Welcome to mirror list, hosted at ThFree Co, Russian Federation.

btHingeConstraint.cpp « ConstraintSolver « BulletDynamics « src « bullet2 « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: a0523a8c76b0a6bce5670f5a040d151128da182b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/


#include "btHingeConstraint.h"
#include "BulletDynamics/Dynamics/btRigidBody.h"
#include "LinearMath/btTransformUtil.h"
#include "LinearMath/btMinMax.h"
#include <new>


btHingeConstraint::btHingeConstraint()
: btTypedConstraint (HINGE_CONSTRAINT_TYPE),
m_enableAngularMotor(false)
{
}

btHingeConstraint::btHingeConstraint(btRigidBody& rbA,btRigidBody& rbB, const btVector3& pivotInA,const btVector3& pivotInB,
									 btVector3& axisInA,btVector3& axisInB)
									 :btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA,rbB),
									 m_angularOnly(false),
									 m_enableAngularMotor(false)
{
	m_rbAFrame.getOrigin() = pivotInA;
	
	// since no frame is given, assume this to be zero angle and just pick rb transform axis
	btVector3 rbAxisA1 = rbA.getCenterOfMassTransform().getBasis().getColumn(0);

	btVector3 rbAxisA2;
	btScalar projection = axisInA.dot(rbAxisA1);
	if (projection >= 1.0f - SIMD_EPSILON) {
		rbAxisA1 = -rbA.getCenterOfMassTransform().getBasis().getColumn(2);
		rbAxisA2 = rbA.getCenterOfMassTransform().getBasis().getColumn(1);
	} else if (projection <= -1.0f + SIMD_EPSILON) {
		rbAxisA1 = rbA.getCenterOfMassTransform().getBasis().getColumn(2);
		rbAxisA2 = rbA.getCenterOfMassTransform().getBasis().getColumn(1);      
	} else {
		rbAxisA2 = axisInA.cross(rbAxisA1);
		rbAxisA1 = rbAxisA2.cross(axisInA);
	}

	m_rbAFrame.getBasis().setValue( rbAxisA1.getX(),rbAxisA2.getX(),axisInA.getX(),
									rbAxisA1.getY(),rbAxisA2.getY(),axisInA.getY(),
									rbAxisA1.getZ(),rbAxisA2.getZ(),axisInA.getZ() );

	btQuaternion rotationArc = shortestArcQuat(axisInA,axisInB);
	btVector3 rbAxisB1 =  quatRotate(rotationArc,rbAxisA1);
	btVector3 rbAxisB2 =  axisInB.cross(rbAxisB1);	
	
	m_rbBFrame.getOrigin() = pivotInB;
	m_rbBFrame.getBasis().setValue( rbAxisB1.getX(),rbAxisB2.getX(),-axisInB.getX(),
									rbAxisB1.getY(),rbAxisB2.getY(),-axisInB.getY(),
									rbAxisB1.getZ(),rbAxisB2.getZ(),-axisInB.getZ() );
	
	//start with free
	m_lowerLimit = btScalar(1e30);
	m_upperLimit = btScalar(-1e30);
	m_biasFactor = 0.3f;
	m_relaxationFactor = 1.0f;
	m_limitSoftness = 0.9f;
	m_solveLimit = false;

}


btHingeConstraint::btHingeConstraint(btRigidBody& rbA,const btVector3& pivotInA,btVector3& axisInA)
:btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA), m_angularOnly(false), m_enableAngularMotor(false)
{

	// since no frame is given, assume this to be zero angle and just pick rb transform axis
	// fixed axis in worldspace
	btVector3 rbAxisA1 = rbA.getCenterOfMassTransform().getBasis().getColumn(0);
	btScalar projection = rbAxisA1.dot(axisInA);
	if (projection > SIMD_EPSILON)
		rbAxisA1 = rbAxisA1*projection - axisInA;
	else
		rbAxisA1 = rbA.getCenterOfMassTransform().getBasis().getColumn(1);

	btVector3 rbAxisA2 = axisInA.cross(rbAxisA1);

	m_rbAFrame.getOrigin() = pivotInA;
	m_rbAFrame.getBasis().setValue( rbAxisA1.getX(),rbAxisA2.getX(),axisInA.getX(),
									rbAxisA1.getY(),rbAxisA2.getY(),axisInA.getY(),
									rbAxisA1.getZ(),rbAxisA2.getZ(),axisInA.getZ() );


