Welcome to mirror list, hosted at ThFree Co, Russian Federation.

autodiff_manifold.h « ceres « include « ceres « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 3063e19e8023c8944b9424b25e2b2aa453439c59 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2022 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
//   used to endorse or promote products derived from this software without
//   specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)

#ifndef CERES_PUBLIC_AUTODIFF_MANIFOLD_H_
#define CERES_PUBLIC_AUTODIFF_MANIFOLD_H_

#include <memory>

#include "ceres/internal/autodiff.h"
#include "ceres/manifold.h"

namespace ceres {

// Create a Manifold with Jacobians computed via automatic differentiation. For
// more information on manifolds, see include/ceres/manifold.h
//
// To get an auto differentiated manifold, you must define a class/struct with
// templated Plus and Minus functions that compute
//
//   x_plus_delta = Plus(x, delta);
//   y_minus_x    = Minus(y, x);
//
// Where, x, y and x_plus_y are vectors on the manifold in the ambient space (so
// they are kAmbientSize vectors) and delta, y_minus_x are vectors in the
// tangent space (so they are kTangentSize vectors).
//
// The Functor should have the signature:
//
// struct Functor {
//   template <typename T>
//   bool Plus(const T* x, const T* delta, T* x_plus_delta) const;
//
//   template <typename T>
//   bool Minus(const T* y, const T* x, T* y_minus_x) const;
// };
//
// Observe that the Plus and Minus operations are templated on the parameter T.
// The autodiff framework substitutes appropriate "Jet" objects for T in order
// to compute the derivative when necessary. This is the same mechanism that is
// used to compute derivatives when using AutoDiffCostFunction.
//
// Plus and Minus should return true if the computation is successful and false
// otherwise, in which case the result will not be used.
//
// Given this Functor, the corresponding Manifold can be constructed as:
//
// AutoDiffManifold<Functor, kAmbientSize, kTangentSize> manifold;
//
// As a concrete example consider the case of Quaternions. Quaternions form a
// three dimensional manifold embedded in R^4, i.e. they have an ambient
// dimension of 4 and their tangent space has dimension 3. The following Functor
// (taken from autodiff_manifold_test.cc) defines the Plus and Minus operations
// on the Quaternion manifold:
//
// NOTE: The following is only used for illustration purposes. Ceres Solver
// ships with optimized production grade QuaternionManifold implementation. See
// manifold.h.
//
// This functor assumes that the quaternions are laid out as [w,x,y,z] in
// memory, i.e. the real or scalar part is the first coordinate.
//
// struct QuaternionFunctor {
//   template <typename T>
//   bool Plus(const T* x, const T* delta, T* x_plus_delta) const {
//     const T squared_norm_delta =
//         delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2];
//
//     T q_delta[4];
//     if (squared_norm_delta > T(0.0)) {
//       T norm_delta = sqrt(squared_norm_delta);
//       const T sin_delta_by_delta = sin(norm_delta) / norm_delta;
//       q_delta[0] = cos(norm_delta);
//       q_delta[1] = sin_delta_by_delta * delta[0];
//       q_delta[2] = sin_delta_by_delta * delta[1];
//       q_delta[3] = sin_delta_by_delta * delta[2];
//     } else {
//       // We do not just use q_delta = [1,0,0,0] here because that is a
//       // constant and when used for automatic differentiation will
//       // lead to a zero derivative. Instead we take a first order
//       // approximation and evaluate it at zero.
//       q_delta[0] = T(1.0);
//       q_delta[1] = delta[0];
//       q_delta[2] = delta[1];
//       q_delta[3] = delta[2];
//     }
//
//     QuaternionProduct(q_delta, x, x_plus_delta);
//     return true;
//   }
//
//   template <typename T>
//   bool Minus(const T* y, const T* x, T* y_minus_x) const {
//     T minus_x[4] = {x[0], -x[1], -x[2], -x[3]};
//     T ambient_y_minus_x[4];
//     QuaternionProduct(y, minus_x, ambient_y_minus_x);
//     T u_norm = sqrt(ambient_y_minus_x[1] * ambient_y_minus_x[1] +
//                     ambient_y_minus_x[2] * ambient_y_minus_x[2] +
//                     ambient_y_minus_x[3] * ambient_y_minus_x[3]);
//     if (u_norm > 0.0) {
//       T theta = atan2(u_norm, ambient_y_minus_x[0]);
//       y_minus_x[0] = theta * ambient_y_minus_x[1] / u_norm;
//       y_minus_x[1] = theta * ambient_y_minus_x[2] / u_norm;
//       y_minus_x[2] = theta * ambient_y_minus_x[3] / u_norm;
//     } else {
//       // We do not use [0,0,0] here because even though the value part is
//       // a constant, the derivative part is not.
//       y_minus_x[0] = ambient_y_minus_x[1];
//       y_minus_x[1] = ambient_y_minus_x[2];
//       y_minus_x[2] = ambient_y_minus_x[3];
//     }
//     return true;
//   }
// };
//
// Then given this struct, the auto differentiated Quaternion Manifold can now
// be constructed as
//
//   Manifold* manifold = new AutoDiffManifold<QuaternionFunctor, 4, 3>;

