Welcome to mirror list, hosted at ThFree Co, Russian Federation.

dynamic_cost_function_to_functor.h « ceres « include « ceres « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 8d174d8ecc283c2bdaf953402104f64609dded1d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2019 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
//   used to endorse or promote products derived from this software without
//   specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
//         dgossow@google.com (David Gossow)

#ifndef CERES_PUBLIC_DYNAMIC_COST_FUNCTION_TO_FUNCTOR_H_
#define CERES_PUBLIC_DYNAMIC_COST_FUNCTION_TO_FUNCTOR_H_

#include <memory>
#include <numeric>
#include <vector>

#include "ceres/dynamic_cost_function.h"
#include "ceres/internal/fixed_array.h"
#include "ceres/internal/port.h"

namespace ceres {

// DynamicCostFunctionToFunctor allows users to use CostFunction
// objects in templated functors which are to be used for automatic
// differentiation. It works similar to CostFunctionToFunctor, with the
// difference that it allows you to wrap a cost function with dynamic numbers
// of parameters and residuals.
//
// For example, let us assume that
//
//  class IntrinsicProjection : public CostFunction {
//    public:
//      IntrinsicProjection(const double* observation);
//      bool Evaluate(double const* const* parameters,
//                    double* residuals,
//                    double** jacobians) const override;
//  };
//
// is a cost function that implements the projection of a point in its
// local coordinate system onto its image plane and subtracts it from
// the observed point projection. It can compute its residual and
// either via analytic or numerical differentiation can compute its
// jacobians. The intrinsics are passed in as parameters[0] and the point as
// parameters[1].
//
// Now we would like to compose the action of this CostFunction with
// the action of camera extrinsics, i.e., rotation and
// translation. Say we have a templated function
//
//   template<typename T>
//   void RotateAndTranslatePoint(double const* const* parameters,
//                                double* residuals);
//
// Then we can now do the following,
//
// struct CameraProjection {
//   CameraProjection(const double* observation)
//       : intrinsic_projection_.(new IntrinsicProjection(observation)) {
//   }
//   template <typename T>
//   bool operator()(T const* const* parameters,
//                   T* residual) const {
//     const T* rotation = parameters[0];
//     const T* translation = parameters[1];
//     const T* intrinsics = parameters[2];
//     const T* point = parameters[3];
//     T transformed_point[3];
//     RotateAndTranslatePoint(rotation, translation, point, transformed_point);
//
//     // Note that we call intrinsic_projection_, just like it was
//     // any other templated functor.
//     const T* projection_parameters[2];
//     projection_parameters[0] = intrinsics;
//     projection_parameters[1] = transformed_point;
//     return intrinsic_projection_(projection_parameters, residual);
//   }
//
//  private:
//   DynamicCostFunctionToFunctor intrinsic_projection_;
// };
class DynamicCostFunctionToFunctor {
 public:
  // Takes ownership of cost_function.
  explicit DynamicCostFunctionToFunctor(CostFunction* cost_function)
      : cost_function_(cost_function) {
    CHECK(cost_function != nullptr);
  }

  bool operator()(double const* const* parameters, double* residuals) const {
    return cost_function_->Evaluate(parameters, residuals, NULL);
  }

  template <typename JetT>
  bool operator()(JetT const* const* inputs, JetT* output) const {
    const std::vector<int32_t>& parameter_block_sizes =
        cost_function_->parameter_block_sizes();
    const int num_parameter_blocks =
        static_cast<int>(parameter_block_sizes.size());
    const int num_residuals = cost_function_->num_residuals();
    const int num_parameters = std::accumulate(
        parameter_block_sizes.begin(), parameter_block_sizes.end(), 0);

    internal::FixedArray<double> parameters(num_parameters);
    internal::FixedArray<double*> parameter_blocks(num_parameter_blocks);
    internal::FixedArray<double> jacobians(num_residuals * num_parameters);
    internal::FixedArray<double*> jacobian_blocks(num_parameter_blocks);
    internal::FixedArray<double> residuals(num_residuals);

    // Build a set of arrays to get the residuals and jacobians from
    // the CostFunction wrapped by this functor.
    double* parameter_ptr = parameters.data();
    double* jacobian_ptr = jacobians.data();
    for (int i = 0; i < num_parameter_blocks; ++i) {
      parameter_blocks[i] = parameter_ptr;
      jacobian_blocks[i] = jacobian_ptr;
      for (int j = 0; j < parameter_block_sizes[i]; ++j) {
        *parameter_ptr++ = inputs[i][j].a;
      }
      jacobian_ptr += num_residuals * parameter_block_sizes[i];
    }

    if (!cost_function_->Evaluate(parameter_blocks.data(),
                                  residuals.data(),
                                  jacobian_blocks.data())) {
      return false;
    }

    // Now that we have the incoming Jets, which are carrying the
    // partial derivatives of each of the inputs w.r.t to some other
    // underlying parameters. The derivative of the outputs of the
    // cost function w.r.t to the same underlying parameters can now
    // be computed by applying the chain rule.
    //
    //  d output[i]               d output[i]   d input[j]
    //  --------------  = sum_j   ----------- * ------------
    //  d parameter[k]            d input[j]    d parameter[k]
    //
    // d input[j]
    // --------------  = inputs[j], so
    // d parameter[k]
    //
    //  outputJet[i]  = sum_k jacobian[i][k] * inputJet[k]
    //
    // The following loop, iterates over the residuals, computing one
    // output jet at a time.
    for (int i = 0; i < num_residuals; ++i) {
      output[i].a = residuals[i];
      output[i].v.setZero();

      for (int j = 0; j < num_parameter_blocks; ++j) {
        const int32_t block_size = parameter_block_sizes[j];
        for (int k = 0; k < parameter_block_sizes[j]; ++k) {
          output[i].v +=
              jacobian_blocks[j][i * block_size + k] * inputs[j][k].v;
        }
      }
    }

    return true;
  }

 private:
  std::unique_ptr<CostFunction> cost_function_;
};

}  // namespace ceres

#endif  // CERES_PUBLIC_DYNAMIC_COST_FUNCTION_TO_FUNCTOR_H_