Welcome to mirror list, hosted at ThFree Co, Russian Federation.

btHingeConstraint.cpp « ConstraintSolver « BulletDynamics « src « bullet2 « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: b6b343058041641eb1ba80e5ed24f5c9efda93c8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/


#include "btHingeConstraint.h"
#include "BulletDynamics/Dynamics/btRigidBody.h"
#include "LinearMath/btTransformUtil.h"
#include "LinearMath/btMinMax.h"
#include <new>
#include "btSolverBody.h"

//-----------------------------------------------------------------------------

#define HINGE_USE_OBSOLETE_SOLVER false

//-----------------------------------------------------------------------------


btHingeConstraint::btHingeConstraint()
: btTypedConstraint (HINGE_CONSTRAINT_TYPE),
m_enableAngularMotor(false),
m_useSolveConstraintObsolete(HINGE_USE_OBSOLETE_SOLVER),
m_useReferenceFrameA(false)
{
	m_referenceSign = m_useReferenceFrameA ? btScalar(-1.f) : btScalar(1.f);
}

//-----------------------------------------------------------------------------

btHingeConstraint::btHingeConstraint(btRigidBody& rbA,btRigidBody& rbB, const btVector3& pivotInA,const btVector3& pivotInB,
									 btVector3& axisInA,btVector3& axisInB, bool useReferenceFrameA)
									 :btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA,rbB),
									 m_angularOnly(false),
									 m_enableAngularMotor(false),
									 m_useSolveConstraintObsolete(HINGE_USE_OBSOLETE_SOLVER),
									 m_useReferenceFrameA(useReferenceFrameA)
{
	m_rbAFrame.getOrigin() = pivotInA;
	
	// since no frame is given, assume this to be zero angle and just pick rb transform axis
	btVector3 rbAxisA1 = rbA.getCenterOfMassTransform().getBasis().getColumn(0);

	btVector3 rbAxisA2;
	btScalar projection = axisInA.dot(rbAxisA1);
	if (projection >= 1.0f - SIMD_EPSILON) {
		rbAxisA1 = -rbA.getCenterOfMassTransform().getBasis().getColumn(2);
		rbAxisA2 = rbA.getCenterOfMassTransform().getBasis().getColumn(1);
	} else if (projection <= -1.0f + SIMD_EPSILON) {
		rbAxisA1 = rbA.getCenterOfMassTransform().getBasis().getColumn(2);
		rbAxisA2 = rbA.getCenterOfMassTransform().getBasis().getColumn(1);      
	} else {
		rbAxisA2 = axisInA.cross(rbAxisA1);
		rbAxisA1 = rbAxisA2.cross(axisInA);
	}

	m_rbAFrame.getBasis().setValue( rbAxisA1.getX(),rbAxisA2.getX(),axisInA.getX(),
									rbAxisA1.getY(),rbAxisA2.getY(),axisInA.getY(),
									rbAxisA1.getZ(),rbAxisA2.getZ(),axisInA.getZ() );

	btQuaternion rotationArc = shortestArcQuat(axisInA,axisInB);
	btVector3 rbAxisB1 =  quatRotate(rotationArc,rbAxisA1);
	btVector3 rbAxisB2 =  axisInB.cross(rbAxisB1);	
	
	m_rbBFrame.getOrigin() = pivotInB;
	m_rbBFrame.getBasis().setValue( rbAxisB1.getX(),rbAxisB2.getX(),axisInB.getX(),
									rbAxisB1.getY(),rbAxisB2.getY(),axisInB.getY(),
									rbAxisB1.getZ(),rbAxisB2.getZ(),axisInB.getZ() );
	
	//start with free
	m_lowerLimit = btScalar(1e30);
	m_upperLimit = btScalar(-1e30);
	m_biasFactor = 0.3f;
	m_relaxationFactor = 1.0f;
	m_limitSoftness = 0.9f;
	m_solveLimit = false;
	m_referenceSign = m_useReferenceFrameA ? btScalar(-1.f) : btScalar(1.f);
}