template <typename Functor, int kAmbientSize, int kTangentSize>
class AutoDiffManifold final : public Manifold {
 public:
  AutoDiffManifold() : functor_(std::make_unique<Functor>()) {}

  // Takes ownership of functor.
  explicit AutoDiffManifold(Functor* functor) : functor_(functor) {}

  int AmbientSize() const override { return kAmbientSize; }
  int TangentSize() const override { return kTangentSize; }

  bool Plus(const double* x,
            const double* delta,
            double* x_plus_delta) const override {
    return functor_->Plus(x, delta, x_plus_delta);
  }

  bool PlusJacobian(const double* x, double* jacobian) const override;

  bool Minus(const double* y,
             const double* x,
             double* y_minus_x) const override {
    return functor_->Minus(y, x, y_minus_x);
  }

  bool MinusJacobian(const double* x, double* jacobian) const override;

  const Functor& functor() const { return *functor_; }

 private:
  std::unique_ptr<Functor> functor_;
};

namespace internal {

// The following two helper structs are needed to interface the Plus and Minus
// methods of the ManifoldFunctor with the automatic differentiation which
// expects a Functor with operator().
template <typename Functor>
struct PlusWrapper {
  explicit PlusWrapper(const Functor& functor) : functor(functor) {}
  template <typename T>
  bool operator()(const T* x, const T* delta, T* x_plus_delta) const {
    return functor.Plus(x, delta, x_plus_delta);
  }
  const Functor& functor;
};

template <typename Functor>
struct MinusWrapper {
  explicit MinusWrapper(const Functor& functor) : functor(functor) {}
  template <typename T>
  bool operator()(const T* y, const T* x, T* y_minus_x) const {
    return functor.Minus(y, x, y_minus_x);
  }
  const Functor& functor;
};
}  // namespace internal

template <typename Functor, int kAmbientSize, int kTangentSize>
bool AutoDiffManifold<Functor, kAmbientSize, kTangentSize>::PlusJacobian(
    const double* x, double* jacobian) const {
  double zero_delta[kTangentSize];
  for (int i = 0; i < kTangentSize; ++i) {
    zero_delta[i] = 0.0;
  }

  double x_plus_delta[kAmbientSize];
  for (int i = 0; i < kAmbientSize; ++i) {
    x_plus_delta[i] = 0.0;
  }

  const double* parameter_ptrs[2] = {x, zero_delta};

  // PlusJacobian is D_2 Plus(x,0) so we only need to compute the Jacobian
  // w.r.t. the second argument.
  double* jacobian_ptrs[2] = {nullptr, jacobian};
  return internal::AutoDifferentiate<
      kAmbientSize,
      internal::StaticParameterDims<kAmbientSize, kTangentSize>>(
      internal::PlusWrapper<Functor>(*functor_),
      parameter_ptrs,
      kAmbientSize,
      x_plus_delta,
      jacobian_ptrs);
}

template <typename Functor, int kAmbientSize, int kTangentSize>
bool AutoDiffManifold<Functor, kAmbientSize, kTangentSize>::MinusJacobian(
    const double* x, double* jacobian) const {
  double y_minus_x[kTangentSize];
  for (int i = 0; i < kTangentSize; ++i) {
    y_minus_x[i] = 0.0;
  }

  const double* parameter_ptrs[2] = {x, x};

  // MinusJacobian is D_1 Minus(x,x), so we only need to compute the Jacobian
  // w.r.t. the first argument.
  double* jacobian_ptrs[2] = {jacobian, nullptr};
  return internal::AutoDifferentiate<
      kTangentSize,
      internal::StaticParameterDims<kAmbientSize, kAmbientSize>>(
      internal::MinusWrapper<Functor>(*functor_),
      parameter_ptrs,
      kTangentSize,
      y_minus_x,
      jacobian_ptrs);
}

}  // namespace ceres

#endif  // CERES_PUBLIC_AUTODIFF_MANIFOLD_H_