Welcome to mirror list, hosted at ThFree Co, Russian Federation.

btMatrix3x3.h « LinearMath « src « bullet2 « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 14aa4ae234865ebc63a897f485c5fc19d2dc41f2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
/*
Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans  http://continuousphysics.com/Bullet/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/


#ifndef btMatrix3x3_H
#define btMatrix3x3_H

#include "btScalar.h"

#include "btVector3.h"
#include "btQuaternion.h"



///The btMatrix3x3 class implements a 3x3 rotation matrix, to perform linear algebra in combination with btQuaternion, btTransform and btVector3.
///Make sure to only include a pure orthogonal matrix without scaling.
class btMatrix3x3 {
	public:
		btMatrix3x3 () {}
		
//		explicit btMatrix3x3(const btScalar *m) { setFromOpenGLSubMatrix(m); }
		
		explicit btMatrix3x3(const btQuaternion& q) { setRotation(q); }
		/*
		template <typename btScalar>
		Matrix3x3(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
		{ 
			setEulerYPR(yaw, pitch, roll);
		}
		*/
		btMatrix3x3(const btScalar& xx, const btScalar& xy, const btScalar& xz,
				  const btScalar& yx, const btScalar& yy, const btScalar& yz,
				  const btScalar& zx, const btScalar& zy, const btScalar& zz)
		{ 
			setValue(xx, xy, xz, 
					 yx, yy, yz, 
					 zx, zy, zz);
		}
		
		SIMD_FORCE_INLINE btMatrix3x3 (const btMatrix3x3& other)
		{
			m_el[0] = other.m_el[0];
			m_el[1] = other.m_el[1];
			m_el[2] = other.m_el[2];
		}

		SIMD_FORCE_INLINE btMatrix3x3& operator=(const btMatrix3x3& other)
		{
			m_el[0] = other.m_el[0];
			m_el[1] = other.m_el[1];
			m_el[2] = other.m_el[2];
			return *this;
		}

		SIMD_FORCE_INLINE btVector3 getColumn(int i) const
		{
			return btVector3(m_el[0][i],m_el[1][i],m_el[2][i]);
		}
		


		SIMD_FORCE_INLINE const btVector3& getRow(int i) const
		{
			return m_el[i];
		}


		SIMD_FORCE_INLINE btVector3&  operator[](int i)
		{ 
			btFullAssert(0 <= i && i < 3);
			return m_el[i]; 
		}
		
		SIMD_FORCE_INLINE const btVector3& operator[](int i) const
		{
			btFullAssert(0 <= i && i < 3);
			return m_el[i]; 
		}
		
		btMatrix3x3& operator*=(const btMatrix3x3& m); 
		
	
	void setFromOpenGLSubMatrix(const btScalar *m)
		{
			m_el[0].setValue(m[0],m[4],m[8]);
			m_el[1].setValue(m[1],m[5],m[9]);
			m_el[2].setValue(m[2],m[6],m[10]);

		}

		void setValue(const btScalar& xx, const btScalar& xy, const btScalar& xz, 
					  const btScalar& yx, const btScalar& yy, const btScalar& yz, 
					  const btScalar& zx, const btScalar& zy, const btScalar& zz)
		{
			m_el[0].setValue(xx,xy,xz);
			m_el[1].setValue(yx,yy,yz);
			m_el[2].setValue(zx,zy,zz);
		}
  
		void setRotation(const btQuaternion& q) 
		{
			btScalar d = q.length2();
			btFullAssert(d != btScalar(0.0));
			btScalar s = btScalar(2.0) / d;
			btScalar xs = q.x() * s,   ys = q.y() * s,   zs = q.z() * s;
			btScalar wx = q.w() * xs,  wy = q.w() * ys,  wz = q.w() * zs;
			btScalar xx = q.x() * xs,  xy = q.x() * ys,  xz = q.x() * zs;
			btScalar yy = q.y() * ys,  yz = q.y() * zs,  zz = q.z() * zs;
			setValue(btScalar(1.0) - (yy + zz), xy - wz, xz + wy,
					 xy + wz, btScalar(1.0) - (xx + zz), yz - wx,
					 xz - wy, yz + wx, btScalar(1.0) - (xx + yy));
		}
		


		void setEulerYPR(const btScalar& yaw, const btScalar& pitch, const btScalar& roll) 
		{