//-----------------------------------------------------------------------------

btHingeConstraint::btHingeConstraint(btRigidBody& rbA,const btVector3& pivotInA,btVector3& axisInA, bool useReferenceFrameA)
:btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA), m_angularOnly(false), m_enableAngularMotor(false), 
m_useSolveConstraintObsolete(HINGE_USE_OBSOLETE_SOLVER),
m_useReferenceFrameA(useReferenceFrameA)
{

	// since no frame is given, assume this to be zero angle and just pick rb transform axis
	// fixed axis in worldspace
	btVector3 rbAxisA1, rbAxisA2;
	btPlaneSpace1(axisInA, rbAxisA1, rbAxisA2);

	m_rbAFrame.getOrigin() = pivotInA;
	m_rbAFrame.getBasis().setValue( rbAxisA1.getX(),rbAxisA2.getX(),axisInA.getX(),
									rbAxisA1.getY(),rbAxisA2.getY(),axisInA.getY(),
									rbAxisA1.getZ(),rbAxisA2.getZ(),axisInA.getZ() );

	btVector3 axisInB = rbA.getCenterOfMassTransform().getBasis() * axisInA;

	btQuaternion rotationArc = shortestArcQuat(axisInA,axisInB);
	btVector3 rbAxisB1 =  quatRotate(rotationArc,rbAxisA1);
	btVector3 rbAxisB2 = axisInB.cross(rbAxisB1);


	m_rbBFrame.getOrigin() = rbA.getCenterOfMassTransform()(pivotInA);
	m_rbBFrame.getBasis().setValue( rbAxisB1.getX(),rbAxisB2.getX(),axisInB.getX(),
									rbAxisB1.getY(),rbAxisB2.getY(),axisInB.getY(),
									rbAxisB1.getZ(),rbAxisB2.getZ(),axisInB.getZ() );
	
	//start with free
	m_lowerLimit = btScalar(1e30);
	m_upperLimit = btScalar(-1e30);
	m_biasFactor = 0.3f;
	m_relaxationFactor = 1.0f;
	m_limitSoftness = 0.9f;
	m_solveLimit = false;
	m_referenceSign = m_useReferenceFrameA ? btScalar(-1.f) : btScalar(1.f);
}

//-----------------------------------------------------------------------------

btHingeConstraint::btHingeConstraint(btRigidBody& rbA,btRigidBody& rbB, 
								     const btTransform& rbAFrame, const btTransform& rbBFrame, bool useReferenceFrameA)
:btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA,rbB),m_rbAFrame(rbAFrame),m_rbBFrame(rbBFrame),
m_angularOnly(false),
m_enableAngularMotor(false),
m_useSolveConstraintObsolete(HINGE_USE_OBSOLETE_SOLVER),
m_useReferenceFrameA(useReferenceFrameA)
{
	//start with free
	m_lowerLimit = btScalar(1e30);
	m_upperLimit = btScalar(-1e30);
	m_biasFactor = 0.3f;
	m_relaxationFactor = 1.0f;
	m_limitSoftness = 0.9f;
	m_solveLimit = false;
	m_referenceSign = m_useReferenceFrameA ? btScalar(-1.f) : btScalar(1.f);
}			

//-----------------------------------------------------------------------------

btHingeConstraint::btHingeConstraint(btRigidBody& rbA, const btTransform& rbAFrame, bool useReferenceFrameA)
:btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA),m_rbAFrame(rbAFrame),m_rbBFrame(rbAFrame),
m_angularOnly(false),
m_enableAngularMotor(false),
m_useSolveConstraintObsolete(HINGE_USE_OBSOLETE_SOLVER),
m_useReferenceFrameA(useReferenceFrameA)
{
	///not providing rigidbody B means implicitly using worldspace for body B

	m_rbBFrame.getOrigin() = m_rbA.getCenterOfMassTransform()(m_rbAFrame.getOrigin());

	//start with free
	m_lowerLimit = btScalar(1e30);
	m_upperLimit = btScalar(-1e30);	
	m_biasFactor = 0.3f;
	m_relaxationFactor = 1.0f;
	m_limitSoftness = 0.9f;
	m_solveLimit = false;
	m_referenceSign = m_useReferenceFrameA ? btScalar(-1.f) : btScalar(1.f);
}

