Welcome to mirror list, hosted at ThFree Co, Russian Federation.

scoped_ptr.h « internal « ceres « include « ceres « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: fa0ac25a031c36737e70727773619fddf74002a5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2015 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
//   used to endorse or promote products derived from this software without
//   specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: jorg@google.com (Jorg Brown)
//
// This is an implementation designed to match the anticipated future TR2
// implementation of the scoped_ptr class, and its closely-related brethren,
// scoped_array, scoped_ptr_malloc, and make_scoped_ptr.

#ifndef CERES_PUBLIC_INTERNAL_SCOPED_PTR_H_
#define CERES_PUBLIC_INTERNAL_SCOPED_PTR_H_

#include <assert.h>
#include <stdlib.h>
#include <cstddef>
#include <algorithm>

namespace ceres {
namespace internal {

template <class C> class scoped_ptr;
template <class C, class Free> class scoped_ptr_malloc;
template <class C> class scoped_array;

template <class C>
scoped_ptr<C> make_scoped_ptr(C *);

// A scoped_ptr<T> is like a T*, except that the destructor of
// scoped_ptr<T> automatically deletes the pointer it holds (if
// any). That is, scoped_ptr<T> owns the T object that it points
// to. Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to
// a T object. Also like T*, scoped_ptr<T> is thread-compatible, and
// once you dereference it, you get the threadsafety guarantees of T.
//
// The size of a scoped_ptr is small: sizeof(scoped_ptr<C>) == sizeof(C*)
template <class C>
class scoped_ptr {
 public:
  // The element type
  typedef C element_type;

  // Constructor.  Defaults to intializing with NULL.
  // There is no way to create an uninitialized scoped_ptr.
  // The input parameter must be allocated with new.
  explicit scoped_ptr(C* p = NULL) : ptr_(p) { }

  // Destructor.  If there is a C object, delete it.
  // We don't need to test ptr_ == NULL because C++ does that for us.
  ~scoped_ptr() {
    enum { type_must_be_complete = sizeof(C) };
    delete ptr_;
  }

  // Reset.  Deletes the current owned object, if any.
  // Then takes ownership of a new object, if given.
  // this->reset(this->get()) works.
  void reset(C* p = NULL) {
    if (p != ptr_) {
      enum { type_must_be_complete = sizeof(C) };
      delete ptr_;
      ptr_ = p;
    }
  }

  // Accessors to get the owned object.
  // operator* and operator-> will assert() if there is no current object.
  C& operator*() const {
    assert(ptr_ != NULL);
    return *ptr_;
  }
  C* operator->() const  {
    assert(ptr_ != NULL);
    return ptr_;
  }
  C* get() const { return ptr_; }

  // Comparison operators.
  // These return whether a scoped_ptr and a raw pointer refer to
  // the same object, not just to two different but equal objects.
  bool operator==(const C* p) const { return ptr_ == p; }
  bool operator!=(const C* p) const { return ptr_ != p; }

  // Swap two scoped pointers.
  void swap(scoped_ptr& p2) {
    C* tmp = ptr_;
    ptr_ = p2.ptr_;
    p2.ptr_ = tmp;
  }

  // Release a pointer.
  // The return value is the current pointer held by this object.
  // If this object holds a NULL pointer, the return value is NULL.
  // After this operation, this object will hold a NULL pointer,
  // and will not own the object any more.
  C* release() {
    C* retVal = ptr_;
    ptr_ = NULL;
    return retVal;
  }

 private:
  C* ptr_;

  // google3 friend class that can access copy ctor (although if it actually
  // calls a copy ctor, there will be a problem) see below
  friend scoped_ptr<C> make_scoped_ptr<C>(C *p);

  // Forbid comparison of scoped_ptr types.  If C2 != C, it totally doesn't
  // make sense, and if C2 == C, it still doesn't make sense because you should
  // never have the same object owned by two different scoped_ptrs.
  template <class C2> bool operator==(scoped_ptr<C2> const& p2) const;
  template <class C2> bool operator!=(scoped_ptr<C2> const& p2) const;

  // Disallow evil constructors
  scoped_ptr(const scoped_ptr&);
  void operator=(const scoped_ptr&);
};