	btVector3 axisInB = rbA.getCenterOfMassTransform().getBasis() * -axisInA;

	btQuaternion rotationArc = shortestArcQuat(axisInA,axisInB);
	btVector3 rbAxisB1 =  quatRotate(rotationArc,rbAxisA1);
	btVector3 rbAxisB2 = axisInB.cross(rbAxisB1);


	m_rbBFrame.getOrigin() = rbA.getCenterOfMassTransform()(pivotInA);
	m_rbBFrame.getBasis().setValue( rbAxisB1.getX(),rbAxisB2.getX(),axisInB.getX(),
									rbAxisB1.getY(),rbAxisB2.getY(),axisInB.getY(),
									rbAxisB1.getZ(),rbAxisB2.getZ(),axisInB.getZ() );
	
	//start with free
	m_lowerLimit = btScalar(1e30);
	m_upperLimit = btScalar(-1e30);
	m_biasFactor = 0.3f;
	m_relaxationFactor = 1.0f;
	m_limitSoftness = 0.9f;
	m_solveLimit = false;
}

btHingeConstraint::btHingeConstraint(btRigidBody& rbA,btRigidBody& rbB, 
								     const btTransform& rbAFrame, const btTransform& rbBFrame)
:btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA,rbB),m_rbAFrame(rbAFrame),m_rbBFrame(rbBFrame),
m_angularOnly(false),
m_enableAngularMotor(false)
{
	// flip axis
	m_rbBFrame.getBasis()[0][2] *= btScalar(-1.);
	m_rbBFrame.getBasis()[1][2] *= btScalar(-1.);
	m_rbBFrame.getBasis()[2][2] *= btScalar(-1.);

	//start with free
	m_lowerLimit = btScalar(1e30);
	m_upperLimit = btScalar(-1e30);
	m_biasFactor = 0.3f;
	m_relaxationFactor = 1.0f;
	m_limitSoftness = 0.9f;
	m_solveLimit = false;
}			



btHingeConstraint::btHingeConstraint(btRigidBody& rbA, const btTransform& rbAFrame)
:btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA),m_rbAFrame(rbAFrame),m_rbBFrame(rbAFrame),
m_angularOnly(false),
m_enableAngularMotor(false)
{
	///not providing rigidbody B means implicitly using worldspace for body B

	// flip axis
	m_rbBFrame.getBasis()[0][2] *= btScalar(-1.);
	m_rbBFrame.getBasis()[1][2] *= btScalar(-1.);
	m_rbBFrame.getBasis()[2][2] *= btScalar(-1.);

	m_rbBFrame.getOrigin() = m_rbA.getCenterOfMassTransform()(m_rbAFrame.getOrigin());

	//start with free
	m_lowerLimit = btScalar(1e30);
	m_upperLimit = btScalar(-1e30);	
	m_biasFactor = 0.3f;
	m_relaxationFactor = 1.0f;
	m_limitSoftness = 0.9f;
	m_solveLimit = false;
}

void	btHingeConstraint::buildJacobian()
{
	m_appliedImpulse = btScalar(0.);

	if (!m_angularOnly)
	{
		btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin();
		btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin();
		btVector3 relPos = pivotBInW - pivotAInW;

		btVector3 normal[3];
		if (relPos.length2() > SIMD_EPSILON)
		{
			normal[0] = relPos.normalized();
		}
		else
		{
			normal[0].setValue(btScalar(1.0),0,0);
		}

		btPlaneSpace1(normal[0], normal[1], normal[2]);

		for (int i=0;i<3;i++)
		{
			new (&m_jac[i]) btJacobianEntry(
				m_rbA.getCenterOfMassTransform().getBasis().transpose(),
				m_rbB.getCenterOfMassTransform().getBasis().transpose(),
				pivotAInW - m_rbA.getCenterOfMassPosition(),
				pivotBInW - m_rbB.getCenterOfMassPosition(),
				normal[i],
				m_rbA.getInvInertiaDiagLocal(),
				m_rbA.getInvMass(),
				m_rbB.getInvInertiaDiagLocal(),
				m_rbB.getInvMass());
		}
	}

	//calculate two perpendicular jointAxis, orthogonal to hingeAxis
	//these two jointAxis require equal angular velocities for both bodies

