Welcome to mirror list, hosted at ThFree Co, Russian Federation.

btKinematicCharacterController.cpp « Character « BulletDynamics « src « bullet2 « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 8f1cd20bf45754dd9c7cd32bd99daf8ae9fc1db3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2008 Erwin Coumans  http://bulletphysics.com

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/


#include <stdio.h>
#include "LinearMath/btIDebugDraw.h"
#include "BulletCollision/CollisionDispatch/btGhostObject.h"
#include "BulletCollision/CollisionShapes/btMultiSphereShape.h"
#include "BulletCollision/BroadphaseCollision/btOverlappingPairCache.h"
#include "BulletCollision/BroadphaseCollision/btCollisionAlgorithm.h"
#include "BulletCollision/CollisionDispatch/btCollisionWorld.h"
#include "LinearMath/btDefaultMotionState.h"
#include "btKinematicCharacterController.h"


// static helper method
static btVector3
getNormalizedVector(const btVector3& v)
{
	btVector3 n = v.normalized();
	if (n.length() < SIMD_EPSILON) {
		n.setValue(0, 0, 0);
	}
	return n;
}


///@todo Interact with dynamic objects,
///Ride kinematicly animated platforms properly
///More realistic (or maybe just a config option) falling
/// -> Should integrate falling velocity manually and use that in stepDown()
///Support jumping
///Support ducking
class btKinematicClosestNotMeRayResultCallback : public btCollisionWorld::ClosestRayResultCallback
{
public:
	btKinematicClosestNotMeRayResultCallback (btCollisionObject* me) : btCollisionWorld::ClosestRayResultCallback(btVector3(0.0, 0.0, 0.0), btVector3(0.0, 0.0, 0.0))
	{
		m_me = me;
	}

	virtual btScalar addSingleResult(btCollisionWorld::LocalRayResult& rayResult,bool normalInWorldSpace)
	{
		if (rayResult.m_collisionObject == m_me)
			return 1.0;

		return ClosestRayResultCallback::addSingleResult (rayResult, normalInWorldSpace);
	}
protected:
	btCollisionObject* m_me;
};

class btKinematicClosestNotMeConvexResultCallback : public btCollisionWorld::ClosestConvexResultCallback
{
public:
	btKinematicClosestNotMeConvexResultCallback (btCollisionObject* me, const btVector3& up, btScalar minSlopeDot)
	: btCollisionWorld::ClosestConvexResultCallback(btVector3(0.0, 0.0, 0.0), btVector3(0.0, 0.0, 0.0))
	, m_me(me)
	, m_up(up)
	, m_minSlopeDot(minSlopeDot)
	{
	}

	virtual btScalar addSingleResult(btCollisionWorld::LocalConvexResult& convexResult,bool normalInWorldSpace)
	{
		if (convexResult.m_hitCollisionObject == m_me)
			return btScalar(1.0);

		if (!convexResult.m_hitCollisionObject->hasContactResponse())
			return btScalar(1.0);

		btVector3 hitNormalWorld;
		if (normalInWorldSpace)
		{
			hitNormalWorld = convexResult.m_hitNormalLocal;
		} else
		{
			///need to transform normal into worldspace
			hitNormalWorld = convexResult.m_hitCollisionObject->getWorldTransform().getBasis()*convexResult.m_hitNormalLocal;
		}

		btScalar dotUp = m_up.dot(hitNormalWorld);
		if (dotUp < m_minSlopeDot) {
			return btScalar(1.0);
		}

		return ClosestConvexResultCallback::addSingleResult (convexResult, normalInWorldSpace);
	}
protected:
	btCollisionObject* m_me;
	const btVector3 m_up;
	btScalar m_minSlopeDot;
};

/*
 * Returns the reflection direction of a ray going 'direction' hitting a surface with normal 'normal'
 *
 * from: http://www-cs-students.stanford.edu/~adityagp/final/node3.html
 */
btVector3 btKinematicCharacterController::computeReflectionDirection (const btVector3& direction, const btVector3& normal)
{
	return direction - (btScalar(2.0) * direction.dot(normal)) * normal;
}

