Welcome to mirror list, hosted at ThFree Co, Russian Federation.

btGeneric6DofConstraint.cpp « ConstraintSolver « BulletDynamics « src « bullet2 « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 747d10d1f8b0deed7d895762b4d59ebcd21f859a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/


#include "btGeneric6DofConstraint.h"
#include "BulletDynamics/Dynamics/btRigidBody.h"
#include "LinearMath/btTransformUtil.h"
#include <new>

static const btScalar kSign[] = { btScalar(1.0), btScalar(-1.0), btScalar(1.0) };
static const int kAxisA[] = { 1, 0, 0 };
static const int kAxisB[] = { 2, 2, 1 };
#define GENERIC_D6_DISABLE_WARMSTARTING 1

btGeneric6DofConstraint::btGeneric6DofConstraint()
{
}

btGeneric6DofConstraint::btGeneric6DofConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB)
: btTypedConstraint(rbA, rbB)
, m_frameInA(frameInA)
, m_frameInB(frameInB)
{
	//free means upper < lower, 
	//locked means upper == lower
	//limited means upper > lower
	//so start all locked
	for (int i=0; i<6;++i)
	{
		m_lowerLimit[i] = btScalar(0.0);
		m_upperLimit[i] = btScalar(0.0);
		m_accumulatedImpulse[i] = btScalar(0.0);
	}

}


void btGeneric6DofConstraint::buildJacobian()
{
	btVector3	localNormalInA(0,0,0);

	const btVector3& pivotInA = m_frameInA.getOrigin();
	const btVector3& pivotInB = m_frameInB.getOrigin();

	btVector3 pivotAInW = m_rbA.getCenterOfMassTransform() * m_frameInA.getOrigin();
	btVector3 pivotBInW = m_rbB.getCenterOfMassTransform() * m_frameInB.getOrigin();

	btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition(); 
	btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition();

	int i;
	//linear part
	for (i=0;i<3;i++)
	{
		if (isLimited(i))
		{
			localNormalInA[i] = 1;
			btVector3 normalWorld = m_rbA.getCenterOfMassTransform().getBasis() * localNormalInA;

			
			// Create linear atom
			new (&m_jacLinear[i]) btJacobianEntry(
				m_rbA.getCenterOfMassTransform().getBasis().transpose(),
				m_rbB.getCenterOfMassTransform().getBasis().transpose(),
				m_rbA.getCenterOfMassTransform()*pivotInA - m_rbA.getCenterOfMassPosition(),
				m_rbB.getCenterOfMassTransform()*pivotInB - m_rbB.getCenterOfMassPosition(),
				normalWorld,
				m_rbA.getInvInertiaDiagLocal(),
				m_rbA.getInvMass(),
				m_rbB.getInvInertiaDiagLocal(),
				m_rbB.getInvMass());

			//optionally disable warmstarting
#ifdef GENERIC_D6_DISABLE_WARMSTARTING
			m_accumulatedImpulse[i] = btScalar(0.);
#endif //GENERIC_D6_DISABLE_WARMSTARTING

			// Apply accumulated impulse
			btVector3 impulse_vector = m_accumulatedImpulse[i] * normalWorld;

			m_rbA.applyImpulse( impulse_vector, rel_pos1);
			m_rbB.applyImpulse(-impulse_vector, rel_pos2);

			localNormalInA[i] = 0;
		}
	}

	// angular part
	for (i=0;i<3;i++)
	{
		if (isLimited(i+3))
		{
			btVector3 axisA = m_rbA.getCenterOfMassTransform().getBasis() * m_frameInA.getBasis().getColumn( kAxisA[i] );
			btVector3 axisB = m_rbB.getCenterOfMassTransform().getBasis() * m_frameInB.getBasis().getColumn( kAxisB[i] );

			// Dirk: This is IMO mathematically the correct way, but we should consider axisA and axisB being near parallel maybe
			btVector3 axis = kSign[i] * axisA.cross(axisB);

			// Create angular atom
			new (&m_jacAng[i])	btJacobianEntry(axis,
				m_rbA.getCenterOfMassTransform().getBasis().transpose(),
				m_rbB.getCenterOfMassTransform().getBasis().transpose(),
				m_rbA.getInvInertiaDiagLocal(),
				m_rbB.getInvInertiaDiagLocal());

#ifdef GENERIC_D6_DISABLE_WARMSTARTING
			m_accumulatedImpulse[i + 3] = btScalar(0.);
#endif //GENERIC_D6_DISABLE_WARMSTARTING

			// Apply accumulated impulse
			btVector3 impulse_vector = m_accumulatedImpulse[i + 3] * axis;

			m_rbA.applyTorqueImpulse( impulse_vector);
			m_rbB.applyTorqueImpulse(-impulse_vector);
		}
	}
}

btScalar getMatrixElem(const btMatrix3x3& mat,int index)
{
	int row = index%3;
	int col = index / 3;
	return mat[row][col];
}

