Welcome to mirror list, hosted at ThFree Co, Russian Federation.

btGjkPairDetector.cpp « NarrowPhaseCollision « BulletCollision « src « bullet2 « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 8af16b9cf6f3857bd4536326c72ca076f7b71ae9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/

#include "btGjkPairDetector.h"
#include "BulletCollision/CollisionShapes/btConvexShape.h"
#include "BulletCollision/NarrowPhaseCollision/btSimplexSolverInterface.h"
#include "BulletCollision/NarrowPhaseCollision/btConvexPenetrationDepthSolver.h"



#if defined(DEBUG) || defined (_DEBUG)
//#define TEST_NON_VIRTUAL 1
#include <stdio.h> //for debug printf
#ifdef __SPU__
#include <spu_printf.h>
#define printf spu_printf
//#define DEBUG_SPU_COLLISION_DETECTION 1
#endif //__SPU__
#endif

//must be above the machine epsilon
#define REL_ERROR2 btScalar(1.0e-6)

//temp globals, to improve GJK/EPA/penetration calculations
int gNumDeepPenetrationChecks = 0;
int gNumGjkChecks = 0;


btGjkPairDetector::btGjkPairDetector(const btConvexShape* objectA,const btConvexShape* objectB,btSimplexSolverInterface* simplexSolver,btConvexPenetrationDepthSolver*	penetrationDepthSolver)
:m_cachedSeparatingAxis(btScalar(0.),btScalar(1.),btScalar(0.)),
m_penetrationDepthSolver(penetrationDepthSolver),
m_simplexSolver(simplexSolver),
m_minkowskiA(objectA),
m_minkowskiB(objectB),
m_shapeTypeA(objectA->getShapeType()),
m_shapeTypeB(objectB->getShapeType()),
m_marginA(objectA->getMargin()),
m_marginB(objectB->getMargin()),
m_ignoreMargin(false),
m_lastUsedMethod(-1),
m_catchDegeneracies(1)
{
}
btGjkPairDetector::btGjkPairDetector(const btConvexShape* objectA,const btConvexShape* objectB,int shapeTypeA,int shapeTypeB,btScalar marginA, btScalar marginB, btSimplexSolverInterface* simplexSolver,btConvexPenetrationDepthSolver*	penetrationDepthSolver)
:m_cachedSeparatingAxis(btScalar(0.),btScalar(1.),btScalar(0.)),
m_penetrationDepthSolver(penetrationDepthSolver),
m_simplexSolver(simplexSolver),
m_minkowskiA(objectA),
m_minkowskiB(objectB),
m_shapeTypeA(shapeTypeA),
m_shapeTypeB(shapeTypeB),
m_marginA(marginA),
m_marginB(marginB),
m_ignoreMargin(false),
m_lastUsedMethod(-1),
m_catchDegeneracies(1)
{
}

void	btGjkPairDetector::getClosestPoints(const ClosestPointInput& input,Result& output,class btIDebugDraw* debugDraw,bool swapResults)
{
	(void)swapResults;

	getClosestPointsNonVirtual(input,output,debugDraw);
}

#ifdef __SPU__
void btGjkPairDetector::getClosestPointsNonVirtual(const ClosestPointInput& input,Result& output,class btIDebugDraw* debugDraw)
#else
void btGjkPairDetector::getClosestPointsNonVirtual(const ClosestPointInput& input,Result& output,class btIDebugDraw* debugDraw)
#endif
{
	m_cachedSeparatingDistance = 0.f;

	btScalar distance=btScalar(0.);
	btVector3	normalInB(btScalar(0.),btScalar(0.),btScalar(0.));
	btVector3 pointOnA,pointOnB;
	btTransform	localTransA = input.m_transformA;
	btTransform localTransB = input.m_transformB;
	btVector3 positionOffset = (localTransA.getOrigin() + localTransB.getOrigin()) * btScalar(0.5);
	localTransA.getOrigin() -= positionOffset;
	localTransB.getOrigin() -= positionOffset;

	bool check2d = m_minkowskiA->isConvex2d() && m_minkowskiB->isConvex2d();

	btScalar marginA = m_marginA;
	btScalar marginB = m_marginB;

	gNumGjkChecks++;