//-----------------------------------------------------------------------------

void	btHingeConstraint::buildJacobian()
{
	if (m_useSolveConstraintObsolete)
	{
		m_appliedImpulse = btScalar(0.);

		if (!m_angularOnly)
		{
			btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin();
			btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin();
			btVector3 relPos = pivotBInW - pivotAInW;

			btVector3 normal[3];
			if (relPos.length2() > SIMD_EPSILON)
			{
				normal[0] = relPos.normalized();
			}
			else
			{
				normal[0].setValue(btScalar(1.0),0,0);
			}

			btPlaneSpace1(normal[0], normal[1], normal[2]);

			for (int i=0;i<3;i++)
			{
				new (&m_jac[i]) btJacobianEntry(
				m_rbA.getCenterOfMassTransform().getBasis().transpose(),
				m_rbB.getCenterOfMassTransform().getBasis().transpose(),
				pivotAInW - m_rbA.getCenterOfMassPosition(),
				pivotBInW - m_rbB.getCenterOfMassPosition(),
				normal[i],
				m_rbA.getInvInertiaDiagLocal(),
				m_rbA.getInvMass(),
				m_rbB.getInvInertiaDiagLocal(),
				m_rbB.getInvMass());
			}
		}

		//calculate two perpendicular jointAxis, orthogonal to hingeAxis
		//these two jointAxis require equal angular velocities for both bodies

		//this is unused for now, it's a todo
		btVector3 jointAxis0local;
		btVector3 jointAxis1local;
		
		btPlaneSpace1(m_rbAFrame.getBasis().getColumn(2),jointAxis0local,jointAxis1local);

		getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2);
		btVector3 jointAxis0 = getRigidBodyA().getCenterOfMassTransform().getBasis() * jointAxis0local;
		btVector3 jointAxis1 = getRigidBodyA().getCenterOfMassTransform().getBasis() * jointAxis1local;
		btVector3 hingeAxisWorld = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2);
			
		new (&m_jacAng[0])	btJacobianEntry(jointAxis0,
			m_rbA.getCenterOfMassTransform().getBasis().transpose(),
			m_rbB.getCenterOfMassTransform().getBasis().transpose(),
			m_rbA.getInvInertiaDiagLocal(),
			m_rbB.getInvInertiaDiagLocal());

		new (&m_jacAng[1])	btJacobianEntry(jointAxis1,
			m_rbA.getCenterOfMassTransform().getBasis().transpose(),
			m_rbB.getCenterOfMassTransform().getBasis().transpose(),
			m_rbA.getInvInertiaDiagLocal(),
			m_rbB.getInvInertiaDiagLocal());

		new (&m_jacAng[2])	btJacobianEntry(hingeAxisWorld,
			m_rbA.getCenterOfMassTransform().getBasis().transpose(),
			m_rbB.getCenterOfMassTransform().getBasis().transpose(),
			m_rbA.getInvInertiaDiagLocal(),
			m_rbB.getInvInertiaDiagLocal());

			// clear accumulator
			m_accLimitImpulse = btScalar(0.);

			// test angular limit
			testLimit();

		//Compute K = J*W*J' for hinge axis
		btVector3 axisA =  getRigidBodyA().getCenterOfMassTransform().getBasis() *  m_rbAFrame.getBasis().getColumn(2);
		m_kHinge =   1.0f / (getRigidBodyA().computeAngularImpulseDenominator(axisA) +
							 getRigidBodyB().computeAngularImpulseDenominator(axisA));

	}
}

//-----------------------------------------------------------------------------

void btHingeConstraint::getInfo1(btConstraintInfo1* info)
{
	if (m_useSolveConstraintObsolete)
	{
		info->m_numConstraintRows = 0;
		info->nub = 0;
	}
	else
	{
		info->m_numConstraintRows = 5; // Fixed 3 linear + 2 angular
		info->nub = 1; 
		//prepare constraint
		testLimit();
		if(getSolveLimit() || getEnableAngularMotor())
		{
			info->m_numConstraintRows++; // limit 3rd anguar as well
			info->nub--; 
		}
	}
} // btHingeConstraint::getInfo1 ()

