Welcome to mirror list, hosted at ThFree Co, Russian Federation.

btVector3.h « LinearMath « src « bullet2 « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 8968592928868896a37c74706a96f381f6f58acd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
/*
Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans  http://continuousphysics.com/Bullet/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/



#ifndef BT_VECTOR3_H
#define BT_VECTOR3_H

//#include <stdint.h>
#include "btScalar.h"
#include "btMinMax.h"
#include "btAlignedAllocator.h"

#ifdef BT_USE_DOUBLE_PRECISION
#define btVector3Data btVector3DoubleData
#define btVector3DataName "btVector3DoubleData"
#else
#define btVector3Data btVector3FloatData
#define btVector3DataName "btVector3FloatData"
#endif //BT_USE_DOUBLE_PRECISION

#if defined BT_USE_SSE

//typedef  uint32_t __m128i __attribute__ ((vector_size(16)));

#ifdef _MSC_VER
#pragma warning(disable: 4556) // value of intrinsic immediate argument '4294967239' is out of range '0 - 255'
#endif


#define BT_SHUFFLE(x,y,z,w) ((w)<<6 | (z)<<4 | (y)<<2 | (x))
//#define bt_pshufd_ps( _a, _mask ) (__m128) _mm_shuffle_epi32((__m128i)(_a), (_mask) )
#define bt_pshufd_ps( _a, _mask ) _mm_shuffle_ps((_a), (_a), (_mask) )
#define bt_splat3_ps( _a, _i ) bt_pshufd_ps((_a), BT_SHUFFLE(_i,_i,_i, 3) )
#define bt_splat_ps( _a, _i )  bt_pshufd_ps((_a), BT_SHUFFLE(_i,_i,_i,_i) )

#define btv3AbsiMask (_mm_set_epi32(0x00000000, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF))
#define btvAbsMask (_mm_set_epi32( 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF))
#define btvFFF0Mask (_mm_set_epi32(0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF))
#define btv3AbsfMask btCastiTo128f(btv3AbsiMask)
#define btvFFF0fMask btCastiTo128f(btvFFF0Mask)
#define btvxyzMaskf btvFFF0fMask
#define btvAbsfMask btCastiTo128f(btvAbsMask)

//there is an issue with XCode 3.2 (LCx errors)
#define btvMzeroMask (_mm_set_ps(-0.0f, -0.0f, -0.0f, -0.0f))
#define v1110		 (_mm_set_ps(0.0f, 1.0f, 1.0f, 1.0f))
#define vHalf		 (_mm_set_ps(0.5f, 0.5f, 0.5f, 0.5f))
#define v1_5		 (_mm_set_ps(1.5f, 1.5f, 1.5f, 1.5f))

//const __m128 ATTRIBUTE_ALIGNED16(btvMzeroMask) = {-0.0f, -0.0f, -0.0f, -0.0f};
//const __m128 ATTRIBUTE_ALIGNED16(v1110) = {1.0f, 1.0f, 1.0f, 0.0f};
//const __m128 ATTRIBUTE_ALIGNED16(vHalf) = {0.5f, 0.5f, 0.5f, 0.5f};
//const __m128 ATTRIBUTE_ALIGNED16(v1_5)  = {1.5f, 1.5f, 1.5f, 1.5f};

#endif

#ifdef BT_USE_NEON

const float32x4_t ATTRIBUTE_ALIGNED16(btvMzeroMask) = (float32x4_t){-0.0f, -0.0f, -0.0f, -0.0f};
const int32x4_t ATTRIBUTE_ALIGNED16(btvFFF0Mask) = (int32x4_t){static_cast<int32_t>(0xFFFFFFFF),
	static_cast<int32_t>(0xFFFFFFFF), static_cast<int32_t>(0xFFFFFFFF), 0x0};
const int32x4_t ATTRIBUTE_ALIGNED16(btvAbsMask) = (int32x4_t){0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF};
const int32x4_t ATTRIBUTE_ALIGNED16(btv3AbsMask) = (int32x4_t){0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x0};

#endif

/**@brief btVector3 can be used to represent 3D points and vectors.
 * It has an un-used w component to suit 16-byte alignment when btVector3 is stored in containers. This extra component can be used by derived classes (Quaternion?) or by user
 * Ideally, this class should be replaced by a platform optimized SIMD version that keeps the data in registers
 */
ATTRIBUTE_ALIGNED16(class) btVector3
{
public:

	BT_DECLARE_ALIGNED_ALLOCATOR();

#if defined (__SPU__) && defined (__CELLOS_LV2__)
		btScalar	m_floats[4];
public:
	SIMD_FORCE_INLINE const vec_float4&	get128() const
	{
		return *((const vec_float4*)&m_floats[0]);
	}
public:
#else //__CELLOS_LV2__ __SPU__
    #if defined (BT_USE_SSE) || defined(BT_USE_NEON) // _WIN32 || ARM
        union {
            btSimdFloat4      mVec128;
            btScalar	m_floats[4];
        };
        SIMD_FORCE_INLINE	btSimdFloat4	get128() const
        {
            return mVec128;
        }
        SIMD_FORCE_INLINE	void	set128(btSimdFloat4 v128)
        {
            mVec128 = v128;
        }
    #else
        btScalar	m_floats[4];
    #endif
#endif //__CELLOS_LV2__ __SPU__

	public:

  /**@brief No initialization constructor */
	SIMD_FORCE_INLINE btVector3() 
	{

	}

 
	
  /**@brief Constructor from scalars 
   * @param x X value
   * @param y Y value 
   * @param z Z value 
   */
	SIMD_FORCE_INLINE btVector3(const btScalar& _x, const btScalar& _y, const btScalar& _z)
	{
		m_floats[0] = _x;
		m_floats[1] = _y;
		m_floats[2] = _z;
		m_floats[3] = btScalar(0.f);
	}

#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) )|| defined (BT_USE_NEON)
	// Set Vector 
	SIMD_FORCE_INLINE btVector3( btSimdFloat4 v)
	{
		mVec128 = v;
	}

	// Copy constructor
	SIMD_FORCE_INLINE btVector3(const btVector3& rhs)
	{
		mVec128 = rhs.mVec128;
	}

	// Assignment Operator
	SIMD_FORCE_INLINE btVector3& 
	operator=(const btVector3& v) 
	{
		mVec128 = v.mVec128;
		
		return *this;
	}
#endif // #if defined (BT_USE_SSE_IN_API) || defined (BT_USE_NEON) 
    