#ifdef DEBUG_SPU_COLLISION_DETECTION
	spu_printf("inside gjk\n");
#endif
	//for CCD we don't use margins
	if (m_ignoreMargin)
	{
		marginA = btScalar(0.);
		marginB = btScalar(0.);
#ifdef DEBUG_SPU_COLLISION_DETECTION
		spu_printf("ignoring margin\n");
#endif
	}

	m_curIter = 0;
	int gGjkMaxIter = 1000;//this is to catch invalid input, perhaps check for #NaN?
	m_cachedSeparatingAxis.setValue(0,1,0);

	bool isValid = false;
	bool checkSimplex = false;
	bool checkPenetration = true;
	m_degenerateSimplex = 0;

	m_lastUsedMethod = -1;

	{
		btScalar squaredDistance = BT_LARGE_FLOAT;
		btScalar delta = btScalar(0.);
		
		btScalar margin = marginA + marginB;
		
		

		m_simplexSolver->reset();
		
		for ( ; ; )
		//while (true)
		{

			btVector3 seperatingAxisInA = (-m_cachedSeparatingAxis)* input.m_transformA.getBasis();
			btVector3 seperatingAxisInB = m_cachedSeparatingAxis* input.m_transformB.getBasis();

#if 1

			btVector3 pInA = m_minkowskiA->localGetSupportVertexWithoutMarginNonVirtual(seperatingAxisInA);
			btVector3 qInB = m_minkowskiB->localGetSupportVertexWithoutMarginNonVirtual(seperatingAxisInB);

//			btVector3 pInA  = localGetSupportingVertexWithoutMargin(m_shapeTypeA, m_minkowskiA, seperatingAxisInA,input.m_convexVertexData[0]);//, &featureIndexA);
//			btVector3 qInB  = localGetSupportingVertexWithoutMargin(m_shapeTypeB, m_minkowskiB, seperatingAxisInB,input.m_convexVertexData[1]);//, &featureIndexB);

#else
#ifdef __SPU__
			btVector3 pInA = m_minkowskiA->localGetSupportVertexWithoutMarginNonVirtual(seperatingAxisInA);
			btVector3 qInB = m_minkowskiB->localGetSupportVertexWithoutMarginNonVirtual(seperatingAxisInB);
#else
			btVector3 pInA = m_minkowskiA->localGetSupportingVertexWithoutMargin(seperatingAxisInA);
			btVector3 qInB = m_minkowskiB->localGetSupportingVertexWithoutMargin(seperatingAxisInB);
#ifdef TEST_NON_VIRTUAL
			btVector3 pInAv = m_minkowskiA->localGetSupportingVertexWithoutMargin(seperatingAxisInA);
			btVector3 qInBv = m_minkowskiB->localGetSupportingVertexWithoutMargin(seperatingAxisInB);
			btAssert((pInAv-pInA).length() < 0.0001);
			btAssert((qInBv-qInB).length() < 0.0001);
#endif //
#endif //__SPU__
#endif


			btVector3  pWorld = localTransA(pInA);	
			btVector3  qWorld = localTransB(qInB);

#ifdef DEBUG_SPU_COLLISION_DETECTION
		spu_printf("got local supporting vertices\n");
#endif

			if (check2d)
			{
				pWorld[2] = 0.f;
				qWorld[2] = 0.f;
			}

			btVector3 w	= pWorld - qWorld;
			delta = m_cachedSeparatingAxis.dot(w);

			// potential exit, they don't overlap
			if ((delta > btScalar(0.0)) && (delta * delta > squaredDistance * input.m_maximumDistanceSquared)) 
			{
				m_degenerateSimplex = 10;
				checkSimplex=true;
				//checkPenetration = false;
				break;
			}