//-----------------------------------------------------------------------------

void btHingeConstraint::getInfo2 (btConstraintInfo2* info)
{
	btAssert(!m_useSolveConstraintObsolete);
	int i, s = info->rowskip;
	// transforms in world space
	btTransform trA = m_rbA.getCenterOfMassTransform()*m_rbAFrame;
	btTransform trB = m_rbB.getCenterOfMassTransform()*m_rbBFrame;
	// pivot point
	btVector3 pivotAInW = trA.getOrigin();
	btVector3 pivotBInW = trB.getOrigin();
	// linear (all fixed)
    info->m_J1linearAxis[0] = 1;
    info->m_J1linearAxis[s + 1] = 1;
    info->m_J1linearAxis[2 * s + 2] = 1;
	btVector3 a1 = pivotAInW - m_rbA.getCenterOfMassTransform().getOrigin();
	{
		btVector3* angular0 = (btVector3*)(info->m_J1angularAxis);
		btVector3* angular1 = (btVector3*)(info->m_J1angularAxis + s);
		btVector3* angular2 = (btVector3*)(info->m_J1angularAxis + 2 * s);
		btVector3 a1neg = -a1;
		a1neg.getSkewSymmetricMatrix(angular0,angular1,angular2);
	}
	btVector3 a2 = pivotBInW - m_rbB.getCenterOfMassTransform().getOrigin();
	{
		btVector3* angular0 = (btVector3*)(info->m_J2angularAxis);
		btVector3* angular1 = (btVector3*)(info->m_J2angularAxis + s);
		btVector3* angular2 = (btVector3*)(info->m_J2angularAxis + 2 * s);
		a2.getSkewSymmetricMatrix(angular0,angular1,angular2);
	}
	// linear RHS
    btScalar k = info->fps * info->erp;
	for(i = 0; i < 3; i++)
    {
        info->m_constraintError[i * s] = k * (pivotBInW[i] - pivotAInW[i]);
    }
	// make rotations around X and Y equal
	// the hinge axis should be the only unconstrained
	// rotational axis, the angular velocity of the two bodies perpendicular to
	// the hinge axis should be equal. thus the constraint equations are
	//    p*w1 - p*w2 = 0
	//    q*w1 - q*w2 = 0
	// where p and q are unit vectors normal to the hinge axis, and w1 and w2
	// are the angular velocity vectors of the two bodies.
	// get hinge axis (Z)
	btVector3 ax1 = trA.getBasis().getColumn(2);
	// get 2 orthos to hinge axis (X, Y)
	btVector3 p = trA.getBasis().getColumn(0);
	btVector3 q = trA.getBasis().getColumn(1);
	// set the two hinge angular rows 
    int s3 = 3 * info->rowskip;
    int s4 = 4 * info->rowskip;

	info->m_J1angularAxis[s3 + 0] = p[0];
	info->m_J1angularAxis[s3 + 1] = p[1];
	info->m_J1angularAxis[s3 + 2] = p[2];
	info->m_J1angularAxis[s4 + 0] = q[0];
	info->m_J1angularAxis[s4 + 1] = q[1];
	info->m_J1angularAxis[s4 + 2] = q[2];