/**@brief Add a vector to this one 
 * @param The vector to add to this one */
	SIMD_FORCE_INLINE btVector3& operator+=(const btVector3& v)
	{
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
		mVec128 = _mm_add_ps(mVec128, v.mVec128);
#elif defined(BT_USE_NEON)
		mVec128 = vaddq_f32(mVec128, v.mVec128);
#else
		m_floats[0] += v.m_floats[0]; 
		m_floats[1] += v.m_floats[1];
		m_floats[2] += v.m_floats[2];
#endif
		return *this;
	}


  /**@brief Subtract a vector from this one
   * @param The vector to subtract */
	SIMD_FORCE_INLINE btVector3& operator-=(const btVector3& v) 
	{
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
		mVec128 = _mm_sub_ps(mVec128, v.mVec128);
#elif defined(BT_USE_NEON)
		mVec128 = vsubq_f32(mVec128, v.mVec128);
#else
		m_floats[0] -= v.m_floats[0]; 
		m_floats[1] -= v.m_floats[1];
		m_floats[2] -= v.m_floats[2];
#endif
		return *this;
	}
	
  /**@brief Scale the vector
   * @param s Scale factor */
	SIMD_FORCE_INLINE btVector3& operator*=(const btScalar& s)
	{
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
		__m128	vs = _mm_load_ss(&s);	//	(S 0 0 0)
		vs = bt_pshufd_ps(vs, 0x80);	//	(S S S 0.0)
		mVec128 = _mm_mul_ps(mVec128, vs);
#elif defined(BT_USE_NEON)
		mVec128 = vmulq_n_f32(mVec128, s);
#else
		m_floats[0] *= s; 
		m_floats[1] *= s;
		m_floats[2] *= s;
#endif
		return *this;
	}

  /**@brief Inversely scale the vector 
   * @param s Scale factor to divide by */
	SIMD_FORCE_INLINE btVector3& operator/=(const btScalar& s) 
	{
		btFullAssert(s != btScalar(0.0));

#if 0 //defined(BT_USE_SSE_IN_API)
// this code is not faster !
		__m128 vs = _mm_load_ss(&s);
		vs = _mm_div_ss(v1110, vs);
		vs = bt_pshufd_ps(vs, 0x00);	//	(S S S S)

		mVec128 = _mm_mul_ps(mVec128, vs);
		
		return *this;
#else
		return *this *= btScalar(1.0) / s;
#endif
	}

  /**@brief Return the dot product
   * @param v The other vector in the dot product */
	SIMD_FORCE_INLINE btScalar dot(const btVector3& v) const
	{
#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
		__m128 vd = _mm_mul_ps(mVec128, v.mVec128);
		__m128 z = _mm_movehl_ps(vd, vd);
		__m128 y = _mm_shuffle_ps(vd, vd, 0x55);
		vd = _mm_add_ss(vd, y);
		vd = _mm_add_ss(vd, z);
		return _mm_cvtss_f32(vd);
#elif defined(BT_USE_NEON)
		float32x4_t vd = vmulq_f32(mVec128, v.mVec128);
		float32x2_t x = vpadd_f32(vget_low_f32(vd), vget_low_f32(vd));  
		x = vadd_f32(x, vget_high_f32(vd));
		return vget_lane_f32(x, 0);
#else	
		return	m_floats[0] * v.m_floats[0] + 
				m_floats[1] * v.m_floats[1] + 
				m_floats[2] * v.m_floats[2];
#endif
	}

  /**@brief Return the length of the vector squared */
	SIMD_FORCE_INLINE btScalar length2() const
	{
		return dot(*this);
	}

  /**@brief Return the length of the vector */
	SIMD_FORCE_INLINE btScalar length() const
	{
		return btSqrt(length2());
	}

	/**@brief Return the norm (length) of the vector */
	SIMD_FORCE_INLINE btScalar norm() const
	{
		return length();
	}

  /**@brief Return the distance squared between the ends of this and another vector
   * This is symantically treating the vector like a point */
	SIMD_FORCE_INLINE btScalar distance2(const btVector3& v) const;

  /**@brief Return the distance between the ends of this and another vector
   * This is symantically treating the vector like a point */
	SIMD_FORCE_INLINE btScalar distance(const btVector3& v) const;

	SIMD_FORCE_INLINE btVector3& safeNormalize() 
	{
		btVector3 absVec = this->absolute();
		int maxIndex = absVec.maxAxis();
		if (absVec[maxIndex]>0)
		{
			*this /= absVec[maxIndex];
			return *this /= length();
		}
		setValue(1,0,0);
		return *this;
	}

  /**@brief Normalize this vector 
   * x^2 + y^2 + z^2 = 1 */
	SIMD_FORCE_INLINE btVector3& normalize() 
	{
		
		btAssert(length() != btScalar(0));

#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)		
        // dot product first
		__m128 vd = _mm_mul_ps(mVec128, mVec128);
		__m128 z = _mm_movehl_ps(vd, vd);
		__m128 y = _mm_shuffle_ps(vd, vd, 0x55);
		vd = _mm_add_ss(vd, y);
		vd = _mm_add_ss(vd, z);
		
        #if 0
        vd = _mm_sqrt_ss(vd);
		vd = _mm_div_ss(v1110, vd);
		vd = bt_splat_ps(vd, 0x80);
		mVec128 = _mm_mul_ps(mVec128, vd);
        #else
        
        // NR step 1/sqrt(x) - vd is x, y is output 
        y = _mm_rsqrt_ss(vd); // estimate 
        
        //  one step NR 
        z = v1_5;
        vd = _mm_mul_ss(vd, vHalf); // vd * 0.5	
        //x2 = vd;
        vd = _mm_mul_ss(vd, y); // vd * 0.5 * y0
        vd = _mm_mul_ss(vd, y); // vd * 0.5 * y0 * y0
        z = _mm_sub_ss(z, vd);  // 1.5 - vd * 0.5 * y0 * y0 

        y = _mm_mul_ss(y, z);   // y0 * (1.5 - vd * 0.5 * y0 * y0)

		y = bt_splat_ps(y, 0x80);
		mVec128 = _mm_mul_ps(mVec128, y);

        #endif

		
		return *this;
#else	
		return *this /= length();
#endif
	}

  /**@brief Return a normalized version of this vector */
	SIMD_FORCE_INLINE btVector3 normalized() const;

  /**@brief Return a rotated version of this vector
   * @param wAxis The axis to rotate about 
   * @param angle The angle to rotate by */
	SIMD_FORCE_INLINE btVector3 rotate( const btVector3& wAxis, const btScalar angle ) const;

