Welcome to mirror list, hosted at ThFree Co, Russian Federation.

btSliderConstraint.cpp « ConstraintSolver « BulletDynamics « src « bullet2 « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 4128f504bf1b2a5ad74673f58de8b9a34ea104ef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/

/*
Added by Roman Ponomarev (rponom@gmail.com)
April 04, 2008
*/

//-----------------------------------------------------------------------------

#include "btSliderConstraint.h"
#include "BulletDynamics/Dynamics/btRigidBody.h"
#include "LinearMath/btTransformUtil.h"
#include <new>

//-----------------------------------------------------------------------------

void btSliderConstraint::initParams()
{
    m_lowerLinLimit = btScalar(1.0);
    m_upperLinLimit = btScalar(-1.0);
    m_lowerAngLimit = btScalar(0.);
    m_upperAngLimit = btScalar(0.);
	m_softnessDirLin = SLIDER_CONSTRAINT_DEF_SOFTNESS;
	m_restitutionDirLin = SLIDER_CONSTRAINT_DEF_RESTITUTION;
	m_dampingDirLin = btScalar(0.);
	m_softnessDirAng = SLIDER_CONSTRAINT_DEF_SOFTNESS;
	m_restitutionDirAng = SLIDER_CONSTRAINT_DEF_RESTITUTION;
	m_dampingDirAng = btScalar(0.);
	m_softnessOrthoLin = SLIDER_CONSTRAINT_DEF_SOFTNESS;
	m_restitutionOrthoLin = SLIDER_CONSTRAINT_DEF_RESTITUTION;
	m_dampingOrthoLin = SLIDER_CONSTRAINT_DEF_DAMPING;
	m_softnessOrthoAng = SLIDER_CONSTRAINT_DEF_SOFTNESS;
	m_restitutionOrthoAng = SLIDER_CONSTRAINT_DEF_RESTITUTION;
	m_dampingOrthoAng = SLIDER_CONSTRAINT_DEF_DAMPING;
	m_softnessLimLin = SLIDER_CONSTRAINT_DEF_SOFTNESS;
	m_restitutionLimLin = SLIDER_CONSTRAINT_DEF_RESTITUTION;
	m_dampingLimLin = SLIDER_CONSTRAINT_DEF_DAMPING;
	m_softnessLimAng = SLIDER_CONSTRAINT_DEF_SOFTNESS;
	m_restitutionLimAng = SLIDER_CONSTRAINT_DEF_RESTITUTION;
	m_dampingLimAng = SLIDER_CONSTRAINT_DEF_DAMPING;

	m_poweredLinMotor = false;
    m_targetLinMotorVelocity = btScalar(0.);
    m_maxLinMotorForce = btScalar(0.);
	m_accumulatedLinMotorImpulse = btScalar(0.0);

	m_poweredAngMotor = false;
    m_targetAngMotorVelocity = btScalar(0.);
    m_maxAngMotorForce = btScalar(0.);
	m_accumulatedAngMotorImpulse = btScalar(0.0);

} // btSliderConstraint::initParams()

//-----------------------------------------------------------------------------

btSliderConstraint::btSliderConstraint()
        :btTypedConstraint(SLIDER_CONSTRAINT_TYPE),
		m_useLinearReferenceFrameA(true)
{
	initParams();
} // btSliderConstraint::btSliderConstraint()

//-----------------------------------------------------------------------------

btSliderConstraint::btSliderConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB, bool useLinearReferenceFrameA)
        : btTypedConstraint(SLIDER_CONSTRAINT_TYPE, rbA, rbB)
        , m_frameInA(frameInA)
        , m_frameInB(frameInB),
		m_useLinearReferenceFrameA(useLinearReferenceFrameA)
{
	initParams();
} // btSliderConstraint::btSliderConstraint()

//-----------------------------------------------------------------------------

void btSliderConstraint::buildJacobian()
{
	if(m_useLinearReferenceFrameA)
	{
		buildJacobianInt(m_rbA, m_rbB, m_frameInA, m_frameInB);
	}
	else
	{
		buildJacobianInt(m_rbB, m_rbA, m_frameInB, m_frameInA);
	}
} // btSliderConstraint::buildJacobian()