	info->m_J2angularAxis[s3 + 0] = -p[0];
	info->m_J2angularAxis[s3 + 1] = -p[1];
	info->m_J2angularAxis[s3 + 2] = -p[2];
	info->m_J2angularAxis[s4 + 0] = -q[0];
	info->m_J2angularAxis[s4 + 1] = -q[1];
	info->m_J2angularAxis[s4 + 2] = -q[2];
    // compute the right hand side of the constraint equation. set relative
    // body velocities along p and q to bring the hinge back into alignment.
    // if ax1,ax2 are the unit length hinge axes as computed from body1 and
    // body2, we need to rotate both bodies along the axis u = (ax1 x ax2).
    // if `theta' is the angle between ax1 and ax2, we need an angular velocity
    // along u to cover angle erp*theta in one step :
    //   |angular_velocity| = angle/time = erp*theta / stepsize
    //                      = (erp*fps) * theta
    //    angular_velocity  = |angular_velocity| * (ax1 x ax2) / |ax1 x ax2|
    //                      = (erp*fps) * theta * (ax1 x ax2) / sin(theta)
    // ...as ax1 and ax2 are unit length. if theta is smallish,
    // theta ~= sin(theta), so
    //    angular_velocity  = (erp*fps) * (ax1 x ax2)
    // ax1 x ax2 is in the plane space of ax1, so we project the angular
    // velocity to p and q to find the right hand side.
    btVector3 ax2 = trB.getBasis().getColumn(2);
	btVector3 u = ax1.cross(ax2);
	info->m_constraintError[s3] = k * u.dot(p);
	info->m_constraintError[s4] = k * u.dot(q);
	// check angular limits
	int nrow = 4; // last filled row
	int srow;
	btScalar limit_err = btScalar(0.0);
	int limit = 0;
	if(getSolveLimit())
	{
		limit_err = m_correction * m_referenceSign;
		limit = (limit_err > btScalar(0.0)) ? 1 : 2;
	}
	// if the hinge has joint limits or motor, add in the extra row
	int powered = 0;
	if(getEnableAngularMotor())
	{
		powered = 1;
	}
	if(limit || powered) 
	{
		nrow++;
		srow = nrow * info->rowskip;
		info->m_J1angularAxis[srow+0] = ax1[0];
		info->m_J1angularAxis[srow+1] = ax1[1];
		info->m_J1angularAxis[srow+2] = ax1[2];

		info->m_J2angularAxis[srow+0] = -ax1[0];
		info->m_J2angularAxis[srow+1] = -ax1[1];
		info->m_J2angularAxis[srow+2] = -ax1[2];

		btScalar lostop = getLowerLimit();
		btScalar histop = getUpperLimit();
		if(limit && (lostop == histop))
		{  // the joint motor is ineffective
			powered = 0;
		}
		info->m_constraintError[srow] = btScalar(0.0f);
		if(powered)
		{
            info->cfm[srow] = btScalar(0.0); 
			btScalar mot_fact = getMotorFactor(m_hingeAngle, lostop, histop, m_motorTargetVelocity, info->fps * info->erp);
			info->m_constraintError[srow] += mot_fact * m_motorTargetVelocity * m_referenceSign;
			info->m_lowerLimit[srow] = - m_maxMotorImpulse;
			info->m_upperLimit[srow] =   m_maxMotorImpulse;
		}
		if(limit)
		{
			k = info->fps * info->erp;
			info->m_constraintError[srow] += k * limit_err;
			info->cfm[srow] = btScalar(0.0);
			if(lostop == histop) 
			{
				// limited low and high simultaneously
				info->m_lowerLimit[srow] = -SIMD_INFINITY;
				info->m_upperLimit[srow] = SIMD_INFINITY;
			}
			else if(limit == 1) 
			{ // low limit
				info->m_lowerLimit[srow] = 0;
				info->m_upperLimit[srow] = SIMD_INFINITY;
			}
			else 
			{ // high limit
				info->m_lowerLimit[srow] = -SIMD_INFINITY;
				info->m_upperLimit[srow] = 0;
			}
			// bounce (we'll use slider parameter abs(1.0 - m_dampingLimAng) for that)
			btScalar bounce = m_relaxationFactor;
			if(bounce > btScalar(0.0))
			{
				btScalar vel = m_rbA.getAngularVelocity().dot(ax1);
				vel -= m_rbB.getAngularVelocity().dot(ax1);
				// only apply bounce if the velocity is incoming, and if the
				// resulting c[] exceeds what we already have.
				if(limit == 1)
				{	// low limit
					if(vel < 0)
					{
						btScalar newc = -bounce * vel;
						if(newc > info->m_constraintError[srow])
						{
							info->m_constraintError[srow] = newc;
						}
					}
				}
				else
				{	// high limit - all those computations are reversed
					if(vel > 0)
					{
						btScalar newc = -bounce * vel;
						if(newc < info->m_constraintError[srow])
						{
							info->m_constraintError[srow] = newc;
						}
					}
				}
			}
			info->m_constraintError[srow] *= m_biasFactor;
		} // if(limit)
	} // if angular limit or powered
}