// Free functions
template <class C>
inline void swap(scoped_ptr<C>& p1, scoped_ptr<C>& p2) {
  p1.swap(p2);
}

template <class C>
inline bool operator==(const C* p1, const scoped_ptr<C>& p2) {
  return p1 == p2.get();
}

template <class C>
inline bool operator==(const C* p1, const scoped_ptr<const C>& p2) {
  return p1 == p2.get();
}

template <class C>
inline bool operator!=(const C* p1, const scoped_ptr<C>& p2) {
  return p1 != p2.get();
}

template <class C>
inline bool operator!=(const C* p1, const scoped_ptr<const C>& p2) {
  return p1 != p2.get();
}

template <class C>
scoped_ptr<C> make_scoped_ptr(C *p) {
  // This does nothing but to return a scoped_ptr of the type that the passed
  // pointer is of.  (This eliminates the need to specify the name of T when
  // making a scoped_ptr that is used anonymously/temporarily.)  From an
  // access control point of view, we construct an unnamed scoped_ptr here
  // which we return and thus copy-construct.  Hence, we need to have access
  // to scoped_ptr::scoped_ptr(scoped_ptr const &).  However, it is guaranteed
  // that we never actually call the copy constructor, which is a good thing
  // as we would call the temporary's object destructor (and thus delete p)
  // if we actually did copy some object, here.
  return scoped_ptr<C>(p);
}

// scoped_array<C> is like scoped_ptr<C>, except that the caller must allocate
// with new [] and the destructor deletes objects with delete [].
//
// As with scoped_ptr<C>, a scoped_array<C> either points to an object
// or is NULL.  A scoped_array<C> owns the object that it points to.
// scoped_array<T> is thread-compatible, and once you index into it,
// the returned objects have only the threadsafety guarantees of T.
//
// Size: sizeof(scoped_array<C>) == sizeof(C*)
template <class C>
class scoped_array {
 public:
  // The element type
  typedef C element_type;

  // Constructor.  Defaults to intializing with NULL.
  // There is no way to create an uninitialized scoped_array.
  // The input parameter must be allocated with new [].
  explicit scoped_array(C* p = NULL) : array_(p) { }

  // Destructor.  If there is a C object, delete it.
  // We don't need to test ptr_ == NULL because C++ does that for us.
  ~scoped_array() {
    enum { type_must_be_complete = sizeof(C) };
    delete[] array_;
  }

  // Reset. Deletes the current owned object, if any.
  // Then takes ownership of a new object, if given.
  // this->reset(this->get()) works.
  void reset(C* p = NULL) {
    if (p != array_) {
      enum { type_must_be_complete = sizeof(C) };
      delete[] array_;
      array_ = p;
    }
  }

  // Get one element of the current object.
  // Will assert() if there is no current object, or index i is negative.
  C& operator[](std::ptrdiff_t i) const {
    assert(i >= 0);
    assert(array_ != NULL);
    return array_[i];
  }

  // Get a pointer to the zeroth element of the current object.
  // If there is no current object, return NULL.
  C* get() const {
    return array_;
  }

  // Comparison operators.
  // These return whether a scoped_array and a raw pointer refer to
  // the same array, not just to two different but equal arrays.
  bool operator==(const C* p) const { return array_ == p; }
  bool operator!=(const C* p) const { return array_ != p; }

  // Swap two scoped arrays.
  void swap(scoped_array& p2) {
    C* tmp = array_;
    array_ = p2.array_;
    p2.array_ = tmp;
  }

  // Release an array.
  // The return value is the current pointer held by this object.
  // If this object holds a NULL pointer, the return value is NULL.
  // After this operation, this object will hold a NULL pointer,
  // and will not own the object any more.
  C* release() {
    C* retVal = array_;
    array_ = NULL;
    return retVal;
  }

 private:
  C* array_;

  // Forbid comparison of different scoped_array types.
  template <class C2> bool operator==(scoped_array<C2> const& p2) const;
  template <class C2> bool operator!=(scoped_array<C2> const& p2) const;

  // Disallow evil constructors
  scoped_array(const scoped_array&);
  void operator=(const scoped_array&);
};

// Free functions
template <class C>
inline void swap(scoped_array<C>& p1, scoped_array<C>& p2) {
  p1.swap(p2);
}

template <class C>
inline bool operator==(const C* p1, const scoped_array<C>& p2) {
  return p1 == p2.get();
}

template <class C>
inline bool operator==(const C* p1, const scoped_array<const C>& p2) {
  return p1 == p2.get();
}

template <class C>
inline bool operator!=(const C* p1, const scoped_array<C>& p2) {
  return p1 != p2.get();
}

template <class C>
inline bool operator!=(const C* p1, const scoped_array<const C>& p2) {
  return p1 != p2.get();
}

// This class wraps the c library function free() in a class that can be
// passed as a template argument to scoped_ptr_malloc below.
class ScopedPtrMallocFree {
 public:
  inline void operator()(void* x) const {
    free(x);
  }
};

}  // namespace internal
}  // namespace ceres

#endif  // CERES_PUBLIC_INTERNAL_SCOPED_PTR_H_