/*
 * Returns the portion of 'direction' that is parallel to 'normal'
 */
btVector3 btKinematicCharacterController::parallelComponent (const btVector3& direction, const btVector3& normal)
{
	btScalar magnitude = direction.dot(normal);
	return normal * magnitude;
}

/*
 * Returns the portion of 'direction' that is perpindicular to 'normal'
 */
btVector3 btKinematicCharacterController::perpindicularComponent (const btVector3& direction, const btVector3& normal)
{
	return direction - parallelComponent(direction, normal);
}

btKinematicCharacterController::btKinematicCharacterController (btPairCachingGhostObject* ghostObject,btConvexShape* convexShape,btScalar stepHeight, int upAxis)
{
	m_upAxis = upAxis;
	m_addedMargin = 0.02;
	m_walkDirection.setValue(0,0,0);
	m_useGhostObjectSweepTest = true;
	m_ghostObject = ghostObject;
	m_stepHeight = stepHeight;
	m_turnAngle = btScalar(0.0);
	m_convexShape=convexShape;	
	m_useWalkDirection = true;	// use walk direction by default, legacy behavior
	m_velocityTimeInterval = 0.0;
	m_verticalVelocity = 0.0;
	m_verticalOffset = 0.0;
	m_gravity = 9.8 * 3 ; // 3G acceleration.
	m_fallSpeed = 55.0; // Terminal velocity of a sky diver in m/s.
	m_jumpSpeed = 10.0; // ?
	m_wasOnGround = false;
	m_wasJumping = false;
	m_interpolateUp = true;
	setMaxSlope(btRadians(45.0));
	m_currentStepOffset = 0;
	full_drop = false;
	bounce_fix = false;
}

btKinematicCharacterController::~btKinematicCharacterController ()
{
}

btPairCachingGhostObject* btKinematicCharacterController::getGhostObject()
{
	return m_ghostObject;
}

bool btKinematicCharacterController::recoverFromPenetration ( btCollisionWorld* collisionWorld)
{
	// Here we must refresh the overlapping paircache as the penetrating movement itself or the
	// previous recovery iteration might have used setWorldTransform and pushed us into an object
	// that is not in the previous cache contents from the last timestep, as will happen if we
	// are pushed into a new AABB overlap. Unhandled this means the next convex sweep gets stuck.
	//
	// Do this by calling the broadphase's setAabb with the moved AABB, this will update the broadphase
	// paircache and the ghostobject's internal paircache at the same time.    /BW

	btVector3 minAabb, maxAabb;
	m_convexShape->getAabb(m_ghostObject->getWorldTransform(), minAabb,maxAabb);
	collisionWorld->getBroadphase()->setAabb(m_ghostObject->getBroadphaseHandle(), 
						 minAabb, 
						 maxAabb, 
						 collisionWorld->getDispatcher());
						 
	bool penetration = false;

	collisionWorld->getDispatcher()->dispatchAllCollisionPairs(m_ghostObject->getOverlappingPairCache(), collisionWorld->getDispatchInfo(), collisionWorld->getDispatcher());

	m_currentPosition = m_ghostObject->getWorldTransform().getOrigin();
	
	btScalar maxPen = btScalar(0.0);
	for (int i = 0; i < m_ghostObject->getOverlappingPairCache()->getNumOverlappingPairs(); i++)
	{
		m_manifoldArray.resize(0);

		btBroadphasePair* collisionPair = &m_ghostObject->getOverlappingPairCache()->getOverlappingPairArray()[i];

		btCollisionObject* obj0 = static_cast<btCollisionObject*>(collisionPair->m_pProxy0->m_clientObject);
                btCollisionObject* obj1 = static_cast<btCollisionObject*>(collisionPair->m_pProxy1->m_clientObject);

		if ((obj0 && !obj0->hasContactResponse()) || (obj1 && !obj1->hasContactResponse()))
			continue;
		
		if (collisionPair->m_algorithm)
			collisionPair->m_algorithm->getAllContactManifolds(m_manifoldArray);

		
		for (int j=0;j<m_manifoldArray.size();j++)
		{
			btPersistentManifold* manifold = m_manifoldArray[j];
			btScalar directionSign = manifold->getBody0() == m_ghostObject ? btScalar(-1.0) : btScalar(1.0);
			for (int p=0;p<manifold->getNumContacts();p++)
			{
				const btManifoldPoint&pt = manifold->getContactPoint(p);

				btScalar dist = pt.getDistance();

				if (dist < 0.0)
				{
					if (dist < maxPen)
					{
						maxPen = dist;
						m_touchingNormal = pt.m_normalWorldOnB * directionSign;//??