  /**@brief Return the angle between this and another vector
   * @param v The other vector */
	SIMD_FORCE_INLINE btScalar angle(const btVector3& v) const 
	{
		btScalar s = btSqrt(length2() * v.length2());
		btFullAssert(s != btScalar(0.0));
		return btAcos(dot(v) / s);
	}
	
  /**@brief Return a vector will the absolute values of each element */
	SIMD_FORCE_INLINE btVector3 absolute() const 
	{

#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) 
		return btVector3(_mm_and_ps(mVec128, btv3AbsfMask));
#elif defined(BT_USE_NEON)
		return btVector3(vabsq_f32(mVec128));
#else	
		return btVector3(
			btFabs(m_floats[0]), 
			btFabs(m_floats[1]), 
			btFabs(m_floats[2]));
#endif
	}
	
  /**@brief Return the cross product between this and another vector 
   * @param v The other vector */
	SIMD_FORCE_INLINE btVector3 cross(const btVector3& v) const
	{
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
		__m128	T, V;
		
		T = bt_pshufd_ps(mVec128, BT_SHUFFLE(1, 2, 0, 3));	//	(Y Z X 0)
		V = bt_pshufd_ps(v.mVec128, BT_SHUFFLE(1, 2, 0, 3));	//	(Y Z X 0)
		
		V = _mm_mul_ps(V, mVec128);
		T = _mm_mul_ps(T, v.mVec128);
		V = _mm_sub_ps(V, T);
		
		V = bt_pshufd_ps(V, BT_SHUFFLE(1, 2, 0, 3));
		return btVector3(V);
#elif defined(BT_USE_NEON)
		float32x4_t T, V;
		// form (Y, Z, X, _) of mVec128 and v.mVec128
		float32x2_t Tlow = vget_low_f32(mVec128);
		float32x2_t Vlow = vget_low_f32(v.mVec128);
		T = vcombine_f32(vext_f32(Tlow, vget_high_f32(mVec128), 1), Tlow);
		V = vcombine_f32(vext_f32(Vlow, vget_high_f32(v.mVec128), 1), Vlow);
		
		V = vmulq_f32(V, mVec128);
		T = vmulq_f32(T, v.mVec128);
		V = vsubq_f32(V, T);
		Vlow = vget_low_f32(V);
		// form (Y, Z, X, _);
		V = vcombine_f32(vext_f32(Vlow, vget_high_f32(V), 1), Vlow);
		V = (float32x4_t)vandq_s32((int32x4_t)V, btvFFF0Mask);
		
		return btVector3(V);
#else
		return btVector3(
			m_floats[1] * v.m_floats[2] - m_floats[2] * v.m_floats[1],
			m_floats[2] * v.m_floats[0] - m_floats[0] * v.m_floats[2],
			m_floats[0] * v.m_floats[1] - m_floats[1] * v.m_floats[0]);
#endif
	}

	SIMD_FORCE_INLINE btScalar triple(const btVector3& v1, const btVector3& v2) const
	{
#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
		// cross:
		__m128 T = _mm_shuffle_ps(v1.mVec128, v1.mVec128, BT_SHUFFLE(1, 2, 0, 3));	//	(Y Z X 0)
		__m128 V = _mm_shuffle_ps(v2.mVec128, v2.mVec128, BT_SHUFFLE(1, 2, 0, 3));	//	(Y Z X 0)
		
		V = _mm_mul_ps(V, v1.mVec128);
		T = _mm_mul_ps(T, v2.mVec128);
		V = _mm_sub_ps(V, T);
		
		V = _mm_shuffle_ps(V, V, BT_SHUFFLE(1, 2, 0, 3));

		// dot: 
		V = _mm_mul_ps(V, mVec128);
		__m128 z = _mm_movehl_ps(V, V);
		__m128 y = _mm_shuffle_ps(V, V, 0x55);
		V = _mm_add_ss(V, y);
		V = _mm_add_ss(V, z);
		return _mm_cvtss_f32(V);

#elif defined(BT_USE_NEON)
		// cross:
		float32x4_t T, V;
		// form (Y, Z, X, _) of mVec128 and v.mVec128
		float32x2_t Tlow = vget_low_f32(v1.mVec128);
		float32x2_t Vlow = vget_low_f32(v2.mVec128);
		T = vcombine_f32(vext_f32(Tlow, vget_high_f32(v1.mVec128), 1), Tlow);
		V = vcombine_f32(vext_f32(Vlow, vget_high_f32(v2.mVec128), 1), Vlow);
		
		V = vmulq_f32(V, v1.mVec128);
		T = vmulq_f32(T, v2.mVec128);
		V = vsubq_f32(V, T);
		Vlow = vget_low_f32(V);
		// form (Y, Z, X, _);
		V = vcombine_f32(vext_f32(Vlow, vget_high_f32(V), 1), Vlow);

		// dot: 
		V = vmulq_f32(mVec128, V);
		float32x2_t x = vpadd_f32(vget_low_f32(V), vget_low_f32(V));  
		x = vadd_f32(x, vget_high_f32(V));
		return vget_lane_f32(x, 0);
#else
		return 
			m_floats[0] * (v1.m_floats[1] * v2.m_floats[2] - v1.m_floats[2] * v2.m_floats[1]) + 
			m_floats[1] * (v1.m_floats[2] * v2.m_floats[0] - v1.m_floats[0] * v2.m_floats[2]) + 
			m_floats[2] * (v1.m_floats[0] * v2.m_floats[1] - v1.m_floats[1] * v2.m_floats[0]);
#endif
	}

  /**@brief Return the axis with the smallest value 
   * Note return values are 0,1,2 for x, y, or z */
	SIMD_FORCE_INLINE int minAxis() const
	{
		return m_floats[0] < m_floats[1] ? (m_floats[0] <m_floats[2] ? 0 : 2) : (m_floats[1] <m_floats[2] ? 1 : 2);
	}

  /**@brief Return the axis with the largest value 
   * Note return values are 0,1,2 for x, y, or z */
	SIMD_FORCE_INLINE int maxAxis() const 
	{
		return m_floats[0] < m_floats[1] ? (m_floats[1] <m_floats[2] ? 2 : 1) : (m_floats[0] <m_floats[2] ? 2 : 0);
	}