			//exit 0: the new point is already in the simplex, or we didn't come any closer
			if (m_simplexSolver->inSimplex(w))
			{
				m_degenerateSimplex = 1;
				checkSimplex = true;
				break;
			}
			// are we getting any closer ?
			btScalar f0 = squaredDistance - delta;
			btScalar f1 = squaredDistance * REL_ERROR2;

			if (f0 <= f1)
			{
				if (f0 <= btScalar(0.))
				{
					m_degenerateSimplex = 2;
				} else
				{
					m_degenerateSimplex = 11;
				}
				checkSimplex = true;
				break;
			}

#ifdef DEBUG_SPU_COLLISION_DETECTION
		spu_printf("addVertex 1\n");
#endif
			//add current vertex to simplex
			m_simplexSolver->addVertex(w, pWorld, qWorld);
#ifdef DEBUG_SPU_COLLISION_DETECTION
		spu_printf("addVertex 2\n");
#endif
			btVector3 newCachedSeparatingAxis;

			//calculate the closest point to the origin (update vector v)
			if (!m_simplexSolver->closest(newCachedSeparatingAxis))
			{
				m_degenerateSimplex = 3;
				checkSimplex = true;
				break;
			}

			if(newCachedSeparatingAxis.length2()<REL_ERROR2)
            {
				m_cachedSeparatingAxis = newCachedSeparatingAxis;
                m_degenerateSimplex = 6;
                checkSimplex = true;
                break;
            }

			btScalar previousSquaredDistance = squaredDistance;
			squaredDistance = newCachedSeparatingAxis.length2();
#if 0
///warning: this termination condition leads to some problems in 2d test case see Bullet/Demos/Box2dDemo
			if (squaredDistance>previousSquaredDistance)
			{
				m_degenerateSimplex = 7;
				squaredDistance = previousSquaredDistance;
                checkSimplex = false;
                break;
			}
#endif //
			

			//redundant m_simplexSolver->compute_points(pointOnA, pointOnB);

			//are we getting any closer ?
			if (previousSquaredDistance - squaredDistance <= SIMD_EPSILON * previousSquaredDistance) 
			{ 
//				m_simplexSolver->backup_closest(m_cachedSeparatingAxis);
				checkSimplex = true;
				m_degenerateSimplex = 12;
				
				break;
			}

			m_cachedSeparatingAxis = newCachedSeparatingAxis;

			  //degeneracy, this is typically due to invalid/uninitialized worldtransforms for a btCollisionObject   
              if (m_curIter++ > gGjkMaxIter)   
              {   
                      #if defined(DEBUG) || defined (_DEBUG) || defined (DEBUG_SPU_COLLISION_DETECTION)

                              printf("btGjkPairDetector maxIter exceeded:%i\n",m_curIter);   
                              printf("sepAxis=(%f,%f,%f), squaredDistance = %f, shapeTypeA=%i,shapeTypeB=%i\n",   
                              m_cachedSeparatingAxis.getX(),   
                              m_cachedSeparatingAxis.getY(),   
                              m_cachedSeparatingAxis.getZ(),   
                              squaredDistance,   
                              m_minkowskiA->getShapeType(),   
                              m_minkowskiB->getShapeType());   

                      #endif   
                      break;   

              } 


			bool check = (!m_simplexSolver->fullSimplex());
			//bool check = (!m_simplexSolver->fullSimplex() && squaredDistance > SIMD_EPSILON * m_simplexSolver->maxVertex());

			if (!check)
			{
				//do we need this backup_closest here ?
//				m_simplexSolver->backup_closest(m_cachedSeparatingAxis);
				m_degenerateSimplex = 13;
				break;
			}
		}

		if (checkSimplex)
		{
			m_simplexSolver->compute_points(pointOnA, pointOnB);
			normalInB = m_cachedSeparatingAxis;
			btScalar lenSqr =m_cachedSeparatingAxis.length2();
			
			//valid normal
			if (lenSqr < 0.0001)
			{
				m_degenerateSimplex = 5;
			} 
			if (lenSqr > SIMD_EPSILON*SIMD_EPSILON)
			{
				btScalar rlen = btScalar(1.) / btSqrt(lenSqr );
				normalInB *= rlen; //normalize
				btScalar s = btSqrt(squaredDistance);
			
				btAssert(s > btScalar(0.0));
				pointOnA -= m_cachedSeparatingAxis * (marginA / s);
				pointOnB += m_cachedSeparatingAxis * (marginB / s);
				distance = ((btScalar(1.)/rlen) - margin);
				isValid = true;
				
				m_lastUsedMethod = 1;
			} else
			{
				m_lastUsedMethod = 2;
			}
		}

		bool catchDegeneratePenetrationCase = 
			(m_catchDegeneracies && m_penetrationDepthSolver && m_degenerateSimplex && ((distance+margin) < 0.01));