	//this is unused for now, it's a todo
	btVector3 jointAxis0local;
	btVector3 jointAxis1local;
	
	btPlaneSpace1(m_rbAFrame.getBasis().getColumn(2),jointAxis0local,jointAxis1local);

	getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2);
	btVector3 jointAxis0 = getRigidBodyA().getCenterOfMassTransform().getBasis() * jointAxis0local;
	btVector3 jointAxis1 = getRigidBodyA().getCenterOfMassTransform().getBasis() * jointAxis1local;
	btVector3 hingeAxisWorld = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2);
		
	new (&m_jacAng[0])	btJacobianEntry(jointAxis0,
		m_rbA.getCenterOfMassTransform().getBasis().transpose(),
		m_rbB.getCenterOfMassTransform().getBasis().transpose(),
		m_rbA.getInvInertiaDiagLocal(),
		m_rbB.getInvInertiaDiagLocal());

	new (&m_jacAng[1])	btJacobianEntry(jointAxis1,
		m_rbA.getCenterOfMassTransform().getBasis().transpose(),
		m_rbB.getCenterOfMassTransform().getBasis().transpose(),
		m_rbA.getInvInertiaDiagLocal(),
		m_rbB.getInvInertiaDiagLocal());

	new (&m_jacAng[2])	btJacobianEntry(hingeAxisWorld,
		m_rbA.getCenterOfMassTransform().getBasis().transpose(),
		m_rbB.getCenterOfMassTransform().getBasis().transpose(),
		m_rbA.getInvInertiaDiagLocal(),
		m_rbB.getInvInertiaDiagLocal());


	// Compute limit information
	btScalar hingeAngle = getHingeAngle();  

	//set bias, sign, clear accumulator
	m_correction = btScalar(0.);
	m_limitSign = btScalar(0.);
	m_solveLimit = false;
	m_accLimitImpulse = btScalar(0.);

//	if (m_lowerLimit < m_upperLimit)
	if (m_lowerLimit <= m_upperLimit)
	{
//		if (hingeAngle <= m_lowerLimit*m_limitSoftness)
		if (hingeAngle <= m_lowerLimit)
		{
			m_correction = (m_lowerLimit - hingeAngle);
			m_limitSign = 1.0f;
			m_solveLimit = true;
		} 
//		else if (hingeAngle >= m_upperLimit*m_limitSoftness)
		else if (hingeAngle >= m_upperLimit)
		{
			m_correction = m_upperLimit - hingeAngle;
			m_limitSign = -1.0f;
			m_solveLimit = true;
		}
	}

	//Compute K = J*W*J' for hinge axis
	btVector3 axisA =  getRigidBodyA().getCenterOfMassTransform().getBasis() *  m_rbAFrame.getBasis().getColumn(2);
	m_kHinge =   1.0f / (getRigidBodyA().computeAngularImpulseDenominator(axisA) +
			             getRigidBodyB().computeAngularImpulseDenominator(axisA));

}

void	btHingeConstraint::solveConstraint(btScalar	timeStep)
{

	btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin();
	btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin();

	btScalar tau = btScalar(0.3);

	//linear part
	if (!m_angularOnly)
	{
		btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition(); 
		btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition();

		btVector3 vel1 = m_rbA.getVelocityInLocalPoint(rel_pos1);
		btVector3 vel2 = m_rbB.getVelocityInLocalPoint(rel_pos2);
		btVector3 vel = vel1 - vel2;

		for (int i=0;i<3;i++)
		{		
			const btVector3& normal = m_jac[i].m_linearJointAxis;
			btScalar jacDiagABInv = btScalar(1.) / m_jac[i].getDiagonal();

			btScalar rel_vel;
			rel_vel = normal.dot(vel);
			//positional error (zeroth order error)
			btScalar depth = -(pivotAInW - pivotBInW).dot(normal); //this is the error projected on the normal
			btScalar impulse = depth*tau/timeStep  * jacDiagABInv -  rel_vel * jacDiagABInv;
			m_appliedImpulse += impulse;
			btVector3 impulse_vector = normal * impulse;
			m_rbA.applyImpulse(impulse_vector, pivotAInW - m_rbA.getCenterOfMassPosition());
			m_rbB.applyImpulse(-impulse_vector, pivotBInW - m_rbB.getCenterOfMassPosition());
		}
	}