					}
					m_currentPosition += pt.m_normalWorldOnB * directionSign * dist * btScalar(0.2);
					penetration = true;
				} else {
					//printf("touching %f\n", dist);
				}
			}
			
			//manifold->clearManifold();
		}
	}
	btTransform newTrans = m_ghostObject->getWorldTransform();
	newTrans.setOrigin(m_currentPosition);
	m_ghostObject->setWorldTransform(newTrans);
//	printf("m_touchingNormal = %f,%f,%f\n",m_touchingNormal[0],m_touchingNormal[1],m_touchingNormal[2]);
	return penetration;
}

void btKinematicCharacterController::stepUp ( btCollisionWorld* world)
{
	// phase 1: up
	btTransform start, end;
	m_targetPosition = m_currentPosition + getUpAxisDirections()[m_upAxis] * (m_stepHeight + (m_verticalOffset > 0.f?m_verticalOffset:0.f));

	start.setIdentity ();
	end.setIdentity ();

	/* FIXME: Handle penetration properly */
	start.setOrigin (m_currentPosition + getUpAxisDirections()[m_upAxis] * (m_convexShape->getMargin() + m_addedMargin));
	end.setOrigin (m_targetPosition);

	btKinematicClosestNotMeConvexResultCallback callback (m_ghostObject, -getUpAxisDirections()[m_upAxis], btScalar(0.7071));
	callback.m_collisionFilterGroup = getGhostObject()->getBroadphaseHandle()->m_collisionFilterGroup;
	callback.m_collisionFilterMask = getGhostObject()->getBroadphaseHandle()->m_collisionFilterMask;
	
	if (m_useGhostObjectSweepTest)
	{
		m_ghostObject->convexSweepTest (m_convexShape, start, end, callback, world->getDispatchInfo().m_allowedCcdPenetration);
	}
	else
	{
		world->convexSweepTest (m_convexShape, start, end, callback);
	}
	
	if (callback.hasHit())
	{
		// Only modify the position if the hit was a slope and not a wall or ceiling.
		if(callback.m_hitNormalWorld.dot(getUpAxisDirections()[m_upAxis]) > 0.0)
		{
			// we moved up only a fraction of the step height
			m_currentStepOffset = m_stepHeight * callback.m_closestHitFraction;
			if (m_interpolateUp == true)
				m_currentPosition.setInterpolate3 (m_currentPosition, m_targetPosition, callback.m_closestHitFraction);
			else
				m_currentPosition = m_targetPosition;
		}
		m_verticalVelocity = 0.0;
		m_verticalOffset = 0.0;
	} else {
		m_currentStepOffset = m_stepHeight;
		m_currentPosition = m_targetPosition;
	}
}

void btKinematicCharacterController::updateTargetPositionBasedOnCollision (const btVector3& hitNormal, btScalar tangentMag, btScalar normalMag)
{
	btVector3 movementDirection = m_targetPosition - m_currentPosition;
	btScalar movementLength = movementDirection.length();
	if (movementLength>SIMD_EPSILON)
	{
		movementDirection.normalize();

		btVector3 reflectDir = computeReflectionDirection (movementDirection, hitNormal);
		reflectDir.normalize();

		btVector3 parallelDir, perpindicularDir;

		parallelDir = parallelComponent (reflectDir, hitNormal);
		perpindicularDir = perpindicularComponent (reflectDir, hitNormal);

		m_targetPosition = m_currentPosition;
		if (0)//tangentMag != 0.0)
		{
			btVector3 parComponent = parallelDir * btScalar (tangentMag*movementLength);
//			printf("parComponent=%f,%f,%f\n",parComponent[0],parComponent[1],parComponent[2]);
			m_targetPosition +=  parComponent;
		}

