Welcome to mirror list, hosted at ThFree Co, Russian Federation.

math.cpp « lib « carve « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 811312c313e956fb376df13d466f29f122fd6f94 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
// Begin License:
// Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com).
// All rights reserved.
//
// This file is part of the Carve CSG Library (http://carve-csg.com/)
//
// This file may be used under the terms of the GNU General Public
// License version 2.0 as published by the Free Software Foundation
// and appearing in the file LICENSE.GPL2 included in the packaging of
// this file.
//
// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE.
// End:


#if defined(HAVE_CONFIG_H)
#  include <carve_config.h>
#endif

#include <carve/math.hpp>
#include <carve/matrix.hpp>

#include <iostream>
#include <limits>

#include <stdio.h>

#define M_2PI_3 2.0943951023931953
#define M_SQRT_3_4 0.8660254037844386
#define EPS std::numeric_limits<double>::epsilon()

namespace carve {
  namespace math {

    struct Root {
      double root;
      int multiplicity;

      Root(double r) : root(r), multiplicity(1) {}
      Root(double r, int m) : root(r), multiplicity(m) {}
    };

    void cplx_sqrt(double re, double im,
                   double &re_1, double &im_1,
                   double &re_2, double &im_2) {
      if (re == 0.0 && im == 0.0) {
        re_1 = re_2 = re;
        im_1 = im_2 = im;
      } else {
        double d = sqrt(re * re + im * im);
        re_1 = sqrt((d + re) / 2.0);
        re_2 = re_1;
        im_1 = fabs(sqrt((d - re) / 2.0));
        im_2 = -im_1;
      }
    }

    void cplx_cbrt(double re, double im,
                   double &re_1, double &im_1,
                   double &re_2, double &im_2,
                   double &re_3, double &im_3) {
      if (re == 0.0 && im == 0.0) {
        re_1 = re_2 = re_3 = re;
        im_1 = im_2 = im_3 = im;
      } else {
        double r = cbrt(sqrt(re * re + im * im));
        double t = atan2(im, re) / 3.0;
        re_1 = r * cos(t);
        im_1 = r * sin(t);
        re_2 = r * cos(t + M_TWOPI / 3.0);
        im_2 = r * sin(t + M_TWOPI / 3.0);
        re_3 = r * cos(t + M_TWOPI * 2.0 / 3.0);
        im_3 = r * sin(t + M_TWOPI * 2.0 / 3.0);
      }
    }

    void add_root(std::vector<Root> &roots, double root) {
      for (size_t i = 0; i < roots.size(); ++i) {
        if (roots[i].root == root) {
          roots[i].multiplicity++;
          return;
        }
      }
      roots.push_back(Root(root));
    }

    void linear_roots(double c1, double c0, std::vector<Root> &roots) {
      roots.push_back(Root(c0 / c1));
    }

    void quadratic_roots(double c2, double c1, double c0, std::vector<Root> &roots) {
      if (fabs(c2) < EPS) {
        linear_roots(c1, c0, roots);
        return;
      }

      double p = 0.5 * c1 / c2;
      double dis = p * p - c0 / c2;

      if (dis > 0.0) {
        dis = sqrt(dis);
        if (-p - dis != -p + dis) {
          roots.push_back(Root(-p - dis));
          roots.push_back(Root(-p + dis));
        } else {
          roots.push_back(Root(-p, 2));
        }
      }
    }

    void cubic_roots(double c3, double c2, double c1, double c0, std::vector<Root> &roots) {
      int n_sol = 0;
      double _r[3];

      if (fabs(c3) < EPS) {
        quadratic_roots(c2, c1, c0, roots);
        return;
      }

      if (fabs(c0) < EPS) {
        quadratic_roots(c3, c2, c1, roots);
        add_root(roots, 0.0);
        return;
      }

      double xN = -c2 / (3.0 * c3);
      double yN = c0 + xN * (c1 + xN * (c2 + c3 * xN));

      double delta_sq = (c2 * c2 - 3.0 * c3 * c1) / (9.0 * c3 * c3);
      double h_sq = 4.0 / 9.0 * (c2 * c2 - 3.0 * c3 * c1) * (delta_sq * delta_sq);
      double dis = yN * yN - h_sq;

      if (dis > EPS) {
        // One real root, two complex roots.