//-----------------------------------------------------------------------------

void btSliderConstraint::buildJacobianInt(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB)
{
	//calculate transforms
    m_calculatedTransformA = rbA.getCenterOfMassTransform() * frameInA;
    m_calculatedTransformB = rbB.getCenterOfMassTransform() * frameInB;
	m_realPivotAInW = m_calculatedTransformA.getOrigin();
	m_realPivotBInW = m_calculatedTransformB.getOrigin();
	m_sliderAxis = m_calculatedTransformA.getBasis().getColumn(0); // along X
	m_delta = m_realPivotBInW - m_realPivotAInW;
	m_projPivotInW = m_realPivotAInW + m_sliderAxis.dot(m_delta) * m_sliderAxis;
	m_relPosA = m_projPivotInW - rbA.getCenterOfMassPosition();
	m_relPosB = m_realPivotBInW - rbB.getCenterOfMassPosition();
    btVector3 normalWorld;
    int i;
    //linear part
    for(i = 0; i < 3; i++)
    {
		normalWorld = m_calculatedTransformA.getBasis().getColumn(i);
		new (&m_jacLin[i]) btJacobianEntry(
			rbA.getCenterOfMassTransform().getBasis().transpose(),
			rbB.getCenterOfMassTransform().getBasis().transpose(),
			m_relPosA,
			m_relPosB,
			normalWorld,
			rbA.getInvInertiaDiagLocal(),
			rbA.getInvMass(),
			rbB.getInvInertiaDiagLocal(),
			rbB.getInvMass()
			);
		m_jacLinDiagABInv[i] = btScalar(1.) / m_jacLin[i].getDiagonal();
		m_depth[i] = m_delta.dot(normalWorld);
    }
	testLinLimits();
    // angular part
    for(i = 0; i < 3; i++)
    {
		normalWorld = m_calculatedTransformA.getBasis().getColumn(i);
		new (&m_jacAng[i])	btJacobianEntry(
			normalWorld,
            rbA.getCenterOfMassTransform().getBasis().transpose(),
            rbB.getCenterOfMassTransform().getBasis().transpose(),
            rbA.getInvInertiaDiagLocal(),
            rbB.getInvInertiaDiagLocal()
			);
	}
	testAngLimits();
	btVector3 axisA = m_calculatedTransformA.getBasis().getColumn(0);
	m_kAngle = btScalar(1.0 )/ (rbA.computeAngularImpulseDenominator(axisA) + rbB.computeAngularImpulseDenominator(axisA));
	// clear accumulator for motors
	m_accumulatedLinMotorImpulse = btScalar(0.0);
	m_accumulatedAngMotorImpulse = btScalar(0.0);
} // btSliderConstraint::buildJacobianInt()

//-----------------------------------------------------------------------------

void btSliderConstraint::solveConstraint(btScalar timeStep)
{
    m_timeStep = timeStep;
	if(m_useLinearReferenceFrameA)
	{
		solveConstraintInt(m_rbA, m_rbB);
	}
	else
	{
		solveConstraintInt(m_rbB, m_rbA);
	}
} // btSliderConstraint::solveConstraint()

//-----------------------------------------------------------------------------

void btSliderConstraint::solveConstraintInt(btRigidBody& rbA, btRigidBody& rbB)
{
    int i;
    // linear
    btVector3 velA = rbA.getVelocityInLocalPoint(m_relPosA);
    btVector3 velB = rbB.getVelocityInLocalPoint(m_relPosB);
    btVector3 vel = velA - velB;
	for(i = 0; i < 3; i++)
    {
		const btVector3& normal = m_jacLin[i].m_linearJointAxis;
		btScalar rel_vel = normal.dot(vel);
		// calculate positional error
		btScalar depth = m_depth[i];
		// get parameters
		btScalar softness = (i) ? m_softnessOrthoLin : (m_solveLinLim ? m_softnessLimLin : m_softnessDirLin);
		btScalar restitution = (i) ? m_restitutionOrthoLin : (m_solveLinLim ? m_restitutionLimLin : m_restitutionDirLin);
		btScalar damping = (i) ? m_dampingOrthoLin : (m_solveLinLim ? m_dampingLimLin : m_dampingDirLin);
		// calcutate and apply impulse
		btScalar normalImpulse = softness * (restitution * depth / m_timeStep - damping * rel_vel) * m_jacLinDiagABInv[i];
		btVector3 impulse_vector = normal * normalImpulse;
		rbA.applyImpulse( impulse_vector, m_relPosA);
		rbB.applyImpulse(-impulse_vector, m_relPosB);
		if(m_poweredLinMotor && (!i))
		{ // apply linear motor
			if(m_accumulatedLinMotorImpulse < m_maxLinMotorForce)
			{
				btScalar desiredMotorVel = m_targetLinMotorVelocity;
				btScalar motor_relvel = desiredMotorVel + rel_vel;
				normalImpulse = -motor_relvel * m_jacLinDiagABInv[i];
				// clamp accumulated impulse
				btScalar new_acc = m_accumulatedLinMotorImpulse + btFabs(normalImpulse);
				if(new_acc  > m_maxLinMotorForce)
				{
					new_acc = m_maxLinMotorForce;
				}
				btScalar del = new_acc  - m_accumulatedLinMotorImpulse;
				if(normalImpulse < btScalar(0.0))
				{
					normalImpulse = -del;
				}
				else
				{
					normalImpulse = del;
				}
				m_accumulatedLinMotorImpulse = new_acc;
				// apply clamped impulse
				impulse_vector = normal * normalImpulse;
				rbA.applyImpulse( impulse_vector, m_relPosA);
				rbB.applyImpulse(-impulse_vector, m_relPosB);
			}
		}
    }
	// angular 
	// get axes in world space
	btVector3 axisA =  m_calculatedTransformA.getBasis().getColumn(0);
	btVector3 axisB =  m_calculatedTransformB.getBasis().getColumn(0);