		if (normalMag != 0.0)
		{
			btVector3 perpComponent = perpindicularDir * btScalar (normalMag*movementLength);
//			printf("perpComponent=%f,%f,%f\n",perpComponent[0],perpComponent[1],perpComponent[2]);
			m_targetPosition += perpComponent;
		}
	} else
	{
//		printf("movementLength don't normalize a zero vector\n");
	}
}

void btKinematicCharacterController::stepForwardAndStrafe ( btCollisionWorld* collisionWorld, const btVector3& walkMove)
{
	// printf("m_normalizedDirection=%f,%f,%f\n",
	// 	m_normalizedDirection[0],m_normalizedDirection[1],m_normalizedDirection[2]);
	// phase 2: forward and strafe
	btTransform start, end;
	m_targetPosition = m_currentPosition + walkMove;

	start.setIdentity ();
	end.setIdentity ();
	
	btScalar fraction = 1.0;
	btScalar distance2 = (m_currentPosition-m_targetPosition).length2();
//	printf("distance2=%f\n",distance2);

	if (m_touchingContact)
	{
		if (m_normalizedDirection.dot(m_touchingNormal) > btScalar(0.0))
		{
			//interferes with step movement
			//updateTargetPositionBasedOnCollision (m_touchingNormal);
		}
	}

	int maxIter = 10;

	while (fraction > btScalar(0.01) && maxIter-- > 0)
	{
		start.setOrigin (m_currentPosition);
		end.setOrigin (m_targetPosition);
		btVector3 sweepDirNegative(m_currentPosition - m_targetPosition);

		btKinematicClosestNotMeConvexResultCallback callback (m_ghostObject, sweepDirNegative, btScalar(0.0));
		callback.m_collisionFilterGroup = getGhostObject()->getBroadphaseHandle()->m_collisionFilterGroup;
		callback.m_collisionFilterMask = getGhostObject()->getBroadphaseHandle()->m_collisionFilterMask;


		btScalar margin = m_convexShape->getMargin();
		m_convexShape->setMargin(margin + m_addedMargin);


		if (m_useGhostObjectSweepTest)
		{
			m_ghostObject->convexSweepTest (m_convexShape, start, end, callback, collisionWorld->getDispatchInfo().m_allowedCcdPenetration);
		} else
		{
			collisionWorld->convexSweepTest (m_convexShape, start, end, callback, collisionWorld->getDispatchInfo().m_allowedCcdPenetration);
		}
		
		m_convexShape->setMargin(margin);

		
		fraction -= callback.m_closestHitFraction;

		if (callback.hasHit())
		{	
			// we moved only a fraction
			btScalar hitDistance;
			hitDistance = (callback.m_hitPointWorld - m_currentPosition).length();

//			m_currentPosition.setInterpolate3 (m_currentPosition, m_targetPosition, callback.m_closestHitFraction);

			updateTargetPositionBasedOnCollision (callback.m_hitNormalWorld);
			btVector3 currentDir = m_targetPosition - m_currentPosition;
			distance2 = currentDir.length2();
			if (distance2 > SIMD_EPSILON)
			{
				currentDir.normalize();
				/* See Quake2: "If velocity is against original velocity, stop ead to avoid tiny oscilations in sloping corners." */
				if (currentDir.dot(m_normalizedDirection) <= btScalar(0.0))
				{
					break;
				}
			} else
			{
//				printf("currentDir: don't normalize a zero vector\n");
				break;
			}

		} else {
			// we moved whole way
			m_currentPosition = m_targetPosition;
		}

	//	if (callback.m_closestHitFraction == 0.f)
	//		break;

	}
}

void btKinematicCharacterController::stepDown ( btCollisionWorld* collisionWorld, btScalar dt)
{
	btTransform start, end, end_double;
	bool runonce = false;