///MatrixToEulerXYZ from http://www.geometrictools.com/LibFoundation/Mathematics/Wm4Matrix3.inl.html
bool	MatrixToEulerXYZ(const btMatrix3x3& mat,btVector3& xyz)
{
    // rot =  cy*cz          -cy*sz           sy
    //        cz*sx*sy+cx*sz  cx*cz-sx*sy*sz -cy*sx
    //       -cx*cz*sy+sx*sz  cz*sx+cx*sy*sz  cx*cy

///	0..8

	 if (getMatrixElem(mat,2) < btScalar(1.0))
    {
        if (getMatrixElem(mat,2) > btScalar(-1.0))
        {
            xyz[0] = btAtan2(-getMatrixElem(mat,5),getMatrixElem(mat,8));
            xyz[1] = btAsin(getMatrixElem(mat,2));
            xyz[2] = btAtan2(-getMatrixElem(mat,1),getMatrixElem(mat,0));
            return true;
        }
        else
        {
            // WARNING.  Not unique.  XA - ZA = -atan2(r10,r11)
            xyz[0] = -btAtan2(getMatrixElem(mat,3),getMatrixElem(mat,4));
            xyz[1] = -SIMD_HALF_PI;
            xyz[2] = btScalar(0.0);
            return false;
        }
    }
    else
    {
        // WARNING.  Not unique.  XAngle + ZAngle = atan2(r10,r11)
        xyz[0] = btAtan2(getMatrixElem(mat,3),getMatrixElem(mat,4));
        xyz[1] = SIMD_HALF_PI;
        xyz[2] = 0.0;
     
    }
	 
	return false;
}


void	btGeneric6DofConstraint::solveConstraint(btScalar	timeStep)
{
	btScalar tau = btScalar(0.1);
	btScalar damping = btScalar(1.0);

	btVector3 pivotAInW = m_rbA.getCenterOfMassTransform() * m_frameInA.getOrigin();
	btVector3 pivotBInW = m_rbB.getCenterOfMassTransform() * m_frameInB.getOrigin();

	btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition(); 
	btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition();
	
	btVector3 localNormalInA(0,0,0);
	int i;

	// linear
	for (i=0;i<3;i++)
	{		
		if (isLimited(i))
		{
			btVector3 angvelA = m_rbA.getCenterOfMassTransform().getBasis().transpose() * m_rbA.getAngularVelocity();
			btVector3 angvelB = m_rbB.getCenterOfMassTransform().getBasis().transpose() * m_rbB.getAngularVelocity();
		
			localNormalInA.setValue(0,0,0);
			localNormalInA[i] = 1;
			btVector3 normalWorld = m_rbA.getCenterOfMassTransform().getBasis() * localNormalInA;

			btScalar jacDiagABInv = btScalar(1.) / m_jacLinear[i].getDiagonal();

			//velocity error (first order error)
			btScalar rel_vel = m_jacLinear[i].getRelativeVelocity(m_rbA.getLinearVelocity(),angvelA, 
																	m_rbB.getLinearVelocity(),angvelB);
		
			//positional error (zeroth order error)
			btScalar depth = -(pivotAInW - pivotBInW).dot(normalWorld); 
			btScalar	lo = btScalar(-1e30);
			btScalar	hi = btScalar(1e30);
		
			//handle the limits
			if (m_lowerLimit[i] < m_upperLimit[i])
			{
				{
					if (depth > m_upperLimit[i])
					{
						depth -= m_upperLimit[i];
						lo = btScalar(0.);
					
					} else
					{
						if (depth < m_lowerLimit[i])
						{
							depth -= m_lowerLimit[i];
							hi = btScalar(0.);
						} else
						{
							continue;
						}
					}
				}
			}

			btScalar normalImpulse= (tau*depth/timeStep - damping*rel_vel) * jacDiagABInv;
			btScalar oldNormalImpulse = m_accumulatedImpulse[i];
			btScalar sum = oldNormalImpulse + normalImpulse;
			m_accumulatedImpulse[i] = sum > hi ? btScalar(0.) : sum < lo ? btScalar(0.) : sum;
			normalImpulse = m_accumulatedImpulse[i] - oldNormalImpulse;

			btVector3 impulse_vector = normalWorld * normalImpulse;
			m_rbA.applyImpulse( impulse_vector, rel_pos1);
			m_rbB.applyImpulse(-impulse_vector, rel_pos2);
			
			localNormalInA[i] = 0;
		}
	}

	btVector3	axis;
	btScalar	angle;
	btTransform	frameAWorld = m_rbA.getCenterOfMassTransform() * m_frameInA;
	btTransform	frameBWorld = m_rbB.getCenterOfMassTransform() * m_frameInB;

	btTransformUtil::calculateDiffAxisAngle(frameAWorld,frameBWorld,axis,angle);
	btQuaternion diff(axis,angle);
	btMatrix3x3 diffMat (diff);
	btVector3 xyz;
	///this is not perfect, we can first check which axis are limited, and choose a more appropriate order
	MatrixToEulerXYZ(diffMat,xyz);