	SIMD_FORCE_INLINE int furthestAxis() const
	{
		return absolute().minAxis();
	}

	SIMD_FORCE_INLINE int closestAxis() const 
	{
		return absolute().maxAxis();
	}

	
	SIMD_FORCE_INLINE void setInterpolate3(const btVector3& v0, const btVector3& v1, btScalar rt)
	{
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
		__m128	vrt = _mm_load_ss(&rt);	//	(rt 0 0 0)
		btScalar s = btScalar(1.0) - rt;
		__m128	vs = _mm_load_ss(&s);	//	(S 0 0 0)
		vs = bt_pshufd_ps(vs, 0x80);	//	(S S S 0.0)
		__m128 r0 = _mm_mul_ps(v0.mVec128, vs);
		vrt = bt_pshufd_ps(vrt, 0x80);	//	(rt rt rt 0.0)
		__m128 r1 = _mm_mul_ps(v1.mVec128, vrt);
		__m128 tmp3 = _mm_add_ps(r0,r1);
		mVec128 = tmp3;
#elif defined(BT_USE_NEON)
		mVec128 = vsubq_f32(v1.mVec128, v0.mVec128);
		mVec128 = vmulq_n_f32(mVec128, rt);
		mVec128 = vaddq_f32(mVec128, v0.mVec128);
#else	
		btScalar s = btScalar(1.0) - rt;
		m_floats[0] = s * v0.m_floats[0] + rt * v1.m_floats[0];
		m_floats[1] = s * v0.m_floats[1] + rt * v1.m_floats[1];
		m_floats[2] = s * v0.m_floats[2] + rt * v1.m_floats[2];
		//don't do the unused w component
		//		m_co[3] = s * v0[3] + rt * v1[3];
#endif
	}

  /**@brief Return the linear interpolation between this and another vector 
   * @param v The other vector 
   * @param t The ration of this to v (t = 0 => return this, t=1 => return other) */
	SIMD_FORCE_INLINE btVector3 lerp(const btVector3& v, const btScalar& t) const 
	{
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
		__m128	vt = _mm_load_ss(&t);	//	(t 0 0 0)
		vt = bt_pshufd_ps(vt, 0x80);	//	(rt rt rt 0.0)
		__m128 vl = _mm_sub_ps(v.mVec128, mVec128);
		vl = _mm_mul_ps(vl, vt);
		vl = _mm_add_ps(vl, mVec128);
		
		return btVector3(vl);
#elif defined(BT_USE_NEON)
		float32x4_t vl = vsubq_f32(v.mVec128, mVec128);
		vl = vmulq_n_f32(vl, t);
		vl = vaddq_f32(vl, mVec128);
		
		return btVector3(vl);
#else	
		return 
			btVector3(	m_floats[0] + (v.m_floats[0] - m_floats[0]) * t,
						m_floats[1] + (v.m_floats[1] - m_floats[1]) * t,
						m_floats[2] + (v.m_floats[2] - m_floats[2]) * t);
#endif
	}

  /**@brief Elementwise multiply this vector by the other 
   * @param v The other vector */
	SIMD_FORCE_INLINE btVector3& operator*=(const btVector3& v)
	{
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
		mVec128 = _mm_mul_ps(mVec128, v.mVec128);
#elif defined(BT_USE_NEON)
		mVec128 = vmulq_f32(mVec128, v.mVec128);
#else	
		m_floats[0] *= v.m_floats[0]; 
		m_floats[1] *= v.m_floats[1];
		m_floats[2] *= v.m_floats[2];
#endif
		return *this;
	}

	 /**@brief Return the x value */
		SIMD_FORCE_INLINE const btScalar& getX() const { return m_floats[0]; }
  /**@brief Return the y value */
		SIMD_FORCE_INLINE const btScalar& getY() const { return m_floats[1]; }
  /**@brief Return the z value */
		SIMD_FORCE_INLINE const btScalar& getZ() const { return m_floats[2]; }
  /**@brief Set the x value */
		SIMD_FORCE_INLINE void	setX(btScalar _x) { m_floats[0] = _x;};
  /**@brief Set the y value */
		SIMD_FORCE_INLINE void	setY(btScalar _y) { m_floats[1] = _y;};
  /**@brief Set the z value */
		SIMD_FORCE_INLINE void	setZ(btScalar _z) { m_floats[2] = _z;};
  /**@brief Set the w value */
		SIMD_FORCE_INLINE void	setW(btScalar _w) { m_floats[3] = _w;};
  /**@brief Return the x value */
		SIMD_FORCE_INLINE const btScalar& x() const { return m_floats[0]; }
  /**@brief Return the y value */
		SIMD_FORCE_INLINE const btScalar& y() const { return m_floats[1]; }
  /**@brief Return the z value */
		SIMD_FORCE_INLINE const btScalar& z() const { return m_floats[2]; }
  /**@brief Return the w value */
		SIMD_FORCE_INLINE const btScalar& w() const { return m_floats[3]; }

	//SIMD_FORCE_INLINE btScalar&       operator[](int i)       { return (&m_floats[0])[i];	}      
	//SIMD_FORCE_INLINE const btScalar& operator[](int i) const { return (&m_floats[0])[i]; }
	///operator btScalar*() replaces operator[], using implicit conversion. We added operator != and operator == to avoid pointer comparisons.
	SIMD_FORCE_INLINE	operator       btScalar *()       { return &m_floats[0]; }
	SIMD_FORCE_INLINE	operator const btScalar *() const { return &m_floats[0]; }

	SIMD_FORCE_INLINE	bool	operator==(const btVector3& other) const
	{
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
        return (0xf == _mm_movemask_ps((__m128)_mm_cmpeq_ps(mVec128, other.mVec128)));
#else 
		return ((m_floats[3]==other.m_floats[3]) && 
                (m_floats[2]==other.m_floats[2]) && 
                (m_floats[1]==other.m_floats[1]) && 
                (m_floats[0]==other.m_floats[0]));
#endif
	}

	SIMD_FORCE_INLINE	bool	operator!=(const btVector3& other) const
	{
		return !(*this == other);
	}

  /**@brief Set each element to the max of the current values and the values of another btVector3
   * @param other The other btVector3 to compare with 
   */
	SIMD_FORCE_INLINE void	setMax(const btVector3& other)
	{
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
		mVec128 = _mm_max_ps(mVec128, other.mVec128);
#elif defined(BT_USE_NEON)
		mVec128 = vmaxq_f32(mVec128, other.mVec128);
#else
		btSetMax(m_floats[0], other.m_floats[0]);
		btSetMax(m_floats[1], other.m_floats[1]);
		btSetMax(m_floats[2], other.m_floats[2]);
		btSetMax(m_floats[3], other.w());
#endif
	}