        double dis_sqrt = sqrt(dis);
        double r_p = yN - dis_sqrt;
        double r_q = yN + dis_sqrt;
        double p = cbrt(fabs(r_p)/(2.0 * c3));
        double q = cbrt(fabs(r_q)/(2.0 * c3));

        if (r_p > 0.0) p = -p;
        if (r_q > 0.0) q = -q;

        _r[0] = xN + p + q;
        n_sol = 1;

        double re = xN - p * .5 - q * .5;
        double im = p * M_SQRT_3_4 - q * M_SQRT_3_4;

        // root 2: xN + p * exp(M_2PI_3.i) + q * exp(-M_2PI_3.i);
        // root 3: complex conjugate of root 2

        if (im < EPS) {
          _r[1] = _r[2] = re;
          n_sol += 2;
        }
      } else if (dis < -EPS) {
        // Three distinct real roots.
        double theta = acos(-yN / sqrt(h_sq)) / 3.0;
        double delta = sqrt(c2 * c2 - 3.0 * c3 * c1) / (3.0 * c3);

        _r[0] = xN + (2.0 * delta) * cos(theta);
        _r[1] = xN + (2.0 * delta) * cos(M_2PI_3 - theta);
        _r[2] = xN + (2.0 * delta) * cos(M_2PI_3 + theta);
        n_sol = 3;
      } else {
        // Three real roots (two or three equal).
        double r = yN / (2.0 * c3);
        double delta = cbrt(r);

        _r[0] = xN + delta;
        _r[1] = xN + delta;
        _r[2] = xN - 2.0 * delta;
        n_sol = 3;
      }

      for (int i=0; i < n_sol; i++) {
        add_root(roots, _r[i]);
      }
    }

    static void U(const Matrix3 &m,
                  double l,
                  double u[6],
                  double &u_max,
                  int &u_argmax) {
      u[0] = (m._22 - l) * (m._33 - l) - m._23 * m._23;
      u[1] = m._13 * m._23 - m._12 * (m._33 - l);
      u[2] = m._12 * m._23 - m._13 * (m._22 - l);
      u[3] = (m._11 - l) * (m._33 - l) - m._13 * m._13;
      u[4] = m._12 * m._13 - m._23 * (m._11 - l);
      u[5] = (m._11 - l) * (m._22 - l) - m._12 * m._12;

      u_max = -1.0;
      u_argmax = -1;

      for (int i = 0; i < 6; ++i) {
        if (u_max < fabs(u[i])) { u_max = fabs(u[i]); u_argmax = i; }
      }
    }

    static void eig1(const Matrix3 &m, double l, carve::geom::vector<3> &e) {
      double u[6];
      double u_max;
      int u_argmax;

      U(m, l, u, u_max, u_argmax);

      switch(u_argmax) {
      case 0:
        e.x = u[0]; e.y = u[1]; e.z = u[2]; break;
      case 1: case 3:
        e.x = u[1]; e.y = u[3]; e.z = u[4]; break;
      case  2: case 4: case 5:
        e.x = u[2]; e.y = u[4]; e.z = u[5]; break;
      }
      e.normalize();
    }

    static void eig2(const Matrix3 &m, double l, carve::geom::vector<3> &e1, carve::geom::vector<3> &e2) {
      double u[6];
      double u_max;
      int u_argmax;

      U(m, l, u, u_max, u_argmax);

      switch(u_argmax) {
      case 0: case 1:
        e1.x = -m._12; e1.y = m._11; e1.z = 0.0;
        e2.x = -m._13 * m._11; e2.y = -m._13 * m._12; e2.z = m._11 * m._11 + m._12 * m._12;
        break;
      case 2:
        e1.x = m._12; e1.y = 0.0; e1.z = -m._11;
        e2.x = -m._12 * m._11; e2.y = m._11 * m._11 + m._13 * m._13; e2.z = -m._12 * m._13;
        break;
      case 3: case 4:
        e1.x = 0.0; e1.y = -m._23; e1.z = -m._22;
        e2.x = m._22 * m._22 + m._23 * m._23; e2.y = -m._12 * m._22; e2.z = -m._12 * m._23;
        break;
      case 5:
        e1.x = 0.0; e1.y = -m._33; e1.z = m._23;
        e2.x = m._23 * m._23 + m._33 * m._33; e2.y = -m._13 * m._23; e2.z = -m._13 * m._33;
      }
      e1.normalize();
      e2.normalize();
    }