	// phase 3: down
	/*btScalar additionalDownStep = (m_wasOnGround && !onGround()) ? m_stepHeight : 0.0;
	btVector3 step_drop = getUpAxisDirections()[m_upAxis] * (m_currentStepOffset + additionalDownStep);
	btScalar downVelocity = (additionalDownStep == 0.0 && m_verticalVelocity<0.0?-m_verticalVelocity:0.0) * dt;
	btVector3 gravity_drop = getUpAxisDirections()[m_upAxis] * downVelocity; 
	m_targetPosition -= (step_drop + gravity_drop);*/

	btVector3 orig_position = m_targetPosition;
	
	btScalar downVelocity = (m_verticalVelocity<0.f?-m_verticalVelocity:0.f) * dt;

	if(downVelocity > 0.0 && downVelocity > m_fallSpeed
		&& (m_wasOnGround || !m_wasJumping))
		downVelocity = m_fallSpeed;

	btVector3 step_drop = getUpAxisDirections()[m_upAxis] * (m_currentStepOffset + downVelocity);
	m_targetPosition -= step_drop;

	btKinematicClosestNotMeConvexResultCallback callback (m_ghostObject, getUpAxisDirections()[m_upAxis], m_maxSlopeCosine);
        callback.m_collisionFilterGroup = getGhostObject()->getBroadphaseHandle()->m_collisionFilterGroup;
        callback.m_collisionFilterMask = getGhostObject()->getBroadphaseHandle()->m_collisionFilterMask;

        btKinematicClosestNotMeConvexResultCallback callback2 (m_ghostObject, getUpAxisDirections()[m_upAxis], m_maxSlopeCosine);
        callback2.m_collisionFilterGroup = getGhostObject()->getBroadphaseHandle()->m_collisionFilterGroup;
        callback2.m_collisionFilterMask = getGhostObject()->getBroadphaseHandle()->m_collisionFilterMask;

	while (1)
	{
		start.setIdentity ();
		end.setIdentity ();

		end_double.setIdentity ();

		start.setOrigin (m_currentPosition);
		end.setOrigin (m_targetPosition);

		//set double test for 2x the step drop, to check for a large drop vs small drop
		end_double.setOrigin (m_targetPosition - step_drop);

		if (m_useGhostObjectSweepTest)
		{
			m_ghostObject->convexSweepTest (m_convexShape, start, end, callback, collisionWorld->getDispatchInfo().m_allowedCcdPenetration);

			if (!callback.hasHit())
			{
				//test a double fall height, to see if the character should interpolate it's fall (full) or not (partial)
				m_ghostObject->convexSweepTest (m_convexShape, start, end_double, callback2, collisionWorld->getDispatchInfo().m_allowedCcdPenetration);
			}
		} else
		{
			collisionWorld->convexSweepTest (m_convexShape, start, end, callback, collisionWorld->getDispatchInfo().m_allowedCcdPenetration);

			if (!callback.hasHit())
					{
							//test a double fall height, to see if the character should interpolate it's fall (large) or not (small)
							collisionWorld->convexSweepTest (m_convexShape, start, end_double, callback2, collisionWorld->getDispatchInfo().m_allowedCcdPenetration);
					}
		}
	
		btScalar downVelocity2 = (m_verticalVelocity<0.f?-m_verticalVelocity:0.f) * dt;
		bool has_hit = false;
		if (bounce_fix == true)
			has_hit = callback.hasHit() || callback2.hasHit();
		else
			has_hit = callback2.hasHit();

		if(downVelocity2 > 0.0 && downVelocity2 < m_stepHeight && has_hit == true && runonce == false
					&& (m_wasOnGround || !m_wasJumping))
		{
			//redo the velocity calculation when falling a small amount, for fast stairs motion
			//for larger falls, use the smoother/slower interpolated movement by not touching the target position

			m_targetPosition = orig_position;
					downVelocity = m_stepHeight;

				btVector3 step_drop = getUpAxisDirections()[m_upAxis] * (m_currentStepOffset + downVelocity);
			m_targetPosition -= step_drop;
			runonce = true;
			continue; //re-run previous tests
		}
		break;
	}

	if (callback.hasHit() || runonce == true)
	{
		// we dropped a fraction of the height -> hit floor

		btScalar fraction = (m_currentPosition.getY() - callback.m_hitPointWorld.getY()) / 2;