			btScalar cy(btCos(yaw)); 
			btScalar  sy(btSin(yaw)); 
			btScalar  cp(btCos(pitch)); 
			btScalar  sp(btSin(pitch)); 
			btScalar  cr(btCos(roll));
			btScalar  sr(btSin(roll));
			btScalar  cc = cy * cr; 
			btScalar  cs = cy * sr; 
			btScalar  sc = sy * cr; 
			btScalar  ss = sy * sr;
			setValue(cc - sp * ss, -cs - sp * sc, -sy * cp,
                     cp * sr,       cp * cr,      -sp,
					 sc + sp * cs, -ss + sp * cc,  cy * cp);
		
		}

	/**
	 * setEulerZYX
	 * @param euler a const reference to a btVector3 of euler angles
	 * These angles are used to produce a rotation matrix. The euler
	 * angles are applied in ZYX order. I.e a vector is first rotated 
	 * about X then Y and then Z
	 **/
	
	void setEulerZYX(btScalar eulerX,btScalar eulerY,btScalar eulerZ) {
		btScalar ci ( btCos(eulerX)); 
		btScalar cj ( btCos(eulerY)); 
		btScalar ch ( btCos(eulerZ)); 
		btScalar si ( btSin(eulerX)); 
		btScalar sj ( btSin(eulerY)); 
		btScalar sh ( btSin(eulerZ)); 
		btScalar cc = ci * ch; 
		btScalar cs = ci * sh; 
		btScalar sc = si * ch; 
		btScalar ss = si * sh;
		
		setValue(cj * ch, sj * sc - cs, sj * cc + ss,
				 cj * sh, sj * ss + cc, sj * cs - sc, 
	       			 -sj,      cj * si,      cj * ci);
	}

		void setIdentity()
		{ 
			setValue(btScalar(1.0), btScalar(0.0), btScalar(0.0), 
					 btScalar(0.0), btScalar(1.0), btScalar(0.0), 
					 btScalar(0.0), btScalar(0.0), btScalar(1.0)); 
		}
    
		void getOpenGLSubMatrix(btScalar *m) const 
		{
			m[0]  = btScalar(m_el[0].x()); 
			m[1]  = btScalar(m_el[1].x());
			m[2]  = btScalar(m_el[2].x());
			m[3]  = btScalar(0.0); 
			m[4]  = btScalar(m_el[0].y());
			m[5]  = btScalar(m_el[1].y());
			m[6]  = btScalar(m_el[2].y());
			m[7]  = btScalar(0.0); 
			m[8]  = btScalar(m_el[0].z()); 
			m[9]  = btScalar(m_el[1].z());
			m[10] = btScalar(m_el[2].z());
			m[11] = btScalar(0.0); 
		}

		void getRotation(btQuaternion& q) const
		{
			btScalar trace = m_el[0].x() + m_el[1].y() + m_el[2].z();
			btScalar temp[4];
			
			if (trace > btScalar(0.0)) 
			{
				btScalar s = btSqrt(trace + btScalar(1.0));
				temp[3]=(s * btScalar(0.5));
				s = btScalar(0.5) / s;
				
				temp[0]=((m_el[2].y() - m_el[1].z()) * s);
				temp[1]=((m_el[0].z() - m_el[2].x()) * s);
				temp[2]=((m_el[1].x() - m_el[0].y()) * s);
			} 
			else 
			{
				int i = m_el[0].x() < m_el[1].y() ? 
					(m_el[1].y() < m_el[2].z() ? 2 : 1) :
					(m_el[0].x() < m_el[2].z() ? 2 : 0); 
				int j = (i + 1) % 3;  
				int k = (i + 2) % 3;
				
				btScalar s = btSqrt(m_el[i][i] - m_el[j][j] - m_el[k][k] + btScalar(1.0));
				temp[i] = s * btScalar(0.5);
				s = btScalar(0.5) / s;
				
				temp[3] = (m_el[k][j] - m_el[j][k]) * s;
				temp[j] = (m_el[j][i] + m_el[i][j]) * s;
				temp[k] = (m_el[k][i] + m_el[i][k]) * s;
			}
			q.setValue(temp[0],temp[1],temp[2],temp[3]);
		}
	