	
	{
		///solve angular part

		// get axes in world space
		btVector3 axisA =  getRigidBodyA().getCenterOfMassTransform().getBasis() *  m_rbAFrame.getBasis().getColumn(2);
		btVector3 axisB =  getRigidBodyB().getCenterOfMassTransform().getBasis() *  m_rbBFrame.getBasis().getColumn(2);

		const btVector3& angVelA = getRigidBodyA().getAngularVelocity();
		const btVector3& angVelB = getRigidBodyB().getAngularVelocity();

		btVector3 angVelAroundHingeAxisA = axisA * axisA.dot(angVelA);
		btVector3 angVelAroundHingeAxisB = axisB * axisB.dot(angVelB);

		btVector3 angAorthog = angVelA - angVelAroundHingeAxisA;
		btVector3 angBorthog = angVelB - angVelAroundHingeAxisB;
		btVector3 velrelOrthog = angAorthog-angBorthog;
		{
			//solve orthogonal angular velocity correction
			btScalar relaxation = btScalar(1.);
			btScalar len = velrelOrthog.length();
			if (len > btScalar(0.00001))
			{
				btVector3 normal = velrelOrthog.normalized();
				btScalar denom = getRigidBodyA().computeAngularImpulseDenominator(normal) +
					getRigidBodyB().computeAngularImpulseDenominator(normal);
				// scale for mass and relaxation
				//todo:  expose this 0.9 factor to developer
				velrelOrthog *= (btScalar(1.)/denom) * m_relaxationFactor;
			}

			//solve angular positional correction
			btVector3 angularError = -axisA.cross(axisB) *(btScalar(1.)/timeStep);
			btScalar len2 = angularError.length();
			if (len2>btScalar(0.00001))
			{
				btVector3 normal2 = angularError.normalized();
				btScalar denom2 = getRigidBodyA().computeAngularImpulseDenominator(normal2) +
						getRigidBodyB().computeAngularImpulseDenominator(normal2);
				angularError *= (btScalar(1.)/denom2) * relaxation;
			}

			m_rbA.applyTorqueImpulse(-velrelOrthog+angularError);
			m_rbB.applyTorqueImpulse(velrelOrthog-angularError);

			// solve limit
			if (m_solveLimit)
			{
				btScalar amplitude = ( (angVelB - angVelA).dot( axisA )*m_relaxationFactor + m_correction* (btScalar(1.)/timeStep)*m_biasFactor  ) * m_limitSign;

				btScalar impulseMag = amplitude * m_kHinge;

				// Clamp the accumulated impulse
				btScalar temp = m_accLimitImpulse;
				m_accLimitImpulse = btMax(m_accLimitImpulse + impulseMag, btScalar(0) );
				impulseMag = m_accLimitImpulse - temp;


				btVector3 impulse = axisA * impulseMag * m_limitSign;
				m_rbA.applyTorqueImpulse(impulse);
				m_rbB.applyTorqueImpulse(-impulse);
			}
		}

		//apply motor
		if (m_enableAngularMotor) 
		{
			//todo: add limits too
			btVector3 angularLimit(0,0,0);

			btVector3 velrel = angVelAroundHingeAxisA - angVelAroundHingeAxisB;
			btScalar projRelVel = velrel.dot(axisA);

			btScalar desiredMotorVel = m_motorTargetVelocity;
			btScalar motor_relvel = desiredMotorVel - projRelVel;

			btScalar unclippedMotorImpulse = m_kHinge * motor_relvel;;
			//todo: should clip against accumulated impulse
			btScalar clippedMotorImpulse = unclippedMotorImpulse > m_maxMotorImpulse ? m_maxMotorImpulse : unclippedMotorImpulse;
			clippedMotorImpulse = clippedMotorImpulse < -m_maxMotorImpulse ? -m_maxMotorImpulse : clippedMotorImpulse;
			btVector3 motorImp = clippedMotorImpulse * axisA;

			m_rbA.applyTorqueImpulse(motorImp+angularLimit);
			m_rbB.applyTorqueImpulse(-motorImp-angularLimit);
			
		}
	}

}

void	btHingeConstraint::updateRHS(btScalar	timeStep)
{
	(void)timeStep;

}

btScalar btHingeConstraint::getHingeAngle()
{
	const btVector3 refAxis0  = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(0);
	const btVector3 refAxis1  = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(1);
	const btVector3 swingAxis = getRigidBodyB().getCenterOfMassTransform().getBasis() * m_rbBFrame.getBasis().getColumn(1);

	return btAtan2Fast( swingAxis.dot(refAxis0), swingAxis.dot(refAxis1)  );
}