		//printf("hitpoint: %g - pos %g\n", callback.m_hitPointWorld.getY(), m_currentPosition.getY());

		if (bounce_fix == true)
		{
			if (full_drop == true)
                                m_currentPosition.setInterpolate3 (m_currentPosition, m_targetPosition, callback.m_closestHitFraction);
                        else
                                //due to errors in the closestHitFraction variable when used with large polygons, calculate the hit fraction manually
                                m_currentPosition.setInterpolate3 (m_currentPosition, m_targetPosition, fraction);
		}
		else
			m_currentPosition.setInterpolate3 (m_currentPosition, m_targetPosition, callback.m_closestHitFraction);

		full_drop = false;

		m_verticalVelocity = 0.0;
		m_verticalOffset = 0.0;
		m_wasJumping = false;
	} else {
		// we dropped the full height
		
		full_drop = true;

		if (bounce_fix == true)
		{
			downVelocity = (m_verticalVelocity<0.f?-m_verticalVelocity:0.f) * dt;
			if (downVelocity > m_fallSpeed && (m_wasOnGround || !m_wasJumping))
			{
				m_targetPosition += step_drop; //undo previous target change
				downVelocity = m_fallSpeed;
				step_drop = getUpAxisDirections()[m_upAxis] * (m_currentStepOffset + downVelocity);
				m_targetPosition -= step_drop;
			}
		}
		//printf("full drop - %g, %g\n", m_currentPosition.getY(), m_targetPosition.getY());

		m_currentPosition = m_targetPosition;
	}
}



void btKinematicCharacterController::setWalkDirection
(
const btVector3& walkDirection
)
{
	m_useWalkDirection = true;
	m_walkDirection = walkDirection;
	m_normalizedDirection = getNormalizedVector(m_walkDirection);
}



void btKinematicCharacterController::setVelocityForTimeInterval
(
const btVector3& velocity,
btScalar timeInterval
)
{
//	printf("setVelocity!\n");
//	printf("  interval: %f\n", timeInterval);
//	printf("  velocity: (%f, %f, %f)\n",
//		 velocity.x(), velocity.y(), velocity.z());

	m_useWalkDirection = false;
	m_walkDirection = velocity;
	m_normalizedDirection = getNormalizedVector(m_walkDirection);
	m_velocityTimeInterval += timeInterval;
}

void btKinematicCharacterController::reset ( btCollisionWorld* collisionWorld )
{
        m_verticalVelocity = 0.0;
        m_verticalOffset = 0.0;
        m_wasOnGround = false;
        m_wasJumping = false;
        m_walkDirection.setValue(0,0,0);
        m_velocityTimeInterval = 0.0;

        //clear pair cache
        btHashedOverlappingPairCache *cache = m_ghostObject->getOverlappingPairCache();
        while (cache->getOverlappingPairArray().size() > 0)
        {
                cache->removeOverlappingPair(cache->getOverlappingPairArray()[0].m_pProxy0, cache->getOverlappingPairArray()[0].m_pProxy1, collisionWorld->getDispatcher());
        }
}

void btKinematicCharacterController::warp (const btVector3& origin)
{
	btTransform xform;
	xform.setIdentity();
	xform.setOrigin (origin);
	m_ghostObject->setWorldTransform (xform);
}


void btKinematicCharacterController::preStep (  btCollisionWorld* collisionWorld)
{
	
	int numPenetrationLoops = 0;
	m_touchingContact = false;
	while (recoverFromPenetration (collisionWorld))
	{
		numPenetrationLoops++;
		m_touchingContact = true;
		if (numPenetrationLoops > 4)
		{
			//printf("character could not recover from penetration = %d\n", numPenetrationLoops);
			break;
		}
	}

	m_currentPosition = m_ghostObject->getWorldTransform().getOrigin();
	m_targetPosition = m_currentPosition;
//	printf("m_targetPosition=%f,%f,%f\n",m_targetPosition[0],m_targetPosition[1],m_targetPosition[2]);

	
}

#include <stdio.h>

void btKinematicCharacterController::playerStep (  btCollisionWorld* collisionWorld, btScalar dt)
{
//	printf("playerStep(): ");
//	printf("  dt = %f", dt);