  /**@brief Set each element to the min of the current values and the values of another btVector3
   * @param other The other btVector3 to compare with 
   */
	SIMD_FORCE_INLINE void	setMin(const btVector3& other)
	{
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
		mVec128 = _mm_min_ps(mVec128, other.mVec128);
#elif defined(BT_USE_NEON)
		mVec128 = vminq_f32(mVec128, other.mVec128);
#else
		btSetMin(m_floats[0], other.m_floats[0]);
		btSetMin(m_floats[1], other.m_floats[1]);
		btSetMin(m_floats[2], other.m_floats[2]);
		btSetMin(m_floats[3], other.w());
#endif
	}

	SIMD_FORCE_INLINE void 	setValue(const btScalar& _x, const btScalar& _y, const btScalar& _z)
	{
		m_floats[0]=_x;
		m_floats[1]=_y;
		m_floats[2]=_z;
		m_floats[3] = btScalar(0.f);
	}

	void	getSkewSymmetricMatrix(btVector3* v0,btVector3* v1,btVector3* v2) const
	{
#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
 
		__m128 V  = _mm_and_ps(mVec128, btvFFF0fMask);
		__m128 V0 = _mm_xor_ps(btvMzeroMask, V);
		__m128 V2 = _mm_movelh_ps(V0, V);
		
		__m128 V1 = _mm_shuffle_ps(V, V0, 0xCE);
		
        V0 = _mm_shuffle_ps(V0, V, 0xDB);
		V2 = _mm_shuffle_ps(V2, V, 0xF9);
		
		v0->mVec128 = V0;
		v1->mVec128 = V1;
		v2->mVec128 = V2;
#else
		v0->setValue(0.		,-z()		,y());
		v1->setValue(z()	,0.			,-x());
		v2->setValue(-y()	,x()	,0.);
#endif
	}

	void setZero()
	{
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
		mVec128 = (__m128)_mm_xor_ps(mVec128, mVec128);
#elif defined(BT_USE_NEON)
		int32x4_t vi = vdupq_n_s32(0); 
		mVec128 = vreinterpretq_f32_s32(vi);
#else	
		setValue(btScalar(0.),btScalar(0.),btScalar(0.));
#endif
	}

	SIMD_FORCE_INLINE bool isZero() const 
	{
		return m_floats[0] == btScalar(0) && m_floats[1] == btScalar(0) && m_floats[2] == btScalar(0);
	}

	SIMD_FORCE_INLINE bool fuzzyZero() const 
	{
		return length2() < SIMD_EPSILON;
	}

	SIMD_FORCE_INLINE	void	serialize(struct	btVector3Data& dataOut) const;

	SIMD_FORCE_INLINE	void	deSerialize(const struct	btVector3Data& dataIn);

	SIMD_FORCE_INLINE	void	serializeFloat(struct	btVector3FloatData& dataOut) const;

	SIMD_FORCE_INLINE	void	deSerializeFloat(const struct	btVector3FloatData& dataIn);

	SIMD_FORCE_INLINE	void	serializeDouble(struct	btVector3DoubleData& dataOut) const;

	SIMD_FORCE_INLINE	void	deSerializeDouble(const struct	btVector3DoubleData& dataIn);
    
        /**@brief returns index of maximum dot product between this and vectors in array[]
         * @param array The other vectors 
         * @param array_count The number of other vectors 
         * @param dotOut The maximum dot product */
        SIMD_FORCE_INLINE   long    maxDot( const btVector3 *array, long array_count, btScalar &dotOut ) const; 

        /**@brief returns index of minimum dot product between this and vectors in array[]
         * @param array The other vectors 
         * @param array_count The number of other vectors 
         * @param dotOut The minimum dot product */    
        SIMD_FORCE_INLINE   long    minDot( const btVector3 *array, long array_count, btScalar &dotOut ) const; 

    /* create a vector as  btVector3( this->dot( btVector3 v0 ), this->dot( btVector3 v1), this->dot( btVector3 v2 ))  */
    SIMD_FORCE_INLINE btVector3  dot3( const btVector3 &v0, const btVector3 &v1, const btVector3 &v2 ) const
    {
#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)

        __m128 a0 = _mm_mul_ps( v0.mVec128, this->mVec128 );
        __m128 a1 = _mm_mul_ps( v1.mVec128, this->mVec128 );
        __m128 a2 = _mm_mul_ps( v2.mVec128, this->mVec128 );
        __m128 b0 = _mm_unpacklo_ps( a0, a1 );
        __m128 b1 = _mm_unpackhi_ps( a0, a1 );
        __m128 b2 = _mm_unpacklo_ps( a2, _mm_setzero_ps() );
        __m128 r = _mm_movelh_ps( b0, b2 );
        r = _mm_add_ps( r, _mm_movehl_ps( b2, b0 ));
        a2 = _mm_and_ps( a2, btvxyzMaskf);
        r = _mm_add_ps( r, btCastdTo128f (_mm_move_sd( btCastfTo128d(a2), btCastfTo128d(b1) )));
        return btVector3(r);
        
#elif defined(BT_USE_NEON)
        static const uint32x4_t xyzMask = (const uint32x4_t){ static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), 0 };
        float32x4_t a0 = vmulq_f32( v0.mVec128, this->mVec128);
        float32x4_t a1 = vmulq_f32( v1.mVec128, this->mVec128);
        float32x4_t a2 = vmulq_f32( v2.mVec128, this->mVec128);
        float32x2x2_t zLo = vtrn_f32( vget_high_f32(a0), vget_high_f32(a1));
        a2 = (float32x4_t) vandq_u32((uint32x4_t) a2, xyzMask );
        float32x2_t b0 = vadd_f32( vpadd_f32( vget_low_f32(a0), vget_low_f32(a1)), zLo.val[0] );
        float32x2_t b1 = vpadd_f32( vpadd_f32( vget_low_f32(a2), vget_high_f32(a2)), vdup_n_f32(0.0f));
        return btVector3( vcombine_f32(b0, b1) );
#else	
		return btVector3( dot(v0), dot(v1), dot(v2));
#endif
    }
};

/**@brief Return the sum of two vectors (Point symantics)*/
SIMD_FORCE_INLINE btVector3 
operator+(const btVector3& v1, const btVector3& v2) 
{
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
	return btVector3(_mm_add_ps(v1.mVec128, v2.mVec128));
#elif defined(BT_USE_NEON)
	return btVector3(vaddq_f32(v1.mVec128, v2.mVec128));
#else
	return btVector3(
			v1.m_floats[0] + v2.m_floats[0], 
			v1.m_floats[1] + v2.m_floats[1], 
			v1.m_floats[2] + v2.m_floats[2]);
#endif
}