		void getEuler(btScalar& yaw, btScalar& pitch, btScalar& roll) const
		{
			
			if (btScalar(m_el[1].z()) < btScalar(1))
			{
				if (btScalar(m_el[1].z()) > -btScalar(1))
				{
					yaw = btScalar(btAtan2(m_el[1].x(), m_el[0].x()));
					pitch = btScalar(btAsin(-m_el[1].y()));
					roll = btScalar(btAtan2(m_el[2].y(), m_el[2].z()));
				}
				else 
				{
					yaw = btScalar(-btAtan2(-m_el[0].y(), m_el[0].z()));
					pitch = SIMD_HALF_PI;
					roll = btScalar(0.0);
				}
			}
			else
			{
				yaw = btScalar(btAtan2(-m_el[0].y(), m_el[0].z()));
				pitch = -SIMD_HALF_PI;
				roll = btScalar(0.0);
			}
		}
		

	
		
		btMatrix3x3 scaled(const btVector3& s) const
		{
			return btMatrix3x3(m_el[0].x() * s.x(), m_el[0].y() * s.y(), m_el[0].z() * s.z(),
									 m_el[1].x() * s.x(), m_el[1].y() * s.y(), m_el[1].z() * s.z(),
									 m_el[2].x() * s.x(), m_el[2].y() * s.y(), m_el[2].z() * s.z());
		}

		btScalar            determinant() const;
		btMatrix3x3 adjoint() const;
		btMatrix3x3 absolute() const;
		btMatrix3x3 transpose() const;
		btMatrix3x3 inverse() const; 
		
		btMatrix3x3 transposeTimes(const btMatrix3x3& m) const;
		btMatrix3x3 timesTranspose(const btMatrix3x3& m) const;
		
		SIMD_FORCE_INLINE btScalar tdotx(const btVector3& v) const 
		{
			return m_el[0].x() * v.x() + m_el[1].x() * v.y() + m_el[2].x() * v.z();
		}
		SIMD_FORCE_INLINE btScalar tdoty(const btVector3& v) const 
		{
			return m_el[0].y() * v.x() + m_el[1].y() * v.y() + m_el[2].y() * v.z();
		}
		SIMD_FORCE_INLINE btScalar tdotz(const btVector3& v) const 
		{
			return m_el[0].z() * v.x() + m_el[1].z() * v.y() + m_el[2].z() * v.z();
		}
		

		///diagonalizes this matrix by the Jacobi method. rot stores the rotation
		///from the coordinate system in which the matrix is diagonal to the original
		///coordinate system, i.e., old_this = rot * new_this * rot^T. The iteration
		///stops when all off-diagonal elements are less than the threshold multiplied
		///by the sum of the absolute values of the diagonal, or when maxSteps have
		///been executed. Note that this matrix is assumed to be symmetric.
		void diagonalize(btMatrix3x3& rot, btScalar threshold, int maxSteps)
		{
		 rot.setIdentity();
		 for (int step = maxSteps; step > 0; step--)
		 {
			// find off-diagonal element [p][q] with largest magnitude
			int p = 0;
			int q = 1;
			int r = 2;
			btScalar max = btFabs(m_el[0][1]);
			btScalar v = btFabs(m_el[0][2]);
			if (v > max)
			{
			   q = 2;
			   r = 1;
			   max = v;
			}
			v = btFabs(m_el[1][2]);
			if (v > max)
			{
			   p = 1;
			   q = 2;
			   r = 0;
			   max = v;
			}

			btScalar t = threshold * (btFabs(m_el[0][0]) + btFabs(m_el[1][1]) + btFabs(m_el[2][2]));
			if (max <= t)
			{
			   if (max <= SIMD_EPSILON * t)
			   {
				  return;
			   }
			   step = 1;
			}

			// compute Jacobi rotation J which leads to a zero for element [p][q] 
			btScalar mpq = m_el[p][q];
			btScalar theta = (m_el[q][q] - m_el[p][p]) / (2 * mpq);
			btScalar theta2 = theta * theta;
			btScalar cos;
			btScalar sin;
			if (theta2 * theta2 < btScalar(10 / SIMD_EPSILON))
			{
			   t = (theta >= 0) ? 1 / (theta + btSqrt(1 + theta2))
										: 1 / (theta - btSqrt(1 + theta2));
			   cos = 1 / btSqrt(1 + t * t);
			   sin = cos * t;
			}
			else
			{
			   // approximation for large theta-value, i.e., a nearly diagonal matrix
			   t = 1 / (theta * (2 + btScalar(0.5) / theta2));
			   cos = 1 - btScalar(0.5) * t * t;
			   sin = cos * t;
			}