	// quick check...
	if (!m_useWalkDirection && m_velocityTimeInterval <= 0.0) {
//		printf("\n");
		return;		// no motion
	}

	m_wasOnGround = onGround();

	// Update fall velocity.
	m_verticalVelocity -= m_gravity * dt;
	if(m_verticalVelocity > 0.0 && m_verticalVelocity > m_jumpSpeed)
	{
		m_verticalVelocity = m_jumpSpeed;
	}
	if(m_verticalVelocity < 0.0 && btFabs(m_verticalVelocity) > btFabs(m_fallSpeed))
	{
		m_verticalVelocity = -btFabs(m_fallSpeed);
	}
	m_verticalOffset = m_verticalVelocity * dt;


	btTransform xform;
	xform = m_ghostObject->getWorldTransform ();

//	printf("walkDirection(%f,%f,%f)\n",walkDirection[0],walkDirection[1],walkDirection[2]);
//	printf("walkSpeed=%f\n",walkSpeed);

	stepUp (collisionWorld);
	if (m_useWalkDirection) {
		stepForwardAndStrafe (collisionWorld, m_walkDirection);
	} else {
		//printf("  time: %f", m_velocityTimeInterval);
		// still have some time left for moving!
		btScalar dtMoving =
			(dt < m_velocityTimeInterval) ? dt : m_velocityTimeInterval;
		m_velocityTimeInterval -= dt;

		// how far will we move while we are moving?
		btVector3 move = m_walkDirection * dtMoving;

		//printf("  dtMoving: %f", dtMoving);

		// okay, step
		stepForwardAndStrafe(collisionWorld, move);
	}
	stepDown (collisionWorld, dt);

	// printf("\n");

	xform.setOrigin (m_currentPosition);
	m_ghostObject->setWorldTransform (xform);
}

void btKinematicCharacterController::setFallSpeed (btScalar fallSpeed)
{
	m_fallSpeed = fallSpeed;
}

void btKinematicCharacterController::setJumpSpeed (btScalar jumpSpeed)
{
	m_jumpSpeed = jumpSpeed;
}

void btKinematicCharacterController::setMaxJumpHeight (btScalar maxJumpHeight)
{
	m_maxJumpHeight = maxJumpHeight;
}

bool btKinematicCharacterController::canJump () const
{
	return onGround();
}

void btKinematicCharacterController::jump ()
{
	if (!canJump())
		return;

	m_verticalVelocity = m_jumpSpeed;
	m_wasJumping = true;

#if 0
	currently no jumping.
	btTransform xform;
	m_rigidBody->getMotionState()->getWorldTransform (xform);
	btVector3 up = xform.getBasis()[1];
	up.normalize ();
	btScalar magnitude = (btScalar(1.0)/m_rigidBody->getInvMass()) * btScalar(8.0);
	m_rigidBody->applyCentralImpulse (up * magnitude);
#endif
}

void btKinematicCharacterController::setGravity(btScalar gravity)
{
	m_gravity = gravity;
}

btScalar btKinematicCharacterController::getGravity() const
{
	return m_gravity;
}

void btKinematicCharacterController::setMaxSlope(btScalar slopeRadians)
{
	m_maxSlopeRadians = slopeRadians;
	m_maxSlopeCosine = btCos(slopeRadians);
}

btScalar btKinematicCharacterController::getMaxSlope() const
{
	return m_maxSlopeRadians;
}

bool btKinematicCharacterController::onGround () const
{
	return m_verticalVelocity == 0.0 && m_verticalOffset == 0.0;
}


btVector3* btKinematicCharacterController::getUpAxisDirections()
{
	static btVector3 sUpAxisDirection[3] = { btVector3(1.0f, 0.0f, 0.0f), btVector3(0.0f, 1.0f, 0.0f), btVector3(0.0f, 0.0f, 1.0f) };
	
	return sUpAxisDirection;
}

void btKinematicCharacterController::debugDraw(btIDebugDraw* debugDrawer)
{
}

void btKinematicCharacterController::setUpInterpolate(bool value)
{
	m_interpolateUp = value;
}