Welcome to mirror list, hosted at ThFree Co, Russian Federation.

btRigidBody.h « Dynamics « BulletDynamics « src « bullet2 « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 0707595d48e717a34350b37eb1034dc7d0cf74bf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/

#ifndef RIGIDBODY_H
#define RIGIDBODY_H

#include "../../LinearMath/btAlignedObjectArray.h"
#include "../../LinearMath/btPoint3.h"
#include "../../LinearMath/btTransform.h"
#include "../../BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
#include "../../BulletCollision/CollisionDispatch/btCollisionObject.h"

class btCollisionShape;
class btMotionState;
class btTypedConstraint;


extern btScalar gLinearAirDamping;

extern btScalar gDeactivationTime;
extern bool gDisableDeactivation;
extern btScalar gLinearSleepingThreshold;
extern btScalar gAngularSleepingThreshold;


/// btRigidBody class for btRigidBody Dynamics
/// 
class btRigidBody  : public btCollisionObject
{

	btMatrix3x3	m_invInertiaTensorWorld;
	btVector3		m_linearVelocity;
	btVector3		m_angularVelocity;
	btScalar		m_inverseMass;
	btScalar		m_angularFactor;

	btVector3		m_gravity;	
	btVector3		m_invInertiaLocal;
	btVector3		m_totalForce;
	btVector3		m_totalTorque;
	
	btScalar		m_linearDamping;
	btScalar		m_angularDamping;
	

	//m_optionalMotionState allows to automatic synchronize the world transform for active objects
	btMotionState*	m_optionalMotionState;

	//keep track of typed constraints referencing this rigid body
	btAlignedObjectArray<btTypedConstraint*> m_constraintRefs;

public:

#ifdef OBSOLETE_MOTIONSTATE_LESS
	//not supported, please use btMotionState
	btRigidBody(btScalar mass, const btTransform& worldTransform, btCollisionShape* collisionShape, const btVector3& localInertia=btVector3(0,0,0),btScalar linearDamping=btScalar(0.),btScalar angularDamping=btScalar(0.),btScalar friction=btScalar(0.5),btScalar restitution=btScalar(0.));
#endif //OBSOLETE_MOTIONSTATE_LESS

	btRigidBody(btScalar mass, btMotionState* motionState, btCollisionShape* collisionShape, const btVector3& localInertia=btVector3(0,0,0),btScalar linearDamping=btScalar(0.),btScalar angularDamping=btScalar(0.),btScalar friction=btScalar(0.5),btScalar restitution=btScalar(0.));

	void			proceedToTransform(const btTransform& newTrans); 
	
	///to keep collision detection and dynamics separate we don't store a rigidbody pointer
	///but a rigidbody is derived from btCollisionObject, so we can safely perform an upcast
	static const btRigidBody*	upcast(const btCollisionObject* colObj)
	{
		return (const btRigidBody*)colObj->getInternalOwner();
	}
	static btRigidBody*	upcast(btCollisionObject* colObj)
	{
		return (btRigidBody*)colObj->getInternalOwner();
	}
	
	/// continuous collision detection needs prediction
	void			predictIntegratedTransform(btScalar step, btTransform& predictedTransform) ;
	
	void			saveKinematicState(btScalar step);
	

	void			applyForces(btScalar step);
	
	void			setGravity(const btVector3& acceleration);  

	const btVector3&	getGravity() const
	{
		return m_gravity;
	}

	void			setDamping(btScalar lin_damping, btScalar ang_damping);
	
	inline const btCollisionShape*	getCollisionShape() const {
		return m_collisionShape;
	}

	inline btCollisionShape*	getCollisionShape() {
			return m_collisionShape;
	}
	
	void			setMassProps(btScalar mass, const btVector3& inertia);
	
	btScalar		getInvMass() const { return m_inverseMass; }
	const btMatrix3x3& getInvInertiaTensorWorld() const { 
		return m_invInertiaTensorWorld; 
	}
		
	void			integrateVelocities(btScalar step);

	void			setCenterOfMassTransform(const btTransform& xform);

	void			applyCentralForce(const btVector3& force)
	{
		m_totalForce += force;
	}
    
	const btVector3& getInvInertiaDiagLocal()
	{
		return m_invInertiaLocal;
	};

	void	setInvInertiaDiagLocal(const btVector3& diagInvInertia)
	{
		m_invInertiaLocal = diagInvInertia;
	}

	void	applyTorque(const btVector3& torque)
	{
		m_totalTorque += torque;
	}
	
	void	applyForce(const btVector3& force, const btVector3& rel_pos) 
	{
		applyCentralForce(force);
		applyTorque(rel_pos.cross(force));
	}
	
	void applyCentralImpulse(const btVector3& impulse)
	{
		m_linearVelocity += impulse * m_inverseMass;
	}
	
  	void applyTorqueImpulse(const btVector3& torque)
	{
			m_angularVelocity += m_invInertiaTensorWorld * torque;
	}
	
	void applyImpulse(const btVector3& impulse, const btVector3& rel_pos) 
	{
		if (m_inverseMass != btScalar(0.))
		{
			applyCentralImpulse(impulse);
			if (m_angularFactor)
			{
				applyTorqueImpulse(rel_pos.cross(impulse)*m_angularFactor);
			}
		}
	}

