices[1] = i0;
		order_indices[2] = i1;
	}
	else
	{
		order_indices[1] = i1;
		order_indices[2] = i0;
	}
}





#endif // GIM_VECTOR_H_INCLUDED