    static void eig3(const Matrix3 &m,
                     double l,
                     carve::geom::vector<3> &e1,
                     carve::geom::vector<3> &e2,
                     carve::geom::vector<3> &e3) {
      e1.x = 1.0; e1.y = 0.0; e1.z = 0.0;
      e2.x = 0.0; e2.y = 1.0; e2.z = 0.0;
      e3.x = 0.0; e3.y = 0.0; e3.z = 1.0;
    }

    void eigSolveSymmetric(const Matrix3 &m,
                           double &l1, carve::geom::vector<3> &e1,
                           double &l2, carve::geom::vector<3> &e2,
                           double &l3, carve::geom::vector<3> &e3) {
      double c0 =
        m._11 * m._22 * m._33 +
        2.0 * m._12 * m._13 * m._23 -
        m._11 * m._23 * m._23 -
        m._22 * m._13 * m._13 -
        m._33 * m._12 * m._12;
      double c1 =
        m._11 * m._22 -
        m._12 * m._12 +
        m._11 * m._33 -
        m._13 * m._13 +
        m._22 * m._33 -
        m._23 * m._23;
      double c2 =
        m._11 +
        m._22 +
        m._33;

      double a = (3.0 * c1 - c2 * c2) / 3.0;
      double b = (-2.0 * c2 * c2 * c2 + 9.0 * c1 * c2 - 27.0 * c0) / 27.0;

      double Q = b * b / 4.0 + a * a * a / 27.0;

      if (fabs(Q) < 1e-16) {
        l1 = m._11;   e1.x = 1.0; e1.y = 0.0; e1.z = 0.0;
        l2 = m._22;   e2.x = 0.0; e2.y = 1.0; e2.z = 0.0;
        l3 = m._33;   e3.x = 0.0; e3.y = 0.0; e3.z = 1.0;
      } else if (Q > 0) {
        l1 = l2 = c2 / 3.0 + cbrt(b / 2.0);
        l3 = c2 / 3.0 - 2.0 * cbrt(b / 2.0);

        eig2(m, l1, e1, e2);
        eig1(m, l3, e3);
      } else if (Q < 0) {
        double t = atan2(sqrt(-Q), -b / 2.0);
        double cos_t3 = cos(t / 3.0);
        double sin_t3 = sin(t / 3.0);
        double r = cbrt(sqrt(b * b / 4.0 - Q));

        l1 = c2 / 3.0 + 2 * r * cos_t3;
        l2 = c2 / 3.0 - r * (cos_t3 + M_SQRT_3 * sin_t3);
        l3 = c2 / 3.0 - r * (cos_t3 - M_SQRT_3 * sin_t3);

        eig1(m, l1, e1);
        eig1(m, l2, e2);
        eig1(m, l3, e3);
      }
    }

    void eigSolve(const Matrix3 &m, double &l1, double &l2, double &l3) {
      double c3, c2, c1, c0;
      std::vector<Root> roots;

      c3 = -1.0;
      c2 = m._11 + m._22 + m._33;
      c1 = 
        -(m._22 * m._33 + m._11 * m._22 + m._11 * m._33)
        +(m._23 * m._32 + m._13 * m._31 + m._12 * m._21);
      c0 =
        +(m._11 * m._22 - m._12 * m._21) * m._33
        -(m._11 * m._23 - m._13 * m._21) * m._32
        +(m._12 * m._23 - m._13 * m._22) * m._31;

      cubic_roots(c3, c2, c1, c0, roots);

      for (size_t i = 0; i < roots.size(); i++) {
        Matrix3 M(m);
        M._11 -= roots[i].root;
        M._22 -= roots[i].root;
        M._33 -= roots[i].root;
        // solve M.v = 0
      }

      std::cerr << "n_roots=" << roots.size() << std::endl;
      for (size_t i = 0; i < roots.size(); i++) {
        fprintf(stderr, "  %.24f(%d)", roots[i].root, roots[i].multiplicity);
      }
      std::cerr << std::endl;
    }

  }
}