			// apply rotation to matrix (this = J^T * this * J)
			m_el[p][q] = m_el[q][p] = 0;
			m_el[p][p] -= t * mpq;
			m_el[q][q] += t * mpq;
			btScalar mrp = m_el[r][p];
			btScalar mrq = m_el[r][q];
			m_el[r][p] = m_el[p][r] = cos * mrp - sin * mrq;
			m_el[r][q] = m_el[q][r] = cos * mrq + sin * mrp;

			// apply rotation to rot (rot = rot * J)
			for (int i = 0; i < 3; i++)
			{
			   btVector3& row = rot[i];
			   mrp = row[p];
			   mrq = row[q];
			   row[p] = cos * mrp - sin * mrq;
			   row[q] = cos * mrq + sin * mrp;
			}
		 }
		}


		
	protected:
		btScalar cofac(int r1, int c1, int r2, int c2) const 
		{
			return m_el[r1][c1] * m_el[r2][c2] - m_el[r1][c2] * m_el[r2][c1];
		}

		btVector3 m_el[3];
	};
	
	SIMD_FORCE_INLINE btMatrix3x3& 
	btMatrix3x3::operator*=(const btMatrix3x3& m)
	{
		setValue(m.tdotx(m_el[0]), m.tdoty(m_el[0]), m.tdotz(m_el[0]),
				 m.tdotx(m_el[1]), m.tdoty(m_el[1]), m.tdotz(m_el[1]),
				 m.tdotx(m_el[2]), m.tdoty(m_el[2]), m.tdotz(m_el[2]));
		return *this;
	}
	
	SIMD_FORCE_INLINE btScalar 
	btMatrix3x3::determinant() const
	{ 
		return triple((*this)[0], (*this)[1], (*this)[2]);
	}
	

	SIMD_FORCE_INLINE btMatrix3x3 
	btMatrix3x3::absolute() const
	{
		return btMatrix3x3(
			btFabs(m_el[0].x()), btFabs(m_el[0].y()), btFabs(m_el[0].z()),
			btFabs(m_el[1].x()), btFabs(m_el[1].y()), btFabs(m_el[1].z()),
			btFabs(m_el[2].x()), btFabs(m_el[2].y()), btFabs(m_el[2].z()));
	}

	SIMD_FORCE_INLINE btMatrix3x3 
	btMatrix3x3::transpose() const 
	{
		return btMatrix3x3(m_el[0].x(), m_el[1].x(), m_el[2].x(),
								 m_el[0].y(), m_el[1].y(), m_el[2].y(),
								 m_el[0].z(), m_el[1].z(), m_el[2].z());
	}
	
	SIMD_FORCE_INLINE btMatrix3x3 
	btMatrix3x3::adjoint() const 
	{
		return btMatrix3x3(cofac(1, 1, 2, 2), cofac(0, 2, 2, 1), cofac(0, 1, 1, 2),
								 cofac(1, 2, 2, 0), cofac(0, 0, 2, 2), cofac(0, 2, 1, 0),
								 cofac(1, 0, 2, 1), cofac(0, 1, 2, 0), cofac(0, 0, 1, 1));
	}
	
	SIMD_FORCE_INLINE btMatrix3x3 
	btMatrix3x3::inverse() const
	{
		btVector3 co(cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1));
		btScalar det = (*this)[0].dot(co);
		btFullAssert(det != btScalar(0.0));
		btScalar s = btScalar(1.0) / det;
		return btMatrix3x3(co.x() * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s,
								 co.y() * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s,
								 co.z() * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s);
	}
	