		//if (checkPenetration && !isValid)
		if (checkPenetration && (!isValid || catchDegeneratePenetrationCase ))
		{
			//penetration case

			//if there is no way to handle penetrations, bail out
			if (m_penetrationDepthSolver)
			{
				// Penetration depth case.
				btVector3 tmpPointOnA,tmpPointOnB;
				
				gNumDeepPenetrationChecks++;
				m_cachedSeparatingAxis.setZero();

				bool isValid2 = m_penetrationDepthSolver->calcPenDepth( 
					*m_simplexSolver, 
					m_minkowskiA,m_minkowskiB,
					localTransA,localTransB,
					m_cachedSeparatingAxis, tmpPointOnA, tmpPointOnB,
					debugDraw,input.m_stackAlloc
					);


				if (isValid2)
				{
					btVector3 tmpNormalInB = tmpPointOnB-tmpPointOnA;
					btScalar lenSqr = tmpNormalInB.length2();
					if (lenSqr <= (SIMD_EPSILON*SIMD_EPSILON))
					{
						tmpNormalInB = m_cachedSeparatingAxis;
						lenSqr = m_cachedSeparatingAxis.length2();
					}

					if (lenSqr > (SIMD_EPSILON*SIMD_EPSILON))
					{
						tmpNormalInB /= btSqrt(lenSqr);
						btScalar distance2 = -(tmpPointOnA-tmpPointOnB).length();
						//only replace valid penetrations when the result is deeper (check)
						if (!isValid || (distance2 < distance))
						{
							distance = distance2;
							pointOnA = tmpPointOnA;
							pointOnB = tmpPointOnB;
							normalInB = tmpNormalInB;
							isValid = true;
							m_lastUsedMethod = 3;
						} else
						{
							m_lastUsedMethod = 8;
						}
					} else
					{
						m_lastUsedMethod = 9;
					}
				} else

				{
					///this is another degenerate case, where the initial GJK calculation reports a degenerate case
					///EPA reports no penetration, and the second GJK (using the supporting vector without margin)
					///reports a valid positive distance. Use the results of the second GJK instead of failing.
					///thanks to Jacob.Langford for the reproduction case
					///http://code.google.com/p/bullet/issues/detail?id=250

				
					if (m_cachedSeparatingAxis.length2() > btScalar(0.))
					{
						btScalar distance2 = (tmpPointOnA-tmpPointOnB).length()-margin;
						//only replace valid distances when the distance is less
						if (!isValid || (distance2 < distance))
						{
							distance = distance2;
							pointOnA = tmpPointOnA;
							pointOnB = tmpPointOnB;
							pointOnA -= m_cachedSeparatingAxis * marginA ;
							pointOnB += m_cachedSeparatingAxis * marginB ;
							normalInB = m_cachedSeparatingAxis;
							normalInB.normalize();
							isValid = true;
							m_lastUsedMethod = 6;
						} else
						{
							m_lastUsedMethod = 5;
						}
					}
				}
				
			}

		}
	}

	

	if (isValid && ((distance < 0) || (distance*distance < input.m_maximumDistanceSquared)))
	{
#if 0
///some debugging
//		if (check2d)
		{
			printf("n = %2.3f,%2.3f,%2.3f. ",normalInB[0],normalInB[1],normalInB[2]);
			printf("distance = %2.3f exit=%d deg=%d\n",distance,m_lastUsedMethod,m_degenerateSimplex);
		}
#endif 

		m_cachedSeparatingAxis = normalInB;
		m_cachedSeparatingDistance = distance;

		output.addContactPoint(
			normalInB,
			pointOnB+positionOffset,
			distance);

	}


}