//-----------------------------------------------------------------------------

void	btHingeConstraint::solveConstraintObsolete(btSolverBody& bodyA,btSolverBody& bodyB,btScalar	timeStep)
{

	///for backwards compatibility during the transition to 'getInfo/getInfo2'
	if (m_useSolveConstraintObsolete)
	{

		btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin();
		btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin();

		btScalar tau = btScalar(0.3);

		//linear part
		if (!m_angularOnly)
		{
			btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition(); 
			btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition();

			btVector3 vel1,vel2;
			bodyA.getVelocityInLocalPointObsolete(rel_pos1,vel1);
			bodyB.getVelocityInLocalPointObsolete(rel_pos2,vel2);
			btVector3 vel = vel1 - vel2;

			for (int i=0;i<3;i++)
			{		
				const btVector3& normal = m_jac[i].m_linearJointAxis;
				btScalar jacDiagABInv = btScalar(1.) / m_jac[i].getDiagonal();

				btScalar rel_vel;
				rel_vel = normal.dot(vel);
				//positional error (zeroth order error)
				btScalar depth = -(pivotAInW - pivotBInW).dot(normal); //this is the error projected on the normal
				btScalar impulse = depth*tau/timeStep  * jacDiagABInv -  rel_vel * jacDiagABInv;
				m_appliedImpulse += impulse;
				btVector3 impulse_vector = normal * impulse;
				btVector3 ftorqueAxis1 = rel_pos1.cross(normal);
				btVector3 ftorqueAxis2 = rel_pos2.cross(normal);
				bodyA.applyImpulse(normal*m_rbA.getInvMass(), m_rbA.getInvInertiaTensorWorld()*ftorqueAxis1,impulse);
				bodyB.applyImpulse(normal*m_rbB.getInvMass(), m_rbB.getInvInertiaTensorWorld()*ftorqueAxis2,-impulse);
			}
		}

		
		{
			///solve angular part

			// get axes in world space
			btVector3 axisA =  getRigidBodyA().getCenterOfMassTransform().getBasis() *  m_rbAFrame.getBasis().getColumn(2);
			btVector3 axisB =  getRigidBodyB().getCenterOfMassTransform().getBasis() *  m_rbBFrame.getBasis().getColumn(2);

			btVector3 angVelA;
			bodyA.getAngularVelocity(angVelA);
			btVector3 angVelB;
			bodyB.getAngularVelocity(angVelB);

			btVector3 angVelAroundHingeAxisA = axisA * axisA.dot(angVelA);
			btVector3 angVelAroundHingeAxisB = axisB * axisB.dot(angVelB);

			btVector3 angAorthog = angVelA - angVelAroundHingeAxisA;
			btVector3 angBorthog = angVelB - angVelAroundHingeAxisB;
			btVector3 velrelOrthog = angAorthog-angBorthog;
			{
				

				//solve orthogonal angular velocity correction
				btScalar relaxation = btScalar(1.);
				btScalar len = velrelOrthog.length();
				if (len > btScalar(0.00001))
				{
					btVector3 normal = velrelOrthog.normalized();
					btScalar denom = getRigidBodyA().computeAngularImpulseDenominator(normal) +
						getRigidBodyB().computeAngularImpulseDenominator(normal);
					// scale for mass and relaxation
					//velrelOrthog *= (btScalar(1.)/denom) * m_relaxationFactor;

					bodyA.applyImpulse(btVector3(0,0,0), m_rbA.getInvInertiaTensorWorld()*velrelOrthog,-(btScalar(1.)/denom));
					bodyB.applyImpulse(btVector3(0,0,0), m_rbB.getInvInertiaTensorWorld()*velrelOrthog,(btScalar(1.)/denom));