/**@brief Return the elementwise product of two vectors */
SIMD_FORCE_INLINE btVector3 
operator*(const btVector3& v1, const btVector3& v2) 
{
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
	return btVector3(_mm_mul_ps(v1.mVec128, v2.mVec128));
#elif defined(BT_USE_NEON)
	return btVector3(vmulq_f32(v1.mVec128, v2.mVec128));
#else
	return btVector3(
			v1.m_floats[0] * v2.m_floats[0], 
			v1.m_floats[1] * v2.m_floats[1], 
			v1.m_floats[2] * v2.m_floats[2]);
#endif
}

/**@brief Return the difference between two vectors */
SIMD_FORCE_INLINE btVector3 
operator-(const btVector3& v1, const btVector3& v2)
{
#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API)  && defined(BT_USE_SSE))

	//	without _mm_and_ps this code causes slowdown in Concave moving
	__m128 r = _mm_sub_ps(v1.mVec128, v2.mVec128);
	return btVector3(_mm_and_ps(r, btvFFF0fMask));
#elif defined(BT_USE_NEON)
	float32x4_t r = vsubq_f32(v1.mVec128, v2.mVec128);
	return btVector3((float32x4_t)vandq_s32((int32x4_t)r, btvFFF0Mask));
#else
	return btVector3(
			v1.m_floats[0] - v2.m_floats[0], 
			v1.m_floats[1] - v2.m_floats[1], 
			v1.m_floats[2] - v2.m_floats[2]);
#endif
}

/**@brief Return the negative of the vector */
SIMD_FORCE_INLINE btVector3 
operator-(const btVector3& v)
{
#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
	__m128 r = _mm_xor_ps(v.mVec128, btvMzeroMask);
	return btVector3(_mm_and_ps(r, btvFFF0fMask)); 
#elif defined(BT_USE_NEON)
	return btVector3((btSimdFloat4)veorq_s32((int32x4_t)v.mVec128, (int32x4_t)btvMzeroMask));
#else	
	return btVector3(-v.m_floats[0], -v.m_floats[1], -v.m_floats[2]);
#endif
}

/**@brief Return the vector scaled by s */
SIMD_FORCE_INLINE btVector3 
operator*(const btVector3& v, const btScalar& s)
{
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
	__m128	vs = _mm_load_ss(&s);	//	(S 0 0 0)
	vs = bt_pshufd_ps(vs, 0x80);	//	(S S S 0.0)
	return btVector3(_mm_mul_ps(v.mVec128, vs));
#elif defined(BT_USE_NEON)
	float32x4_t r = vmulq_n_f32(v.mVec128, s);
	return btVector3((float32x4_t)vandq_s32((int32x4_t)r, btvFFF0Mask));
#else
	return btVector3(v.m_floats[0] * s, v.m_floats[1] * s, v.m_floats[2] * s);
#endif
}

/**@brief Return the vector scaled by s */
SIMD_FORCE_INLINE btVector3 
operator*(const btScalar& s, const btVector3& v)
{ 
	return v * s; 
}

/**@brief Return the vector inversely scaled by s */
SIMD_FORCE_INLINE btVector3
operator/(const btVector3& v, const btScalar& s)
{
	btFullAssert(s != btScalar(0.0));
#if 0 //defined(BT_USE_SSE_IN_API)
// this code is not faster !
	__m128 vs = _mm_load_ss(&s);
    vs = _mm_div_ss(v1110, vs);
	vs = bt_pshufd_ps(vs, 0x00);	//	(S S S S)

	return btVector3(_mm_mul_ps(v.mVec128, vs));
#else
	return v * (btScalar(1.0) / s);
#endif
}

/**@brief Return the vector inversely scaled by s */
SIMD_FORCE_INLINE btVector3
operator/(const btVector3& v1, const btVector3& v2)
{
#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API)&& defined (BT_USE_SSE))
	__m128 vec = _mm_div_ps(v1.mVec128, v2.mVec128);
	vec = _mm_and_ps(vec, btvFFF0fMask);
	return btVector3(vec); 
#elif defined(BT_USE_NEON)
	float32x4_t x, y, v, m;

	x = v1.mVec128;
	y = v2.mVec128;
	
	v = vrecpeq_f32(y);			// v ~ 1/y
	m = vrecpsq_f32(y, v);		// m = (2-v*y)
	v = vmulq_f32(v, m);		// vv = v*m ~~ 1/y
	m = vrecpsq_f32(y, v);		// mm = (2-vv*y)
	v = vmulq_f32(v, x);		// x*vv
	v = vmulq_f32(v, m);		// (x*vv)*(2-vv*y) = x*(vv(2-vv*y)) ~~~ x/y

	return btVector3(v);
#else
	return btVector3(
			v1.m_floats[0] / v2.m_floats[0], 
			v1.m_floats[1] / v2.m_floats[1],
			v1.m_floats[2] / v2.m_floats[2]);
#endif
}

/**@brief Return the dot product between two vectors */
SIMD_FORCE_INLINE btScalar 
btDot(const btVector3& v1, const btVector3& v2) 
{ 
	return v1.dot(v2); 
}


/**@brief Return the distance squared between two vectors */
SIMD_FORCE_INLINE btScalar
btDistance2(const btVector3& v1, const btVector3& v2) 
{ 
	return v1.distance2(v2); 
}


/**@brief Return the distance between two vectors */
SIMD_FORCE_INLINE btScalar
btDistance(const btVector3& v1, const btVector3& v2) 
{ 
	return v1.distance(v2); 
}

/**@brief Return the angle between two vectors */
SIMD_FORCE_INLINE btScalar
btAngle(const btVector3& v1, const btVector3& v2) 
{ 
	return v1.angle(v2); 
}

/**@brief Return the cross product of two vectors */
SIMD_FORCE_INLINE btVector3 
btCross(const btVector3& v1, const btVector3& v2) 
{ 
	return v1.cross(v2); 
}

SIMD_FORCE_INLINE btScalar
btTriple(const btVector3& v1, const btVector3& v2, const btVector3& v3)
{
	return v1.triple(v2, v3);
}