	// angular
	for (i=0;i<3;i++)
	{
		if (isLimited(i+3))
		{
			btVector3 angvelA = m_rbA.getCenterOfMassTransform().getBasis().transpose() * m_rbA.getAngularVelocity();
			btVector3 angvelB = m_rbB.getCenterOfMassTransform().getBasis().transpose() * m_rbB.getAngularVelocity();
		
			btScalar jacDiagABInv = btScalar(1.) / m_jacAng[i].getDiagonal();
			
			//velocity error (first order error)
			btScalar rel_vel = m_jacAng[i].getRelativeVelocity(m_rbA.getLinearVelocity(),angvelA, 
																			m_rbB.getLinearVelocity(),angvelB);

			//positional error (zeroth order error)
			btVector3 axisA = m_rbA.getCenterOfMassTransform().getBasis() * m_frameInA.getBasis().getColumn( kAxisA[i] );
			btVector3 axisB = m_rbB.getCenterOfMassTransform().getBasis() * m_frameInB.getBasis().getColumn( kAxisB[i] );

			btScalar rel_pos = kSign[i] * axisA.dot(axisB);

			btScalar	lo = btScalar(-1e30);
			btScalar	hi = btScalar(1e30);
		
			//handle the twist limit
			if (m_lowerLimit[i+3] < m_upperLimit[i+3])
			{
				//clamp the values
				btScalar loLimit =  m_lowerLimit[i+3] > -3.1415 ? m_lowerLimit[i+3] : btScalar(-1e30);
				btScalar hiLimit = m_upperLimit[i+3] < 3.1415 ? m_upperLimit[i+3] : btScalar(1e30);

				btScalar projAngle  = btScalar(-1.)*xyz[i];
				
				if (projAngle < loLimit)
				{
					hi = btScalar(0.);
					rel_pos = (loLimit - projAngle);
				} else
				{
					if (projAngle > hiLimit)
					{
						lo = btScalar(0.);
						rel_pos = (hiLimit - projAngle);
					} else
					{
						continue;
					}
				}
			}
		
			//impulse
			
			btScalar normalImpulse= -(tau*rel_pos/timeStep + damping*rel_vel) * jacDiagABInv;
			btScalar oldNormalImpulse = m_accumulatedImpulse[i+3];
			btScalar sum = oldNormalImpulse + normalImpulse;
			m_accumulatedImpulse[i+3] = sum > hi ? btScalar(0.) : sum < lo ? btScalar(0.) : sum;
			normalImpulse = m_accumulatedImpulse[i+3] - oldNormalImpulse;
			
			// Dirk: Not needed - we could actually project onto Jacobian entry here (same as above)
			btVector3 axis = kSign[i] * axisA.cross(axisB);
			btVector3 impulse_vector = axis * normalImpulse;

			m_rbA.applyTorqueImpulse( impulse_vector);
			m_rbB.applyTorqueImpulse(-impulse_vector);
		}
	}
}

void	btGeneric6DofConstraint::updateRHS(btScalar	timeStep)
{
	(void)timeStep;

}

btScalar btGeneric6DofConstraint::computeAngle(int axis) const
	{
	btScalar angle = btScalar(0.f);

	switch (axis)
		{
		case 0:
			{
			btVector3 v1 = m_rbA.getCenterOfMassTransform().getBasis() * m_frameInA.getBasis().getColumn(1);
			btVector3 v2 = m_rbB.getCenterOfMassTransform().getBasis() * m_frameInB.getBasis().getColumn(1);
			btVector3 w2 = m_rbB.getCenterOfMassTransform().getBasis() * m_frameInB.getBasis().getColumn(2);

			btScalar s = v1.dot(w2);
			btScalar c = v1.dot(v2);

			angle = btAtan2( s, c );
			}
			break;

		case 1:
			{
			btVector3 w1 = m_rbA.getCenterOfMassTransform().getBasis() * m_frameInA.getBasis().getColumn(2);
			btVector3 w2 = m_rbB.getCenterOfMassTransform().getBasis() * m_frameInB.getBasis().getColumn(2);
			btVector3 u2 = m_rbB.getCenterOfMassTransform().getBasis() * m_frameInB.getBasis().getColumn(0);

			btScalar s = w1.dot(u2);
			btScalar c = w1.dot(w2);

			angle = btAtan2( s, c );
			}
			break;

		case 2:
			{
			btVector3 u1 = m_rbA.getCenterOfMassTransform().getBasis() * m_frameInA.getBasis().getColumn(0);
			btVector3 u2 = m_rbB.getCenterOfMassTransform().getBasis() * m_frameInB.getBasis().getColumn(0);
			btVector3 v2 = m_rbB.getCenterOfMassTransform().getBasis() * m_frameInB.getBasis().getColumn(1);

			btScalar s = u1.dot(v2);
			btScalar c = u1.dot(u2);

			angle = btAtan2( s, c );
			}
			break;
                  default: 
					  btAssert ( 0 ) ; 
					  
					  break ;
		}

		return angle;
	}