	const btVector3& angVelA = rbA.getAngularVelocity();
	const btVector3& angVelB = rbB.getAngularVelocity();

	btVector3 angVelAroundAxisA = axisA * axisA.dot(angVelA);
	btVector3 angVelAroundAxisB = axisB * axisB.dot(angVelB);

	btVector3 angAorthog = angVelA - angVelAroundAxisA;
	btVector3 angBorthog = angVelB - angVelAroundAxisB;
	btVector3 velrelOrthog = angAorthog-angBorthog;
	//solve orthogonal angular velocity correction
	btScalar len = velrelOrthog.length();
	if (len > btScalar(0.00001))
	{
		btVector3 normal = velrelOrthog.normalized();
		btScalar denom = rbA.computeAngularImpulseDenominator(normal) + rbB.computeAngularImpulseDenominator(normal);
		velrelOrthog *= (btScalar(1.)/denom) * m_dampingOrthoAng * m_softnessOrthoAng;
	}
	//solve angular positional correction
	btVector3 angularError = axisA.cross(axisB) *(btScalar(1.)/m_timeStep);
	btScalar len2 = angularError.length();
	if (len2>btScalar(0.00001))
	{
		btVector3 normal2 = angularError.normalized();
		btScalar denom2 = rbA.computeAngularImpulseDenominator(normal2) + rbB.computeAngularImpulseDenominator(normal2);
		angularError *= (btScalar(1.)/denom2) * m_restitutionOrthoAng * m_softnessOrthoAng;
	}
	// apply impulse
	rbA.applyTorqueImpulse(-velrelOrthog+angularError);
	rbB.applyTorqueImpulse(velrelOrthog-angularError);
	btScalar impulseMag;
	//solve angular limits
	if(m_solveAngLim)
	{
		impulseMag = (angVelB - angVelA).dot(axisA) * m_dampingLimAng + m_angDepth * m_restitutionLimAng / m_timeStep;
		impulseMag *= m_kAngle * m_softnessLimAng;
	}
	else
	{
		impulseMag = (angVelB - angVelA).dot(axisA) * m_dampingDirAng + m_angDepth * m_restitutionDirAng / m_timeStep;
		impulseMag *= m_kAngle * m_softnessDirAng;
	}
	btVector3 impulse = axisA * impulseMag;
	rbA.applyTorqueImpulse(impulse);
	rbB.applyTorqueImpulse(-impulse);
	//apply angular motor
	if(m_poweredAngMotor) 
	{
		if(m_accumulatedAngMotorImpulse < m_maxAngMotorForce)
		{
			btVector3 velrel = angVelAroundAxisA - angVelAroundAxisB;
			btScalar projRelVel = velrel.dot(axisA);

			btScalar desiredMotorVel = m_targetAngMotorVelocity;
			btScalar motor_relvel = desiredMotorVel - projRelVel;

			btScalar angImpulse = m_kAngle * motor_relvel;
			// clamp accumulated impulse
			btScalar new_acc = m_accumulatedAngMotorImpulse + btFabs(angImpulse);
			if(new_acc  > m_maxAngMotorForce)
			{
				new_acc = m_maxAngMotorForce;
			}
			btScalar del = new_acc  - m_accumulatedAngMotorImpulse;
			if(angImpulse < btScalar(0.0))
			{
				angImpulse = -del;
			}
			else
			{
				angImpulse = del;
			}
			m_accumulatedAngMotorImpulse = new_acc;
			// apply clamped impulse
			btVector3 motorImp = angImpulse * axisA;
			m_rbA.applyTorqueImpulse(motorImp);
			m_rbB.applyTorqueImpulse(-motorImp);
		}
	}
} // btSliderConstraint::solveConstraint()