	//Optimization for the iterative solver: avoid calculating constant terms involving inertia, normal, relative position
	inline void internalApplyImpulse(const btVector3& linearComponent, const btVector3& angularComponent,btScalar impulseMagnitude)
	{
		if (m_inverseMass != btScalar(0.))
		{
			m_linearVelocity += linearComponent*impulseMagnitude;
			if (m_angularFactor)
			{
				m_angularVelocity += angularComponent*impulseMagnitude*m_angularFactor;
			}
		}
	}
	
	void clearForces() 
	{
		m_totalForce.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0));
		m_totalTorque.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0));
	}
	
	void updateInertiaTensor();    
	
	const btPoint3&     getCenterOfMassPosition() const { 
		return m_worldTransform.getOrigin(); 
	}
	btQuaternion getOrientation() const;
	
	const btTransform&  getCenterOfMassTransform() const { 
		return m_worldTransform; 
	}
	const btVector3&   getLinearVelocity() const { 
		return m_linearVelocity; 
	}
	const btVector3&    getAngularVelocity() const { 
		return m_angularVelocity; 
	}
	

	inline void setLinearVelocity(const btVector3& lin_vel)
	{ 
		assert (m_collisionFlags != btCollisionObject::CF_STATIC_OBJECT);
		m_linearVelocity = lin_vel; 
	}

	inline void setAngularVelocity(const btVector3& ang_vel) { 
		assert (m_collisionFlags != btCollisionObject::CF_STATIC_OBJECT);
		{
			m_angularVelocity = ang_vel; 
		}
	}

	btVector3 getVelocityInLocalPoint(const btVector3& rel_pos) const
	{
		//we also calculate lin/ang velocity for kinematic objects
		return m_linearVelocity + m_angularVelocity.cross(rel_pos);

		//for kinematic objects, we could also use use:
		//		return 	(m_worldTransform(rel_pos) - m_interpolationWorldTransform(rel_pos)) / m_kinematicTimeStep;
	}

	void translate(const btVector3& v) 
	{
		m_worldTransform.getOrigin() += v; 
	}

	
	void	getAabb(btVector3& aabbMin,btVector3& aabbMax) const;




	
	inline btScalar computeImpulseDenominator(const btPoint3& pos, const btVector3& normal) const
	{
		btVector3 r0 = pos - getCenterOfMassPosition();

		btVector3 c0 = (r0).cross(normal);

		btVector3 vec = (c0 * getInvInertiaTensorWorld()).cross(r0);

		return m_inverseMass + normal.dot(vec);

	}

	inline btScalar computeAngularImpulseDenominator(const btVector3& axis) const
	{
		btVector3 vec = axis * getInvInertiaTensorWorld();
		return axis.dot(vec);
	}

	inline void	updateDeactivation(btScalar timeStep)
	{
		if ( (getActivationState() == ISLAND_SLEEPING) || (getActivationState() == DISABLE_DEACTIVATION))
			return;

		if ((getLinearVelocity().length2() < gLinearSleepingThreshold*gLinearSleepingThreshold) &&
			(getAngularVelocity().length2() < gAngularSleepingThreshold*gAngularSleepingThreshold))
		{
			m_deactivationTime += timeStep;
		} else
		{
			m_deactivationTime=btScalar(0.);
			setActivationState(0);
		}

	}

	inline bool	wantsSleeping()
	{

		if (getActivationState() == DISABLE_DEACTIVATION)
			return false;

		//disable deactivation
		if (gDisableDeactivation || (gDeactivationTime == btScalar(0.)))
			return false;

		if ( (getActivationState() == ISLAND_SLEEPING) || (getActivationState() == WANTS_DEACTIVATION))
			return true;

		if (m_deactivationTime> gDeactivationTime)
		{
			return true;
		}
		return false;
	}


	
	const btBroadphaseProxy*	getBroadphaseProxy() const
	{
		return m_broadphaseHandle;
	}
	btBroadphaseProxy*	getBroadphaseProxy() 
	{
		return m_broadphaseHandle;
	}
	void	setNewBroadphaseProxy(btBroadphaseProxy* broadphaseProxy)
	{
		m_broadphaseHandle = broadphaseProxy;
	}

	//btMotionState allows to automatic synchronize the world transform for active objects
	btMotionState*	getMotionState()
	{
		return m_optionalMotionState;
	}
	const btMotionState*	getMotionState() const
	{
		return m_optionalMotionState;
	}
	void	setMotionState(btMotionState* motionState)
	{
		m_optionalMotionState = motionState;
		if (m_optionalMotionState)
			motionState->getWorldTransform(m_worldTransform);
	}

	//for experimental overriding of friction/contact solver func
	int	m_contactSolverType;
	int	m_frictionSolverType;

	void	setAngularFactor(btScalar angFac)
	{
		m_angularFactor = angFac;
	}
	btScalar	getAngularFactor() const
	{
		return m_angularFactor;
	}

	//is this rigidbody added to a btCollisionWorld/btDynamicsWorld/btBroadphase?
	bool	isInWorld() const
	{
		return (getBroadphaseProxy() != 0);
	}

	virtual bool checkCollideWithOverride(btCollisionObject* co);

	void addConstraintRef(btTypedConstraint* c);
	void removeConstraintRef(btTypedConstraint* c);

	int	m_debugBodyId;
};



#endif