/**@brief Return the linear interpolation between two vectors
 * @param v1 One vector 
 * @param v2 The other vector 
 * @param t The ration of this to v (t = 0 => return v1, t=1 => return v2) */
SIMD_FORCE_INLINE btVector3 
lerp(const btVector3& v1, const btVector3& v2, const btScalar& t)
{
	return v1.lerp(v2, t);
}



SIMD_FORCE_INLINE btScalar btVector3::distance2(const btVector3& v) const
{
	return (v - *this).length2();
}

SIMD_FORCE_INLINE btScalar btVector3::distance(const btVector3& v) const
{
	return (v - *this).length();
}

SIMD_FORCE_INLINE btVector3 btVector3::normalized() const
{
	btVector3 norm = *this;

	return norm.normalize();
} 

SIMD_FORCE_INLINE btVector3 btVector3::rotate( const btVector3& wAxis, const btScalar _angle ) const
{
	// wAxis must be a unit lenght vector

#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)

    __m128 O = _mm_mul_ps(wAxis.mVec128, mVec128);
	btScalar ssin = btSin( _angle );
    __m128 C = wAxis.cross( mVec128 ).mVec128;
	O = _mm_and_ps(O, btvFFF0fMask);
    btScalar scos = btCos( _angle );
	
	__m128 vsin = _mm_load_ss(&ssin);	//	(S 0 0 0)
    __m128 vcos = _mm_load_ss(&scos);	//	(S 0 0 0)
	
	__m128 Y = bt_pshufd_ps(O, 0xC9);	//	(Y Z X 0)
	__m128 Z = bt_pshufd_ps(O, 0xD2);	//	(Z X Y 0)
	O = _mm_add_ps(O, Y);
	vsin = bt_pshufd_ps(vsin, 0x80);	//	(S S S 0)
	O = _mm_add_ps(O, Z);
    vcos = bt_pshufd_ps(vcos, 0x80);	//	(S S S 0)
	
    vsin = vsin * C; 
	O = O * wAxis.mVec128; 
	__m128 X = mVec128 - O; 
	
    O = O + vsin;
	vcos = vcos * X;
	O = O + vcos;	
	
	return btVector3(O);
#else
	btVector3 o = wAxis * wAxis.dot( *this );
	btVector3 _x = *this - o;
	btVector3 _y;

	_y = wAxis.cross( *this );

	return ( o + _x * btCos( _angle ) + _y * btSin( _angle ) );
#endif
}

SIMD_FORCE_INLINE   long    btVector3::maxDot( const btVector3 *array, long array_count, btScalar &dotOut ) const
{
#if (defined BT_USE_SSE && defined BT_USE_SIMD_VECTOR3 && defined BT_USE_SSE_IN_API) || defined (BT_USE_NEON)
    #if defined _WIN32 || defined (BT_USE_SSE)
        const long scalar_cutoff = 10;
        long _maxdot_large( const float *array, const float *vec, unsigned long array_count, float *dotOut );
    #elif defined BT_USE_NEON
        const long scalar_cutoff = 4;
        extern long (*_maxdot_large)( const float *array, const float *vec, unsigned long array_count, float *dotOut );
    #endif
    if( array_count < scalar_cutoff )	
#endif
    {
        btScalar maxDot = -SIMD_INFINITY;
        int i = 0;
        int ptIndex = -1;
        for( i = 0; i < array_count; i++ )
        {
            btScalar dot = array[i].dot(*this);
            
            if( dot > maxDot )
            {
                maxDot = dot;
                ptIndex = i;
            }
        }
        
        dotOut = maxDot;
        return ptIndex;
    }
#if (defined BT_USE_SSE && defined BT_USE_SIMD_VECTOR3 && defined BT_USE_SSE_IN_API) || defined (BT_USE_NEON)
    return _maxdot_large( (float*) array, (float*) &m_floats[0], array_count, &dotOut );
#endif
}

SIMD_FORCE_INLINE   long    btVector3::minDot( const btVector3 *array, long array_count, btScalar &dotOut ) const
{
#if (defined BT_USE_SSE && defined BT_USE_SIMD_VECTOR3 && defined BT_USE_SSE_IN_API) || defined (BT_USE_NEON)
    #if defined BT_USE_SSE
        const long scalar_cutoff = 10;
        long _mindot_large( const float *array, const float *vec, unsigned long array_count, float *dotOut );
    #elif defined BT_USE_NEON
        const long scalar_cutoff = 4;
        extern long (*_mindot_large)( const float *array, const float *vec, unsigned long array_count, float *dotOut );
    #else
        #error unhandled arch!
    #endif
    
    if( array_count < scalar_cutoff )
#endif
    {
        btScalar  minDot = SIMD_INFINITY;
        int i = 0;
        int ptIndex = -1;
        
        for( i = 0; i < array_count; i++ )
        {
            btScalar dot = array[i].dot(*this);
            
            if( dot < minDot )
            {
                minDot = dot;
                ptIndex = i;
            }
        }
        
        dotOut = minDot;
        
        return ptIndex;
    }
#if (defined BT_USE_SSE && defined BT_USE_SIMD_VECTOR3 && defined BT_USE_SSE_IN_API) || defined (BT_USE_NEON)
    return _mindot_large( (float*) array, (float*) &m_floats[0], array_count, &dotOut );
#endif//BT_USE_SIMD_VECTOR3
}


class btVector4 : public btVector3
{
public:

	SIMD_FORCE_INLINE btVector4() {}


	SIMD_FORCE_INLINE btVector4(const btScalar& _x, const btScalar& _y, const btScalar& _z,const btScalar& _w) 
		: btVector3(_x,_y,_z)
	{
		m_floats[3] = _w;
	}

#if (defined (BT_USE_SSE_IN_API)&& defined (BT_USE_SSE)) || defined (BT_USE_NEON) 
	SIMD_FORCE_INLINE btVector4(const btSimdFloat4 vec)
	{
		mVec128 = vec;
	}

	SIMD_FORCE_INLINE btVector4(const btVector3& rhs)
	{
		mVec128 = rhs.mVec128;
	}

	SIMD_FORCE_INLINE btVector4& 
	operator=(const btVector4& v) 
	{
		mVec128 = v.mVec128;
		return *this;
	}
#endif // #if defined (BT_USE_SSE_IN_API) || defined (BT_USE_NEON) 