				}

				//solve angular positional correction
				btVector3 angularError =  axisA.cross(axisB) *(btScalar(1.)/timeStep);
				btScalar len2 = angularError.length();
				if (len2>btScalar(0.00001))
				{
					btVector3 normal2 = angularError.normalized();
					btScalar denom2 = getRigidBodyA().computeAngularImpulseDenominator(normal2) +
							getRigidBodyB().computeAngularImpulseDenominator(normal2);
					//angularError *= (btScalar(1.)/denom2) * relaxation;
					
					bodyA.applyImpulse(btVector3(0,0,0), m_rbA.getInvInertiaTensorWorld()*angularError,(btScalar(1.)/denom2));
					bodyB.applyImpulse(btVector3(0,0,0), m_rbB.getInvInertiaTensorWorld()*angularError,-(btScalar(1.)/denom2));

				}
				
				



				// solve limit
				if (m_solveLimit)
				{
					btScalar amplitude = ( (angVelB - angVelA).dot( axisA )*m_relaxationFactor + m_correction* (btScalar(1.)/timeStep)*m_biasFactor  ) * m_limitSign;

					btScalar impulseMag = amplitude * m_kHinge;

					// Clamp the accumulated impulse
					btScalar temp = m_accLimitImpulse;
					m_accLimitImpulse = btMax(m_accLimitImpulse + impulseMag, btScalar(0) );
					impulseMag = m_accLimitImpulse - temp;


					
					bodyA.applyImpulse(btVector3(0,0,0), m_rbA.getInvInertiaTensorWorld()*axisA,impulseMag * m_limitSign);
					bodyB.applyImpulse(btVector3(0,0,0), m_rbB.getInvInertiaTensorWorld()*axisA,-(impulseMag * m_limitSign));

				}
			}

			//apply motor
			if (m_enableAngularMotor) 
			{
				//todo: add limits too
				btVector3 angularLimit(0,0,0);

				btVector3 velrel = angVelAroundHingeAxisA - angVelAroundHingeAxisB;
				btScalar projRelVel = velrel.dot(axisA);

				btScalar desiredMotorVel = m_motorTargetVelocity;
				btScalar motor_relvel = desiredMotorVel - projRelVel;

				btScalar unclippedMotorImpulse = m_kHinge * motor_relvel;;
				//todo: should clip against accumulated impulse
				btScalar clippedMotorImpulse = unclippedMotorImpulse > m_maxMotorImpulse ? m_maxMotorImpulse : unclippedMotorImpulse;
				clippedMotorImpulse = clippedMotorImpulse < -m_maxMotorImpulse ? -m_maxMotorImpulse : clippedMotorImpulse;
				btVector3 motorImp = clippedMotorImpulse * axisA;
			
				bodyA.applyImpulse(btVector3(0,0,0), m_rbA.getInvInertiaTensorWorld()*axisA,clippedMotorImpulse);
				bodyB.applyImpulse(btVector3(0,0,0), m_rbB.getInvInertiaTensorWorld()*axisA,-clippedMotorImpulse);
				
			}
		}
	}

}

//-----------------------------------------------------------------------------

void	btHingeConstraint::updateRHS(btScalar	timeStep)
{
	(void)timeStep;

}

//-----------------------------------------------------------------------------

btScalar btHingeConstraint::getHingeAngle()
{
	const btVector3 refAxis0  = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(0);
	const btVector3 refAxis1  = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(1);
	const btVector3 swingAxis = getRigidBodyB().getCenterOfMassTransform().getBasis() * m_rbBFrame.getBasis().getColumn(1);
	btScalar angle = btAtan2Fast(swingAxis.dot(refAxis0), swingAxis.dot(refAxis1));
	return m_referenceSign * angle;
}

//-----------------------------------------------------------------------------

void btHingeConstraint::testLimit()
{
	// Compute limit information
	m_hingeAngle = getHingeAngle();  
	m_correction = btScalar(0.);
	m_limitSign = btScalar(0.);
	m_solveLimit = false;
	if (m_lowerLimit <= m_upperLimit)
	{
		if (m_hingeAngle <= m_lowerLimit)
		{
			m_correction = (m_lowerLimit - m_hingeAngle);
			m_limitSign = 1.0f;
			m_solveLimit = true;
		} 
		else if (m_hingeAngle >= m_upperLimit)
		{
			m_correction = m_upperLimit - m_hingeAngle;
			m_limitSign = -1.0f;
			m_solveLimit = true;
		}
	}
	return;
} // btHingeConstraint::testLimit()

//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------