//-----------------------------------------------------------------------------

//-----------------------------------------------------------------------------

void btSliderConstraint::calculateTransforms(void){
	if(m_useLinearReferenceFrameA)
	{
		m_calculatedTransformA = m_rbA.getCenterOfMassTransform() * m_frameInA;
		m_calculatedTransformB = m_rbB.getCenterOfMassTransform() * m_frameInB;
	}
	else
	{
		m_calculatedTransformA = m_rbB.getCenterOfMassTransform() * m_frameInB;
		m_calculatedTransformB = m_rbA.getCenterOfMassTransform() * m_frameInA;
	}
	m_realPivotAInW = m_calculatedTransformA.getOrigin();
	m_realPivotBInW = m_calculatedTransformB.getOrigin();
	m_sliderAxis = m_calculatedTransformA.getBasis().getColumn(0); // along X
	m_delta = m_realPivotBInW - m_realPivotAInW;
	m_projPivotInW = m_realPivotAInW + m_sliderAxis.dot(m_delta) * m_sliderAxis;
    btVector3 normalWorld;
    int i;
    //linear part
    for(i = 0; i < 3; i++)
    {
		normalWorld = m_calculatedTransformA.getBasis().getColumn(i);
		m_depth[i] = m_delta.dot(normalWorld);
    }
} // btSliderConstraint::calculateTransforms()
 
//-----------------------------------------------------------------------------

void btSliderConstraint::testLinLimits(void)
{
	m_solveLinLim = false;
	m_linPos = m_depth[0];
	if(m_lowerLinLimit <= m_upperLinLimit)
	{
		if(m_depth[0] > m_upperLinLimit)
		{
			m_depth[0] -= m_upperLinLimit;
			m_solveLinLim = true;
		}
		else if(m_depth[0] < m_lowerLinLimit)
		{
			m_depth[0] -= m_lowerLinLimit;
			m_solveLinLim = true;
		}
		else
		{
			m_depth[0] = btScalar(0.);
		}
	}
	else
	{
		m_depth[0] = btScalar(0.);
	}
} // btSliderConstraint::testLinLimits()

//-----------------------------------------------------------------------------
 

void btSliderConstraint::testAngLimits(void)
{
	m_angDepth = btScalar(0.);
	m_solveAngLim = false;
	if(m_lowerAngLimit <= m_upperAngLimit)
	{
		const btVector3 axisA0 = m_calculatedTransformA.getBasis().getColumn(1);
		const btVector3 axisA1 = m_calculatedTransformA.getBasis().getColumn(2);
		const btVector3 axisB0 = m_calculatedTransformB.getBasis().getColumn(1);
		btScalar rot = btAtan2Fast(axisB0.dot(axisA1), axisB0.dot(axisA0));  
		if(rot < m_lowerAngLimit)
		{
			m_angDepth = rot - m_lowerAngLimit;
			m_solveAngLim = true;
		} 
		else if(rot > m_upperAngLimit)
		{
			m_angDepth = rot - m_upperAngLimit;
			m_solveAngLim = true;
		}
	}
} // btSliderConstraint::testAngLimits()

	
//-----------------------------------------------------------------------------



btVector3 btSliderConstraint::getAncorInA(void)
{
	btVector3 ancorInA;
	ancorInA = m_realPivotAInW + (m_lowerLinLimit + m_upperLinLimit) * btScalar(0.5) * m_sliderAxis;
	ancorInA = m_rbA.getCenterOfMassTransform().inverse() * ancorInA;
	return ancorInA;
} // btSliderConstraint::getAncorInA()

//-----------------------------------------------------------------------------

btVector3 btSliderConstraint::getAncorInB(void)
{
	btVector3 ancorInB;
	ancorInB = m_frameInB.getOrigin();
	return ancorInB;
} // btSliderConstraint::getAncorInB();