	SIMD_FORCE_INLINE btVector4 absolute4() const 
	{
#if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) 
		return btVector4(_mm_and_ps(mVec128, btvAbsfMask));
#elif defined(BT_USE_NEON)
		return btVector4(vabsq_f32(mVec128));
#else	
		return btVector4(
			btFabs(m_floats[0]), 
			btFabs(m_floats[1]), 
			btFabs(m_floats[2]),
			btFabs(m_floats[3]));
#endif
	}


	btScalar	getW() const { return m_floats[3];}


		SIMD_FORCE_INLINE int maxAxis4() const
	{
		int maxIndex = -1;
		btScalar maxVal = btScalar(-BT_LARGE_FLOAT);
		if (m_floats[0] > maxVal)
		{
			maxIndex = 0;
			maxVal = m_floats[0];
		}
		if (m_floats[1] > maxVal)
		{
			maxIndex = 1;
			maxVal = m_floats[1];
		}
		if (m_floats[2] > maxVal)
		{
			maxIndex = 2;
			maxVal =m_floats[2];
		}
		if (m_floats[3] > maxVal)
		{
			maxIndex = 3;
			maxVal = m_floats[3];
		}

		return maxIndex;
	}


	SIMD_FORCE_INLINE int minAxis4() const
	{
		int minIndex = -1;
		btScalar minVal = btScalar(BT_LARGE_FLOAT);
		if (m_floats[0] < minVal)
		{
			minIndex = 0;
			minVal = m_floats[0];
		}
		if (m_floats[1] < minVal)
		{
			minIndex = 1;
			minVal = m_floats[1];
		}
		if (m_floats[2] < minVal)
		{
			minIndex = 2;
			minVal =m_floats[2];
		}
		if (m_floats[3] < minVal)
		{
			minIndex = 3;
			minVal = m_floats[3];
		}
		
		return minIndex;
	}


	SIMD_FORCE_INLINE int closestAxis4() const 
	{
		return absolute4().maxAxis4();
	}

	
 

  /**@brief Set x,y,z and zero w 
   * @param x Value of x
   * @param y Value of y
   * @param z Value of z
   */
		

/*		void getValue(btScalar *m) const 
		{
			m[0] = m_floats[0];
			m[1] = m_floats[1];
			m[2] =m_floats[2];
		}
*/
/**@brief Set the values 
   * @param x Value of x
   * @param y Value of y
   * @param z Value of z
   * @param w Value of w
   */
		SIMD_FORCE_INLINE void	setValue(const btScalar& _x, const btScalar& _y, const btScalar& _z,const btScalar& _w)
		{
			m_floats[0]=_x;
			m_floats[1]=_y;
			m_floats[2]=_z;
			m_floats[3]=_w;
		}


};


///btSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization
SIMD_FORCE_INLINE void	btSwapScalarEndian(const btScalar& sourceVal, btScalar& destVal)
{
	#ifdef BT_USE_DOUBLE_PRECISION
	unsigned char* dest = (unsigned char*) &destVal;
	unsigned char* src  = (unsigned char*) &sourceVal;
	dest[0] = src[7];
    dest[1] = src[6];
    dest[2] = src[5];
    dest[3] = src[4];
    dest[4] = src[3];
    dest[5] = src[2];
    dest[6] = src[1];
    dest[7] = src[0];
#else
	unsigned char* dest = (unsigned char*) &destVal;
	unsigned char* src  = (unsigned char*) &sourceVal;
	dest[0] = src[3];
    dest[1] = src[2];
    dest[2] = src[1];
    dest[3] = src[0];
#endif //BT_USE_DOUBLE_PRECISION
}
///btSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization
SIMD_FORCE_INLINE void	btSwapVector3Endian(const btVector3& sourceVec, btVector3& destVec)
{
	for (int i=0;i<4;i++)
	{
		btSwapScalarEndian(sourceVec[i],destVec[i]);
	}

}

///btUnSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization
SIMD_FORCE_INLINE void	btUnSwapVector3Endian(btVector3& vector)
{

	btVector3	swappedVec;
	for (int i=0;i<4;i++)
	{
		btSwapScalarEndian(vector[i],swappedVec[i]);
	}
	vector = swappedVec;
}

template <class T>
SIMD_FORCE_INLINE void btPlaneSpace1 (const T& n, T& p, T& q)
{
  if (btFabs(n[2]) > SIMDSQRT12) {
    // choose p in y-z plane
    btScalar a = n[1]*n[1] + n[2]*n[2];
    btScalar k = btRecipSqrt (a);
    p[0] = 0;
	p[1] = -n[2]*k;
	p[2] = n[1]*k;
    // set q = n x p
    q[0] = a*k;
	q[1] = -n[0]*p[2];
	q[2] = n[0]*p[1];
  }
  else {
    // choose p in x-y plane
    btScalar a = n[0]*n[0] + n[1]*n[1];
    btScalar k = btRecipSqrt (a);
    p[0] = -n[1]*k;
	p[1] = n[0]*k;
	p[2] = 0;
    // set q = n x p
    q[0] = -n[2]*p[1];
	q[1] = n[2]*p[0];
	q[2] = a*k;
  }
}


struct	btVector3FloatData
{
	float	m_floats[4];
};

struct	btVector3DoubleData
{
	double	m_floats[4];

};

SIMD_FORCE_INLINE	void	btVector3::serializeFloat(struct	btVector3FloatData& dataOut) const
{
	///could also do a memcpy, check if it is worth it
	for (int i=0;i<4;i++)
		dataOut.m_floats[i] = float(m_floats[i]);
}

SIMD_FORCE_INLINE void	btVector3::deSerializeFloat(const struct	btVector3FloatData& dataIn)
{
	for (int i=0;i<4;i++)
		m_floats[i] = btScalar(dataIn.m_floats[i]);
}


SIMD_FORCE_INLINE	void	btVector3::serializeDouble(struct	btVector3DoubleData& dataOut) const
{
	///could also do a memcpy, check if it is worth it
	for (int i=0;i<4;i++)
		dataOut.m_floats[i] = double(m_floats[i]);
}

SIMD_FORCE_INLINE void	btVector3::deSerializeDouble(const struct	btVector3DoubleData& dataIn)
{
	for (int i=0;i<4;i++)
		m_floats[i] = btScalar(dataIn.m_floats[i]);
}


SIMD_FORCE_INLINE	void	btVector3::serialize(struct	btVector3Data& dataOut) const
{
	///could also do a memcpy, check if it is worth it
	for (int i=0;i<4;i++)
		dataOut.m_floats[i] = m_floats[i];
}

SIMD_FORCE_INLINE void	btVector3::deSerialize(const struct	btVector3Data& dataIn)
{
	for (int i=0;i<4;i++)
		m_floats[i] = dataIn.m_floats[i];
}

#endif //BT_VECTOR3_H