	SIMD_FORCE_INLINE btMatrix3x3 
	btMatrix3x3::transposeTimes(const btMatrix3x3& m) const
	{
		return btMatrix3x3(
			m_el[0].x() * m[0].x() + m_el[1].x() * m[1].x() + m_el[2].x() * m[2].x(),
			m_el[0].x() * m[0].y() + m_el[1].x() * m[1].y() + m_el[2].x() * m[2].y(),
			m_el[0].x() * m[0].z() + m_el[1].x() * m[1].z() + m_el[2].x() * m[2].z(),
			m_el[0].y() * m[0].x() + m_el[1].y() * m[1].x() + m_el[2].y() * m[2].x(),
			m_el[0].y() * m[0].y() + m_el[1].y() * m[1].y() + m_el[2].y() * m[2].y(),
			m_el[0].y() * m[0].z() + m_el[1].y() * m[1].z() + m_el[2].y() * m[2].z(),
			m_el[0].z() * m[0].x() + m_el[1].z() * m[1].x() + m_el[2].z() * m[2].x(),
			m_el[0].z() * m[0].y() + m_el[1].z() * m[1].y() + m_el[2].z() * m[2].y(),
			m_el[0].z() * m[0].z() + m_el[1].z() * m[1].z() + m_el[2].z() * m[2].z());
	}
	
	SIMD_FORCE_INLINE btMatrix3x3 
	btMatrix3x3::timesTranspose(const btMatrix3x3& m) const
	{
		return btMatrix3x3(
			m_el[0].dot(m[0]), m_el[0].dot(m[1]), m_el[0].dot(m[2]),
			m_el[1].dot(m[0]), m_el[1].dot(m[1]), m_el[1].dot(m[2]),
			m_el[2].dot(m[0]), m_el[2].dot(m[1]), m_el[2].dot(m[2]));
		
	}

	SIMD_FORCE_INLINE btVector3 
	operator*(const btMatrix3x3& m, const btVector3& v) 
	{
		return btVector3(m[0].dot(v), m[1].dot(v), m[2].dot(v));
	}
	

	SIMD_FORCE_INLINE btVector3
	operator*(const btVector3& v, const btMatrix3x3& m)
	{
		return btVector3(m.tdotx(v), m.tdoty(v), m.tdotz(v));
	}

	SIMD_FORCE_INLINE btMatrix3x3 
	operator*(const btMatrix3x3& m1, const btMatrix3x3& m2)
	{
		return btMatrix3x3(
			m2.tdotx( m1[0]), m2.tdoty( m1[0]), m2.tdotz( m1[0]),
			m2.tdotx( m1[1]), m2.tdoty( m1[1]), m2.tdotz( m1[1]),
			m2.tdotx( m1[2]), m2.tdoty( m1[2]), m2.tdotz( m1[2]));
	}

/*
	SIMD_FORCE_INLINE btMatrix3x3 btMultTransposeLeft(const btMatrix3x3& m1, const btMatrix3x3& m2) {
    return btMatrix3x3(
        m1[0][0] * m2[0][0] + m1[1][0] * m2[1][0] + m1[2][0] * m2[2][0],
        m1[0][0] * m2[0][1] + m1[1][0] * m2[1][1] + m1[2][0] * m2[2][1],
        m1[0][0] * m2[0][2] + m1[1][0] * m2[1][2] + m1[2][0] * m2[2][2],
        m1[0][1] * m2[0][0] + m1[1][1] * m2[1][0] + m1[2][1] * m2[2][0],
        m1[0][1] * m2[0][1] + m1[1][1] * m2[1][1] + m1[2][1] * m2[2][1],
        m1[0][1] * m2[0][2] + m1[1][1] * m2[1][2] + m1[2][1] * m2[2][2],
        m1[0][2] * m2[0][0] + m1[1][2] * m2[1][0] + m1[2][2] * m2[2][0],
        m1[0][2] * m2[0][1] + m1[1][2] * m2[1][1] + m1[2][2] * m2[2][1],
        m1[0][2] * m2[0][2] + m1[1][2] * m2[1][2] + m1[2][2] * m2[2][2]);
}
*/

SIMD_FORCE_INLINE bool operator==(const btMatrix3x3& m1, const btMatrix3x3& m2)
{
   return ( m1[0][0] == m2[0][0] && m1[1][0] == m2[1][0] && m1[2][0] == m2[2][0] &&
            m1[0][1] == m2[0][1] && m1[1][1] == m2[1][1] && m1[2][1] == m2[2][1] &&
            m1[0][2] == m2[0][2] && m1[1][2] == m2[1][2] && m1[2][2] == m2[2][2] );
}

#endif